Discovery of Excellent Ultraviolet Nonlinear Optical Materials in Chlorates and Bromates with Highly Stereochemically Active Lone Pairs

Chun-Li Hu,^{a,b} Qian-Qian Chen,^b Fang Kong ^b and Jiang-Gao Mao*^{a,b}

^a Fujian Science & Technology Innovation Laboratory for Optoelectronic Information

of China, Fuzhou, Fujian 350108, P. R. China

^b State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the

Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China

* Email: mjg@fjirsm.ac.cn

Table of Contents

Section	Title	Page
Figure S1	Calculated band structures for the halates by hybrid HSE06.	3-8
Figure S2	Calculated refractive index curves and the shortest PM wavelengths in the	9-17
	SHG process for the halates.	
Figure S3	Visualization of the Pb ²⁺ -6s ² , Tl ⁺ -6s ² and Cl ⁵⁺ -3s ² lone pairs (pink) through	18
	electron localization function (ELF) for $Pb(ClO_3)_2$ (a) and $TlClO_3$ (b) with	
	$\eta = 0.9.$	
Figure S4	Polarizability anisotropy-weighted electron density (PAWED) plots for	19-21
	KClO ₃ (a: VB; b: CB), TlClO ₃ (c: VB; d: CB) and Pb(ClO ₃) ₂ (e: VB; f: CB).	

Figure S1. Calculated band structures for the halates by hybrid HSE06.

(1)

(q)

Figure S2. Calculated refractive index curves and the shortest PM wavelengths in the SHG process for the halates.

(b)

(c)

(d)

(e)

(f)

11

(g)

(h)

(i)

(k)

⁽¹⁾

(m)

⁽n)

(0)

⁽q)

Figure S3. Visualization of the Pb²⁺-6s², Tl⁺-6s² and Cl⁵⁺-3s² lone pairs (pink) through electron localization function (ELF) for Pb(ClO₃)₂ (a) and TlClO₃ (b) with $\eta = 0.9$.

Figure S4. Polarizability anisotropy-weighted electron density (PAWED) plots for KClO₃ (a: VB; b: CB), TlClO₃ (c: VB; d: CB) and Pb(ClO₃)₂ (e: VB; f: CB).

(a)

(b)

(c)

(d)

(f)