## Supplemental Materials for Tuning lithium-yttrium chloride local dynamics through coordination control and mixing during synthesis

Teerth Brahmbhatt<sup>a,b</sup>, Cheng Li<sup>c</sup>, Mounesha N. Garaga<sup>d</sup>, Wan-Yu Tsai<sup>a</sup>, Steve G. Greenbaum<sup>d</sup>, Jagjit Nanda<sup>e</sup>, Robert L. Sacci<sup>a</sup>\*

<sup>a.</sup> Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 38712 USA. E-mail: saccirl@ornl.gov

<sup>c</sup> Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 38712

Larger high resolution images from manuscript are provided for the reader.

<sup>&</sup>lt;sup>b.</sup> Bredesen Center for Interdisciplinary Research and Education, University of Tennessee, Knoxville, TN, 37996

<sup>&</sup>lt;sup>d.</sup> Department of Physics and Astronomy, Hunter College, City University of New York, New York, NY 10065

e. Applied Energy Division, SLAC National Laboratory, Menlo Park, CA 94025



Figure S1: Visualization of the synthesis pathways using *in situ* neutron diffraction of the ammonium chloride-assisted synthesis from aqueous solution, heating from 47 to 500 °C. The initial NPD pattern is the precursors after dissolution and vacuum drying prior to ramping, the final NPD pattern is the RT product obtained after ramping and cooling.



Figure S2: Visualization of the synthesis pathways using *in situ* neutron diffraction of the ammonium chloride-free synthesis from aqueous solution, heating from 45 to 500 °C. The initial NPD pattern is the precursors after dissolution and vacuum drying prior to ramping, the final NPD pattern is the RT product obtained after ramping and cooling.



Figure S3: Visualization of the synthesis pathways using *in situ* neutron diffraction of the mechanochemical LYC synthesis, heating from 45 to 500 °C. The initial NPD pattern is the precursors after dissolution and vacuum drying prior to ramping, the final NPD pattern is the RT product obtained after ramping and cooling.



Figure S4: Infrared absorbance spectra of AC-LYC samples measured using a diamond crystal attenuated total reflection accessory at cut at a  $45^{\circ}$  angle. Absorbances are offset for clarity. Unannealed, as-dried, sample shows clear N-H bands, while annealing at  $350^{\circ}$ C leaves behind little N-H bands suggesting ammonium is removed. Further annealing at  $500^{\circ}$ C reduces strongly adsorbed H<sub>2</sub>O and hydroxyl groups.

6

.



Figure S6: Refinement of the neutron powder diffraction data of the tetragonal LYC product synthesized through the mechanochemical route before annealing. This sample was synthesized in parallel to the *in situ* diffraction samples. Note, the non-flat background is indicative of an amorphous phase, presumably YCl<sub>3</sub> as it is observed in the following figure.



gure S7: Refinement of the neutron powder diffraction data of the tetragonal LYC product synthesized by annealing the mechanochemical sample shown in Figure S5. This sample was synthesized in parallel to the *in situ* diffraction samples.



Figure S8: <sup>7</sup>Li static NMR spectra of MC, MCA and AC samples as a function of temperature.



Figure S9: Representative deconvolution of the <sup>7</sup>Li static NMR spectra of MC, MCA and AC.