Electronic Supplementary Information

Solar heating catalytic formic acid dehydrogenation by graphene porous foam supported tungsten nitride nanoparticles

Jiarong Chang^{a1}, Tianhua Hao^{a1}, Cuncai Lv^{ab*}, Maoyu Xu^a, Deyi Zhang^a, Linjie Gao^a, Shangbo Ning^a, Yaguang Li^{a*}, Jinhua Ye^{a*}

^a Research Center for Solar Driven Carbon Neutrality, The College of Physics Science

and Technology, Hebei University, Baoding 071002, P. R. China

^b Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint

Research Center for Advanced Functional Materials, Macau University of Science and

Technology, Taipa, Macau SAR, 999078 China

¹ These authors made equal contribution to this work.

*Corresponding authors: Cuncai Lv (cuncailv@hbu.edu.cn), Yaguang Li (liyaguang@hbu.edu.cn), Jinhua Ye (Jinhua.YE@nims.go.jp)

Figure S1. SEM image of the sample formed through freeze-drying.

Figure S2. SEM image of the W/Gr PF/NaCl.

Figure S3. XRD pattern of the W/Gr PF/NaCl.

Figure S4. Raman spectrum of the W/Gr PF/NaCl.

Figure S5. SEM image of the W/Gr PF.

Figure S6. XRD pattern of the W/Gr PF.

Figure S7. Raman spectrum of the W/Gr PF.

Figure S8. Raman spectrum of the WN/Gr PF-850.

Figure S9. The thermal gravimetric analysis (TGA) curve of WN/Gr PF-850 measured in air atmosphere.

Figure S10. (a, b) SEM, (c) TEM and (d) HRTEM images of WN/Gr PF-750.

Figure S11. (a, b) SEM, (c) TEM and (d) HRTEM images of WN/Gr PF-950.

Figure S12. BET of the WN/Gr PF-750 (a), WN/Gr PF-850 (b) and WN/Gr PF-950

(c).

Figure S13. Thermal catalytic FA decomposition test without any catalysts.

Figure S14. XRD spectrum of the WN/Gr PF-850 after test.

Figure S15. XPS of the WN/Gr PF-850 after test.

Figure S16. Raman spectrum of the WN/Gr PF-850 after test.

Figure S17. (a) SEM, (b) TEM, and (c) HRTEM images of WN/Gr PF-850 after test.

Figure S18. STEM image (a) and corresponding elemental mapping images of (a) W, (c) O and (d) C of WN/Gr PF-850 after test.

Figure S19. Normalized light absorption spectra of Ti₂O₃ film/Cu layer.

Figure S20. The IR images of the solar heating device under (a) 0.4 and (b) 1 kW m^{-2} irradiation.

Catalyst	Reaction condition	Temperatur e (°C)	Conversion (%)	H ₂ selectivity (%)	$\begin{array}{c} H_2 \text{ generation} \\ \text{rate } (L \text{ g}^{\text{-1}} \text{ h}^{\text{-1}}) \end{array}$	Reference
WN/Gr PF-850	FA	300		97.4	7.88	This work
Mg _{1.0} Mo _{99.0} C _{1-x}	FA	300	90+	90.0		1
a-Mo _x C _y	FA	300	100	89.0		2
1% Mo ₂ C/Norit	FA	300	100	95.5	2.14	3
Mo ₂ C/Gr	FA	380	37	86		4
MoS ₂ /Mo ₂ C	FA	220	97.4	99.2		5
10Mo _x C/AC	FA	200	100	92	1.012	6
Mo ₂ C-Co/GAC	FA	250	100	99.0	0.521	7
20% Mo-DAL	FA	220	98.0	99.4		5
PF-Mo _{1.98} C _{1.02}	FA/SF	100		97.6	0.79	8
γ-Mo ₂ N/0.2NK-C	FA/H ₂ O	87	100	100	0.2939	9
Ni ₁₀ Mo ₁ /PB	FA	300	92.8	98		10
Ni/G/MoS ₂	FA/SF	100		100	3.96	11
γ-Mo ₂ N/NC	FA	200	100	99.4	1.84	12
Co@NC-Gr1	FA	300	100	~97	1.455	13
Ni _{0.40} Au _{0.15} Pd _{0.45} /C	FA/H ₂ O	25	73%	100%		14
Ag@Pd	FA/H ₂ O	50		100%	5.60	15
Au.03Pd.05@BNNS	FA/NEt3	50		100%	1.26	16
2% Pd/ZnO	FA	287	100	~93%	1.63	17

 Table S1. The performance of representative catalysts for thermal catalytic FA

 decomposition.

Note: SF represents sodium formate; NEt3 represents triethylamine.

Catalyst	Solvent	H ₂ selectivity (%)	$\begin{array}{c} H_2 \text{ generation} \\ \text{rate } (L \text{ g}^{-1} \text{ h}^{-1}) \end{array}$	Reference
WN/Gr PF-850	0.4 Sun		7.60	This work
CdS/CoP@RGO	Xenon lamp	99.5%	4.07 ± 0.27	18
FeP@CdS NRs	Xenon lamp		6.227	19
Au _{0.75} Pd /TiO ₂	1 Sun	99.5%	0.396	20
Ru-CdS	Xenon lamp		0.12	21
Pd/C ₃ N ₄	Xenon lamp		1.19	22
Co ²⁺ /CdS QDs	Xenon lamp	99.4%±1%	2.59±0.31	23
CoPSA-CdS NRs	Xenon lamp		2.30	24
Fe salen/CdS	Xenon lamp		3.36	25
CdS/P/MoS ₂	Xenon lamp		1.54	26
Pt/g-C ₃ N ₄	0.7 Sun		0.04	27

Table S2. The performance of efficient photocatalysts for photocatalytic FAdehydrogenation.

References

- J. Wang, J. Cao, Y. Ma, X. Li, P. Xiaokaiti, X. Hao, T. Yu, A. Abudula and G. Guan, Decomposition of formic acid for hydrogen production over metal doped nanosheet-like MoC_{1-x} catalysts, *Energy Convers. Manag.*, 2017, 147, 166-173.
- J. Cao, J. Wang, Y. Ma, X. Li, P. Xiaokaiti, X. Hao, A. Abudula and G. Guan, Hydrogen production from formic acid over morphology-controllable molybdenum carbide catalysts, *J. Alloys Compd.*, 2018, 735, 1463-1471.
- Á. Koós and F. Solymosi, Production of CO-free H₂ by formic acid decomposition over Mo₂C/carbon catalysts, *Catal. Lett.*, 2010, 138, 23-27.
- J. Gray, S. Kang, J. Yang, N. Kruse, J. McEwen, J. Park and S. Ha, Unravelling the reaction mechanism of gas-phase formic acid decomposition on highly dispersed Mo₂C nanoparticles supported on graphene flakes, *Appl. Catal. B-Environ.*, 2020, 264, 118478.
- I. Kurnia, A. Yoshida, Y. Situmorang, Y. Kasai, A. Abudula and G. Guan, Utilization of dealkaline lignin as a source of sodium-promoted MoS₂/Mo₂C hybrid catalysts for hydrogen production from formic acid, *ACS Sustain. Chem. Eng.*, 2019, 7, 8670-8677.
- A. Carrales-Alvarado, A. Dongil, J. Fernández-Morales, M. Fernández-García, A. Guerrero-Ruiz and I. Rodríguez-Ramos, Selective hydrogen production from formic acid decomposition over Mo carbides supported on carbon materials, *Catal. Sci. Technol.*, 2020, 10, 6790-6799.
- 7. S. Zhu, Z. Pan, Y. Tao and Y. Chen, Low temperature H₂ production from formic

acid aqueous solution catalyzed on metal doped Mo₂C, *J. Renew. Mater.*, 2020, **8**, 939-946.

- C. Lv, P. Lou, C. Shi, R. Wang, Y. Fu, L. Gao, S. Wang, Y. Li and C. Zhang, Efficient hydrogen production via sunlight-driven thermal formic acid decomposition over a porous film of molybdenum carbide, *J. Mater. Chem. A*, 2021, 9, 22481-22488.
- Z. Yu, Y. Yang, S. Yang, J. Zheng, X. Hao, G. Wei, H. Bai, A. Abudula and G. Guan, Selective dehydrogenation of aqueous formic acid over multifunctional γ-Mo₂N catalysts at a temperature lower than 100 °C, *Appl. Catal. B-Environ.*, 2022, 313, 121445.
- L. Zheng, Z. Li, P. Fu, F. Sun, M. Liu, T. Guo and Q. Fan, Development of Momodified pseudoboehmite supported Ni catalysts for efficient hydrogen production from formic acid, ACS Omega, 2022, 7, 27172-27184.
- X. Bai, S. Li, Y. Zhang, S. Zhu, L. Gao, R. Cong, W. Yu, S. Wang, B. Liang and Y. Li, Solar-heating thermocatalytic H₂ production from formic acid by a MoS₂graphene-nickel foam composite, *Green Chem.*, 2021, 7630-7634.
- Z. Yu, X. An, I. Kurnia, A. Yoshida, Y. Yang, X. Hao, A. Abudula, Y. Fang and G. Guan, Full spectrum decomposition of formic acid over γ-Mo₂N-based catalysts: from dehydration to dehydrogenation, *ACS Catal.*, 2020, **10**, 5353-5361.
- A. Chernov, T. Astrakova, V. Sobolev and K. Koltunov, Liquid versus gas phase dehydrogenation of formic acid over Co@N-doped carbon materials. The role of single atomic sites, *Mol. Catal.*, 2021, **504**, 111457.

- Z. Wang, Y. Ping, J. Yan, H. Wang and Q. Jiang, Hydrogen generation from formic acid decomposition at room temperature using a NiAuPd alloy nanocatalyst, *Int. J. Hydrog. Energy*, 2014, **39**, 4850-4856.
- K. Tedsree, T. Li, S. Jones, C. Chan, K. M. Yu, P. Bagot, E. Marquis, G. Smith and S. Tsang, Hydrogen production from formic acid decomposition at room temperature using a Ag-Pd core-shell nanocatalyst, *Nat. Nanotechnol.*, 2011, 6, 302-307.
- S. Shaybanizadeh, A. Najafi Chermahini and R. Luque, Boron nitride nanosheets supported highly homogeneous bimetallic AuPd alloy nanoparticles catalyst for hydrogen production from formic acid, *Nanotechnology*, 2022, 33, 275601.
- D. Bulushev, M. Zacharska, S. Beloshapkin, Y. Guo and I. Yuranov, Catalytic properties of PdZn/ZnO in formic acid decomposition for hydrogen production, *Appl Catal A-Gen.*, 2018, 561, 96-103.
- S. Cao, Y. Chen, H. Wang, J. Chen, X. Shi, H. Li, P. Cheng, X. Liu, M. Liu and L. Piao, Ultrasmall CoP nanoparticles as efficient cocatalysts for photocatalytic formic acid dehydrogenation, *Joule*, 2018, 2, 549-557.
- T. Wang, L. Yang, D. Jiang, H. Cao, A. Minja and P. Du, CdS nanorods anchored with crystalline FeP nanoparticles for efficient photocatalytic formic acid dehydrogenation, ACS Appl. Mater. Interfaces, 2021, 13, 23751-23759.
- Z. Zhang, S. Cao, Y. Liao and C. Xue, Selective photocatalytic decomposition of formic acid over AuPd nanoparticle-decorated TiO₂ nanofibers toward high-yield hydrogen production, *Appl. Catal. B-Environ.*, 2015, 162, 204-209.

- Y. Zhang, L. Zhang and S. Li, Synthesis of Al-substituted mesoporous silica coupled with CdS nanoparticles for photocatalytic generation of hydrogen, *Int. J. Hydrog. Energy*, 2010, **35**, 438-444.
- Y. Cai, X. Li, Y. Zhang, X. Wei, K. Wang and J. Chen, Highly efficient dehydrogenation of formic acid over a palladium-nanoparticle-based mottschottky photocatalyst, *Angew. Chem. Int. Ed.*, 2013, 52, 11822-11825.
- M. Kuehnel, D. Wakerley, K. Orchard and E. Reisner, Photocatalytic formic acid conversion on CdS nanocrystals with controllable selectivity for H₂ or CO, *Angew*. *Chem. Int. Ed.*, 2015, 54, 9627-9631.
- P. Zhou, Q. Zhang, Z. Xu, Q. Shang, L. Wang, Y. Chao, Y. Li, H. Chen, F. Lv, Q. Zhang, L. Gu and S. Guo, Atomically dispersed Co–P3 on CdS nanorods with electron-rich feature boosts photocatalysis, *Adv. Mater.*, 2019, **32**, 1904249.
- R. Irfan, T. Wang, D. Jiang, Q. Yue, L. Zhang, H. Cao, Y. Pan and P. Du, Homogeneous molecular iron catalysts for direct photocatalytic conversion of formic acid to syngas (CO+H₂), *Angew. Chem. Int. Ed.*, 2020, **59**, 14818-14824.
- 26. J. Liu, H. Huang, C. Ge, Z. Wang, X. Zhou and Y. Fang, Boosting CdS photocatalytic activity for hydrogen evolution in formic acid solution by P doping and MoS₂ photodeposition, *Nanomaterials*, 2022, **12**, 561.
- J. Wang, X. Wang, L. Qiu, H. Wang, L. Duan, Z. Kang and J. Liu, Photocatalytic selective H₂ release from formic acid enabled by CO₂ captured carbon nitride, *Nanotechnology*, 2021, **32**, 275404.