Trifluoroacetic Acid Molecules Confined into/onto Metal Organic Frameworks Based on H2btzip for Improving Efficiently Proton Conductivity by the Synergistic Effect

Xiaoxue Ma, ^{‡a} Xin Li, ^{‡a} Xueke Han, ^a Lu Zhang, ^a Ronghua Liu, ^a Hongguo Hao, ^{a*} Hui Yan, ^a Xin Zhao, ^a Xiangjin Kong, ^a Huawei Zhou, ^a Xia Li, ^a Hongjie Zhu, ^a Suna Wang, ^a Yunwu Li, ^a Dichang Zhong, ^b Fangna Dai ^c

^{*a*}Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, and School of Pharmacy, Liaocheng University, Liaocheng 252059, China.

^bInstitute for New Energy Materials and Low Carbon Technologies School of Materials Science and Engineering Tianjin University of Technology Tianjin 300384, China. ^cCollege of Science, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China.

‡ Xiaoxue Ma $a\ddagger$ and Xin Li $a\ddagger$ contributed equally to this work.

* Corresponding Authors, E-mail: <u>hhg207@126.com</u>.

Supplementary Information

Contents

1. Materials and Methods.	1
2. The details information of LCUH-107, LCUH-108, TFA/LCUH-107, at	nd
ГFA@LCUH–108	1
2.1. Synthesis of $[Zn(btzip)(H_2O)] \cdot H_2O (LCUH-107)$	1
3. Crystal structure of LCUH–107.	2
4. AC Impedance Analysis	7
5. References.	23

1. Materials and Instrumentations.

All reagents and solvents were obtained commercially and used without any purification. Crystal data were obtained from a Rigaku Oxford Diffraction Gemini diffractometer, equipped with a Mo $K\alpha$ and Cu $K\alpha$ with ω -scan technique. The powder X-ray diffraction patterns (PXRD) were recorded on a Rigaku D/Max-2500 diffractometer and the intensity data were recorded by continuous scan in a 2θ mode from 5 to 50°, with a step size of 0.1 and a scan speed of 20 min⁻¹. A PerkinElmer Diamond SII thermal analyser was utilized for Thermo gravimetric analysis (TGA) tests from 298 to 1073 K, at a heating rate of 10 K min⁻¹ under a nitrogen atmosphere. A Nicolet 6700 spectrometer was applied to measure the IR spectra in the range 4000–400 cm⁻¹. XPS characterization was carried out by using a Thermo Fisher Scientific ESCALAB spectrometer with Al $K\alpha$ X-rays (1486.6 eV) as the light source.

2. The details information of LCUH–107, LCUH–108, TFA/LCUH–107, and TFA@LCUH–108.

2.1. Synthesis of $[Zn(btzip)(H_2O)] \cdot H_2O$ (LCUH–107). H₂btzip (0.10 mmol, 30.01 mg) and ZnSO₄·7H₂O (0.10 mmol, 28.76 mg) in 10.0 mL deionized water was stirred for 30 min. The mixture was transferred to the Teflon–lined of a 50 mL high pressure stainless steel container and heated at 150 °C for 72 hours, and then cooled to 298 K at the rate of 0.5 °C·min⁻¹. Subsequently, colorless bulk crystals were gathered, washed with ethanol, and dried in vacuum oven. Yield: 65.2% yield based on H₂btzip. IR (KBr pellet: cm⁻¹): 3545(s), 3422(s), 3121(s), 3089(w), 1629(s), 1530(s), 1381(s), 1282(m), 1211(w), 1141(w), 977(m), 909(w), 656(m), 586(w).

2.2. Synthesis of [Ni(btzip)(H₂btzip)] (LCUH–108). H₂btzip (0.10 mmol, 30.01 mg) and NiCl₄·6H₂O (0.20 mmol, 47.52 mg) in 8.0 mL DMF and 8.0 mL acetonitrile was stirred for 30 min. The mixture was transferred to the Teflon–lined of a 50 mL high pressure stainless steel container and heated at 150 °C for 72 hours, and then cooled to 298 K at the rate of 0.5 °C·min⁻¹. Subsequently, blue sheet–like crystals were gathered, washed with ethanol, and dried in vacuum oven. Yield: 54.7% yield based on H₂btzip. IR (KBr pellet: cm⁻¹): 3131(w), 1663 (w), 1529 (w), 1387 (s), 1134 (s), 976 (m), 653 (m), 448(w).

2.3. Synthesis of TFA/LCUH–107. The activated 100 mg LCUH–107 was immerged in $V_{TFA} : V_{MT} = 1 : 40, 1 : 30, 1 : 20, 1 : 10 (V : V)$ solution of 10.0 mL for 1 h. The crystal was then dried under vacuum oven at 70 °C to obtain the trifluoroacetic acid–supported product TFA@LCUH–107.

2.4. Synthesis of TFA@LCUH–108. The activated 100 mg **LCUH–108** was immerged in $V_{TFA} : V_{MT} = 1 : 20, 1 : 15, 1 : 10, 1 : 5 (V : V)$ solution of 10.0 mL for 1 h. The crystal was then dried under vacuum oven at 70 °C to obtain the trifluoroacetic acid–supported product TFA@LCUH–108.

3. Crystal structure of LCUH–107.

 Table S1. Crystal Parameters for LCUH–107.

Complex	LCUH-107	
CCDC no.	2202297	
Formula	$\mathrm{C_{12}H_{10}N_6O_6Zn}$	
Mr	399.63	
Temperature/K	298.15	
Crystal system	monoclinic	
space group	P21/c	
a (Å)	10.2034(8)	
b (Å)	16.0013(13)	
c (Å)	8.7996(7)	
<i>α</i> , <i>β</i> , γ/°	90, 98.18 (3),90	
V/Å ³	1422.1(2)	
Z	4	
D calcd (g cm ⁻³)	1.867	
μ (mm ⁻¹)	1.777	
F(000)	808.0	
Reflections		
collected	6647	

R _{int}	0.0494
Goodness of fit	1.052

Table S2. Selected Bond Lengths (Å) of LCUH–107.

LCUH-107			
Atom-Atom	Length/Å		
N6–Zn1 ¹	2.140(3)		
O5–Zn1	2.015(3)		
O1–Zn1 ²	1.966(3)		
O4–Zn1 ³	2.074(3)		
Zn1–N1	2.063(3)		

 Table S3. Selected bond angles (°) for LCUH–107.

LCUH-107				
Atom–Atom– Atom	Angle/°			
O5–Zn1–N6 ⁴	85.08(12)			
O5–Zn1–O4 ⁵	88.82(11)			
O5–Zn1–N1	116.98(13)			
O1 ⁶ -Zn1-N6 ⁴	97.00(12)			
O16-Zn1-O5	141.51(13)			
O16-Zn1-O45	88.05(11)			
O16-Zn1-N12	87.64(6)			
O4 ⁵ –Zn1–N6 ⁴	173.41(6)			
N1-Zn1-N6 ⁴	95.15(12)			
N1–Zn1–O4 ⁵	87.21(12)			
C9-N1-Zn1	136.6(2)			
C10-N1-Zn1	120.2(3)			
C8-O4-Zn1 ³	132.2(3)			
C7-O1-Zn1 ²	125.8(3)			
C1 ¹ –N6–Zn1 ¹	126.2(3)			

129.6(3)

 Table S4. Crystal Parameters for LCUH-108.

Complex	LCUH-108	
CCDC no.	2297919	
Formula	$C_{24}H_{14}N_{12}O_8Ni$	
Mr	657.18	
Temperature/K	298.15 Orthorhombic	
Crystal system		
space group	Pbcm	
a (Å)	7.2370(8)	
b (Å)	20.4549(19)	
c (Å)	24.962(2)	
$\alpha, \beta, \gamma/^{\circ}$	90, 90,90	
V/Å ³	3695.2(6)	
Ζ	13	
D calcd (g cm ⁻³)	1.181	
μ (mm ⁻¹)	0.579	
F(000)	1336	
Reflections	2240	
collected	3348	
Goodness of fit	1.012	

Table S5. Selected	Bond Lengths	s (Å) of LCUH–108 .
--------------------	--------------	----------------------------

LCUH-108		
Atom-Atom	Length/Å	
N6–Ni1	2.088(7)	
O2–Ni1	2.093(5)	
N3–Ni1	2.103(7)	

 Table S6. Selected bond angles (°) for LCUH-108.

LCUH-108				
Atom–Atom– Atom	Angle/°			
N6 ¹ -Ni ¹ -N6	180.0(4)			
N6 ¹ -Ni ¹ -O2 ²	85.6(2)			
N6-Ni1-O2 ²	94.4(2)			
N6 ¹ -Ni1-O2 ³	94.4(2)			
N6-Ni1-O2 ³	85.6(2)			
O2 ² -Ni1-O2 ³	180.0			
N6 ¹ -Ni1-N3	93.2(3)			
N6-Ni1-N3	86.8(3)			
O2 ² -Ni1-N3	88.7(2)			
O2 ³ -Ni1-N3	91.3(2)			
N6 ¹ -Ni1-N3 ¹	86.8(3)			
N6-Ni1-N3 ¹	93.2(3)			
O2 ² -Ni1-N3 ¹	91.3(2)			
O2 ³ -Ni1-N3 ¹	88.7(2)			
N3-Ni1-N3 ¹	180.0			
C16-N3-Ni1	129.2(6)			
C17-N3-Ni1	127.7(6)			
C8-O2-Ni36	132.1(5)			
C1–N6–Ni1	124.1(6)			
C21–N6–Ni1	130.1(6)			

Figure S1. (a) and (b) The simulated PXRD pattern of **LCUH–107** (black line) and PXRD patterns of synthesized **LCUH–107** sample (red line) and TFA/**LCUH–107** sample (blue line).

Figure S2. (a) and (b) The simulated PXRD pattern of **LCUH–108** (black line) and PXRD patterns of synthesized **LCUH–108** sample (red line) and TFA@**LCUH–108** sample (blue line).

Figure S3. (a), (b), and (c) IR spectra (KBr pellet, cm⁻¹) of LCUH–107 (blue line) and TFA/LCUH–107 (red line).

Figure S4. (a), (b), and (c) IR spectra (KBr pellet, cm⁻¹) of LCUH–108 (blue line) and TFA@LCUH–108 (red line).

4. AC Impedance Analysis.

The 80–100 mg sample was put into the customized mold of 10 mm × 4 mm and pressed under 2 MPa pressure for 3 min to make the cuboid sample block. The size of the cuboid sample block was accurately measured by the vernier caliper. Apply silver glue to both sides of the cuboid sample block and connect them to the latex sample table with silver wire. The sample stand is then placed in a custom–made double glass bottle and sealed at a certain temperature controlled by a high–temperature circulation tank. The AC impedance spectra were tested on CHI–760E electrochemical workstation with a frequency range of 1 Hz to 1 MHz and signal amplitude of 200 mV. Impedance spectra at different temperatures and relative humidities were recorded where the relative humidities were controlled by standard saturated aqueous solutions of different salts.

The proton conductivity values were calculated by the following equation:

$$\sigma = \frac{l}{RS} \tag{1}$$

where σ is the proton conductivity (S·cm⁻¹), l is the length (cm) of the cube, S is the area covered with silver glue (cm²) and R is the bulk resistance (Ω).

The activation energy (E_a) was calculated by the following equation:

$$\ln \sigma_T = \ln \sigma_0 - \frac{E_a}{KT} \tag{2}$$

where σ is the proton conductivity (S·cm⁻¹), σ_0 is the preexponential factor, K is the Boltzmann constant (eV/K), and T is the temperature (K).

Figure S5. SEM image of **LCUH–107** (a); energy–dispersive elemental mapping images for **LCUH–107**: C (b), N (c), O (d), and Zn (e); EDS image of **LCUH–107** (f).

Figure S6. SEM image of **LCUH–108** (a); energy–dispersive elemental mapping images for **LCUH–108**: C (b), N (c), O (d), and Ni (e); EDS image of **LCUH–108** (f).

Table S7. The conductivity values $(S \cdot cm^{-1})$ of TFA/LCUH–107 by different volume ratios of trifluoroacetic acid (TFA) and methanol (MT) under 100% RH and 80 °C.

V_{TFA} : V_{MT}	1 : 10	1 : 20	1 : 30	1 : 40
$\sigma(10^{-2}\mathrm{S}\cdot\mathrm{cm}^{-1})$	3.00	2.95	1.33	1.16

The effect of different volume ratios of trifluoroacetic acid (TFA) to methanol (MT) on the proton conductivity of TFA/LCUH–107 was determined. For TFA/LCUH–107, when the volume ratios of TFA and MT (V_{TFA} : V_{MT}) are 1 : 40, 1 : 30, 1 : 20, and 1 : 10, the conductivities of TFA/LCUH–107 are 1.16 × 10⁻², 1.33 × 10⁻², 2.95 × 10⁻², and 3.00 × 10⁻²

S·cm⁻¹, respectively. When V_{TFA} : V_{MT} from 1 : 20 to 1 : 10, the conductivity of TFA/LCUH–107 increases only a little (5.0 × 10⁻⁴ S·cm⁻¹). Therefore, from the aspects of cost and conductivity, we selected the values of V_{TFA} : V_{MT} of 1 : 20 to synthesize TFA/LCUH–107 for experimental investigation.

Table S8. The conductivity values (S·cm⁻¹) of TFA@**LCUH−108** by different volume ratios of trifluoroacetic acid (TFA) and methanol (MT) under 100% RH and 80 °C.

$V_{TFA}:V_{MT}$	1 : 5	1 : 10	1 : 15	1 : 20
$\sigma(10^{-1}\mathrm{S}\cdot\mathrm{cm}^{-1})$	2.02	2.05	0.88	0.59

Similarly, the effect of different volume ratios of trifluoroacetic acid (TFA) to methanol (MT) on the proton conductivity of TFA@LCUH–108 was determined. For TFA@LCUH– 108, when the volume ratios of TFA and MT ($V_{TFA} : V_{MT}$) are 1 : 20, 1 : 15, 1 : 10, and 1 : 5, the conductivities of TFA@LCUH–108 are 5.90×10^{-2} , 8.80×10^{-2} , 2.05×10^{-1} , and 2.02×10^{-1} S·cm⁻¹, respectively. When $V_{TFA} : V_{MT}$ from 1 : 10 to 1 : 5, the conductivity change of TFA@LCUH–108 is negligible. Therefore, from the aspects of cost and conductivity, we selected the values of $V_{TFA} : V_{MT}$ of 1 : 10 to synthesize TFA@LCUH–108 for experimental investigation.

Figure S7. Impedance spectra of LCUH–107 (a) and (b), and TFA/LCUH–107 (c) and (d) at 45% RH.

Figure S8. Impedance spectra of LCUH–107 (a), (b), and (c) and TFA/LCUH–107 (d) and (e) at 60% RH (c); Arrhenius plots of proton conductivities for TFA/LCUH–107 (f) at 60% RH.

Figure S9. Impedance spectra of LCUH–107 (a) and TFA/LCUH–107 (c) at 75% RH; Arrhenius plots of proton conductivities for LCUH–107 (b) and TFA/LCUH–107 (d) at 75% RH.

Figure S10. Impedance spectra of LCUH–107 (a) and TFA/LCUH–107 (c) at 85% RH; Arrhenius plots of proton conductivities for LCUH–107 (b) and TFA/LCUH–107 (d) at 85% RH.

Figure S11. Impedance spectra of LCUH–107 (a) and TFA/LCUH–107 (c) at 93% RH; Arrhenius plots of proton conductivities for LCUH–107 (b) and TFA/LCUH–107 (d) at 93% RH.

Figure S12. Impedance spectra of **LCUH–108** (a) and TFA@**LCUH–108** (c) at 45% RH; Arrhenius plots of proton conductivities for **LCUH–108** (b) and TFA@**LCUH–108** (d) at 45% RH.

Figure S13. Impedance spectra of LCUH–108 (a) and TFA@LCUH–108 (c) at 60% RH; Arrhenius plots of proton conductivities for LCUH–108 (b) and TFA@LCUH–108 (d) at 60% RH.

Figure S14. Impedance spectra of **LCUH–108** (a) and TFA@**LCUH–108** (c) at 75% RH; Arrhenius plots of proton conductivities for **LCUH–108** (b) and TFA@**LCUH–108** (d) at 75% RH.

Figure S15. Impedance spectra of LCUH–108 (a) and TFA@LCUH–108 (c) at 85% RH; Arrhenius plots of proton conductivities for LCUH–108 (b) and TFA@LCUH–108 (d) at 85% RH.

Figure S16. Impedance spectra of LCUH–108 (a) and TFA@LCUH–108 (c) at 93% RH; Arrhenius plots of proton conductivities for LCUH–108 (b) and TFA@LCUH–108 (d) at 93% RH.

Figure S17. PXRD patterns of LCUH–107 (a) and TFA/LCUH–107 (b): as–synthesized, after impedance measurements and after stability tests.

Figure S18. PXRD patterns of LCUH–108 (a) and TFA@LCUH–108 (b): as–synthesized, after impedance measurements and after stability tests.

Figure S19. (a) Impedance spectra of TFA/LCUH–107W at 100% RH; (b) Arrhenius plots of proton conductivities for TFA/LCUH–107W at 100% RH.

Figure S20. (a) Impedance spectra of TFA@LCUH–108W at 100% RH; (b) Arrhenius plots of proton conductivities for TFA@LCUH–108W at 100% RH.

Figure S21. IR spectra (KBr pellet, cm⁻¹) of TFA/LCUH–107W.

Figure S22. IR spectra (KBr pellet, cm⁻¹) of TFA@LCUH-108W.

Figure S23. The TG curve of TFA/LCUH–107W.

Figure S24. The TG curve of TFA@LCUH-108W.

Figure S25. SEM image of TFA/LCUH–107W (a); energy–dispersive elemental mapping images for TFA/LCUH–107W: C (b), N (c), O (d), and Zn (e); (f) EDS image of TFA/LCUH–107W.

Figure S26. SEM image of TFA@LCUH–108W (a); energy–dispersive elemental mapping images for TFA@LCUH–108W: C (b), N (c), O (d), Ni (e), and F (f).

Figure S27. XPS spectra of TFA/LCUH-107W.

Figure S28. XPS spectra of (a) C1s, (b) N1s, (c) O1s, and (d) Zn2p in TFA/LCUH-107W.

Figure S29. (a) XPS spectra of TFA@LCUH-108W. XPS spectra of (b) C1s, (c) N1s, (d) O1s, (e) Zn2p, and (f) F1s in TFA@LCUH-108W.

Temp	σ(10 ⁻⁴ S·cm ⁻¹)			
(°C)	75% RH	85% RH	93% RH	100% RH
20	1.85	2.40	3.12	4.56
30	2.94	3.78	4.31	6.90
40	4.55	5.61	7.02	9.70
50	6.72	8.05	9.12	14.88
60	9.46	11.87	13.69	19.02
70	13.89	17.11	19.55	24.44
80	19.31	22.81	27.37	34.21

Table S9. Proton conductivities (S·cm⁻¹) of LCUH–107 at temperatures and different RHs

Table S10. Proton conductivities (S·cm⁻¹) of TFA/LCUH−107 at temperatures and different RHs

Temp	σ(10 ⁻³ S·cm ⁻¹)	$\sigma(10^{-3}{ m S}\cdot{ m cm}^{-1})$	$\sigma(10^{-3}{ m S}\cdot{ m cm}^{-1})$	$\sigma(10^{-3}{ m S}\cdot{ m cm}^{-1})$
(°C)	75% RH	85% RH	93% RH	100% RH
20	2.44	7.06	8.84	10.19
30	3.44	8.66	11.17	12.63
40	4.68	10.43	13.61	14.64
50	6.28	12.81	16.01	18.04
60	8.57	15.57	19.09	21.49
70	11.54	18.39	22.50	24.99
80	15.30	21.37	26.39	29.49

Table S11. Proton conductivities (S·cm⁻¹) of LCUH–108 at temperatures and different RHs

Tem	$\sigma(10^{-3}{ m S}\cdot{ m cm}^{-1})$	$\sigma(10^{-3}{ m S}\cdot{ m cm}^{-1})$	σ(10⁻³	σ (10⁻³	σ(10 -3	-(10-35, cm-1)
р	45% RH	60% RH	S·cm ^{−1})	S·cm ^{−1})	S·cm ^{−1})	100% DU
(°C)			75% RH	85% RH	93% RH	100 /0 KII
20	0.0835	0.304	0.661	1.75	3.248	3.926

30	0.119	0.379	0.885	2.413	4.137	4.86
40	0.167	0.545	1.113	2.844	4.978	5.579
50	0.233	0.67	1.401	3.389	6.011	6.76
60	0.328	0.86	1.781	4.37	7.079	8.184
70	0.421	1.092	2.275	5.399	8.274	9.423
80	0.558	1.394	2.883	6.126	9.653	11.961

Table	S12.	Proton	conductivities	$(S \cdot cm^{-1})$	of	TFA@LCUH-108	at	temperatures	and
differe	nt RHs	5							

Tem	$\sigma(10^{-2}{ m S}\cdot{ m cm}^{-1})$	$\sigma(10^{-2}{ m S}\cdot{ m cm}^{-1})$	σ(10 ⁻²	σ(10-2	σ(10 ⁻²	-(10.25
р	45% RH	60% RH	S·cm ^{−1})	S·cm ^{−1})	S·cm ^{−1})	5(10-2 S.CIII .)
(°C)			75% RH	85% RH	93% RH	100% KH
20	0.265	0.585	0.638	0.833	5.278	7.986
30	0.379	0.761	0.840	1.173	6.260	9.427
40	0.484	1.005	1.107	1.564	7.465	11.04
50	0.603	1.250	1.438	1.729	8.877	13.33
60	0.775	1.573	1.803	2.345	9.660	15.36
70	0.952	1.841	2.281	2.945	10.808	18.27
80	1.196	2.281	2.784	3.732	12.225	20.53

Figure S30. (a) Hydrogen–bonding interactions of **LCUH–108** with water molecules towards pore channels; (b) hydrogen–bonding interactions of **LCUH–108** with imidazole and water molecules towards pore channels.

Figure S31. (a) Hydrogen-bonding interactions of LCUH-108 with water molecules along pore channels; (b) hydrogen-bonding interactions of LCUH-108 with imidazole and water molecules along pore channels.

Bond	Length	Dond	Length Bond		Length	Dond	Length
Donu	(Å)	Bolla	(Å)	Bolla	(Å)	Donu	(Å)
D1	2.808	D2	3.242	D3	3.501	D4	3.455
D5	2.989	D6	3.325	D7	3.198	D8	3.008
D9	3.265	D10	3.555	D11	3.293	D12	3.055
D13	3.246	D14	3.066	D15	3.172	D16	3.276
D17	3.186	D18	3.433	D19	3.507	D20	2.976
D21	3.437	D22	3.466	D23	3.398	D24	3.188
D25	3.426	D26	3.382	D27	3.279	D28	3.285
D29	3.401	D30	3.447	D31	3.356	D32	3.428

Table S13. The hydrogen–bonding lengths of LCUH–108 with water molecules (Figure S31a)

Table S14. The hydrogen-bonding lengths of TFA@LCUH-108 with water molecules

(E:	(211)	
(Figure	22101	

Bond	Length	Bond	Length Bond		Length	Bond	Length
Donu	(Å)	Donu	(Å)	Donu	(Å)	20114	(Å)
D1	3.412	D2	3.256	D3	3.389	D4	3.052
D5	2.987	D6	2.930	D7	3.266	D8	3.249

D9	3.057	D10	3.340	D11	2.910	D12	3.076
D13	3.033	D14	2.921	D15	3.083	D16	3.013
D17	2.915	D18	3.082	D19	2.536	D20	2.549
D21	3.250	D22	2.397	D23	2.786	D24	2.397
D25	3.266	D26	3.049	D27	3.040	D28	2.698
D29	2.910	D30	2.883	D31	3.003	D32	3.189
D33	3.056	D34	3.112	D35	3.027	D36	3.250
D37	3.029	D38	3.076	D39	3.133	D40	2.625
D41	3.425	D42	3.375	D43	3.257	D44	3.066
D45	3.181	D46	3.077	D47	3.199	D48	3.456
D49	3.157	D50	3.098	D51	3.357	D52	3.266
D53	3.278	D54	3.182	D55	3.455	D56	3.256
D5 7	3.377	D58	3.428	D59	3.057	D60	3.399
D61	3.070	D62	3.054	D63	3.188	D64	3.375
D65	3.099	D66	3.500	D67	3.282		

Figure S32. (a) Schematic diagram of TFA/LCUH–107. (b) Diagram of proton transport mechanism of TFA/LCUH–107.

Table S15. Comparison of proton conductivities between TFA/LCUH-107 andTFA@LCUH-108 with those reported in the literature.

Compounds	σ (S·cm ⁻¹)	$E_{\rm a}~({\rm eV})$	Condition	References
Im@(NENU-3)	1.82×10^{-2}	0.57	70 °C, 90% RH	1

Im-Fe-MOF	1.21×10^{-2}	0.436	60 °C, 98% RH	2
Im@MOF-808	3.45×10^{-2}	0.25	65 °C, 99% RH	3
Im@Hf-UiO-66	1.15×10^{-2}	0.40	98 °C, 100% RH	4
Im@Hf-UiO-66-(OH)2	1.32×10^{-2}	0.36	98 °C, 100% RH	4
Im@MOF-801-Hf	1.46×10^{-2}	0.53	100 °C, 98% RH	5
Nafion	5.00×10^{-2}	0.22	30 °C, 98% RH	6
PCMOF2 ¹ / ₂	2.10×10^{-2}	0.21	85 °C, 90% RH	7
IM-UiO-66-AS	1.54×10^{-1}	0.20	80 °C, 98% RH	8
PCMOF10	3.55×10^{-2}	0.4	70 °C, 95% RH	9
UiO-66(SO ₃ H) ₂	8.40×10^{-2}	0.32	80 °C, 90% RH	10
VNU–15	2.90×10^{-2}	0.22	95 °C, 60% RH	11
MIP-202(Zr)	1.10×10^{-2}	0.22	90 °C, 95% RH	12
BUT-8(Cr)A	1.27×10^{-1}	0.11	80 °C, 100% RH	13
LCUH-107	3.42×10^{-3}	0.300	80 °C, 100% RH	this work
LCUH-108	1.20×10^{-2}	0.174	80 °C, 100% RH	this work
TFA/LCUH–107	2.95×10^{-2}	0.170	80 °C, 100% RH	this work
TFA@LCUH-108	2.05×10^{-1}	0.157	80 °C, 100% RH	this work

5. References.

1 Y. X. Ye, W. G. Guo, L. H. Wang, Z. Y. Li, Z. J. Song, J. Chen, Z. J. Zhang, X. C. Xiang,
B. L. Chen, Straightforward Loading of Imidazole Molecules into Metal–Organic Framework
for High Proton Conduction, *J. Am. Chem. Soc.* 2017, **139**, 15604–15607.

2 F. M. Zhang, L. Z. Dong, J. S. Qin, W. Guan, J. Liu, S. L. Li, M. Lu, Y. Q. Lan, Z. M. Su,

H. C. Zhou, Effect of Imidazole Arrangements on Proton–Conductivity in Metal–Organic Frameworks, J. Am. Chem. Soc. 2017, **139**, 6183–6189.

3 H. B. Luo, Q. Ren, P. Wang, J. Zhang, L.F. Wang, X. M. Ren, High Proton Conductivity Achieved by Encapsulation of Imidazole Molecules into Proton–Conducting MOF–808, *ACS Appl. Mater. Inter.* 2019, **11**, 9164–9171.

4 X. Chen, S. Z. Wang, S. H. Xiao, Z. F. Li, G. Li, High Protonic Conductivity of Three Highly Stable Nanoscale Hafnium(IV) Metal–Organic Frameworks and Their Imidazole Loaded Products, *Inorg. Chem.* 2022, **61**, 4938–4947.

5 H. M. Ren, Y. R. Liu, B. Y. Liu, Z. F. Li, G. Li, Comparative Studies on the Proton Conductivities of HafniumBased Metal–Organic Frameworks and Related Chitosan or Nafion Composite Membranes, *Inorg. Chem.* 2022, **61**, 9564–9579.

6 Y. Prykhodko, K. Fatyeyeva, L. Hespel and S. Marais, Progress in hybrid composite Nafion–based membranes for proton exchange fuel cell application, *Chem. Eng. J.*, 2021, **409**, 127329.

7 S. R. Kim, K. W. Dawson, B. S. Gelfand, J. M. Taylor and G. K. H. Shimizu, Enhancing Proton Conduction in a Metal–Organic Framework by Isomorphous Ligand Replacement, *J. Am. Chem. Soc.*, 2013, **135**, 963–966.

8 X. M. Li, J. Liu, C. Zhao, J. L. Zhou, L. Zhao, S. L. Li and Y. Q. Lan, Strategic hierarchical improvement of superprotonic conductivity in a stable metal organic framework system, *J. Mater. Chem. A*, 2019, **7**, 25165–25171.

9 P. Ramaswamy, N. E. Wong, B. S. Gelfand and G. K. H. Shimizu, A Water Stable Magnesium MOF That Conducts Protons over 10⁻² S cm⁻¹, *J. Am. Chem. Soc.*, 2015, **137**, 7640–7643.

10 W. J. Phang, H. Jo, W. R. Lee, J. H. Song, K. Yoo, B. S. Kim and C. S. Hong, Superprotonic Conductivity of a UiO–66 Framework Functionalized with Sulfonic Acid Groups by Facile Postsynthetic Oxidation, *Angew. Chem. Int. Ed.*, 2015, **54**, 5142–5146.

11 T. N. Tu, Phan, N. Q.; Vu, T. T.; Nguyen, H. L.; Cordova, K. E.; Furukawa, H. High proton conductivity at low relative humidity in an anionic Fe–based metal organic framework, *J. Mater. Chem. A.*, 2016, **4**, 3638–3641.

12 F. Yang, G. Xu, Y. Dou, B. Wang, H. Zhang, H. Wu, W. Zhou, J. R. Li and B. Chen, A flexible metal–organic framework with a high density of sulfonic acid sites for proton conduction, *Nat. Energy*, 2017, **2**, 877–883.