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1. Material and Methods

1.1 Materials. (NH4)6Mo7O24·4H2O (Aladdin, Shanghai, China), CH4N2S (Aladdin, 

Shanghai, China), Aniline (Aladdin, Shanghai, China), (NH4)2S2O8 (Aladdin, Shanghai, 

China), HCl (Aladdin, Shanghai, China).

1.2 Material preparation.

Preparation of MoS2. 1.359 g of ammonium molybdate and 2.512 g of thiourea 

were dissolved in 38 ml of deionized water. After dissolving and stirring for 30 min, it 

was poured into a polytetrafluoroethylene hydrothermal kettle and hydrothermally 

heated at 200°C for 24 h. The precipitate was collected and cleaned with deionized 

water and ethanol, and dried for 24 h under vacuum.

Preparation of PANI. Dissolve 0.3 ml of aniline and 0.18 g of ammonium 

persulfate in 12 ml of HCl (1 mol/L). It was stirred strongly for 30 min, and after 

discoloration, ice bath for 12h (under the condition of avoiding light). The precipitate 

was collected and washed hurriedly with deionized water and lyophilize for 24h.

Preparation of MoS2@PANI. The prepared 0.5 g of PANI and 0.125 g of MoS2 

were dispersed in 24 ml of HCl (1 mol/L) solution. After ultrasonic crushing for 10 

min, it was hydrothermally heated at 120°C for 18 h. The precipitate was washed with 

deionized water and the product was collected by lyophilization for 24 h.

1.3 Material characterizations.

The microstructures of the complexes were observed by field emission scanning 

electron microscopy (SEM, MAGELLAN-400) and transmission electron microscopy 

(TEM, JEM-1011). The prepared products were tested with a Bruker AXS D8 advanced 



X-ray diffractometer (XRD) over the 2θ range of 10 to 80◦.

1.4 Electrochemical measurements. 

Assembly of the MoS2@PANI cathode cells was carried out in a glove box (O2 < 

0.1 ppm, H2O < 0.1 ppm). The MoS2@PANI, conductive agent (acetylene black), and 

binder (PVDF) were mixed with a ratio of 7:2:1 to form a slurry, and a dispersant was 

added to the slurry. After stirring for 12 h，the slurry was uniformly spread on carbon 

clothe with an electric roller and dried at 60°C. 1.0 M lithium bis 

(trifluoromethanesulfonyl)imide (LiTFSI) in tetraethylene glycol dimethyl ether 

(TEGDME) as the electrolyte. The Li foil was used as the reference electrode. A glass 

microfiber filter (Whatman GF/D) was used as the separator. The assembled cathode 

shell of the cell had 8mm diameter holes for receiving light and was placed in a 

homemade transparent sealed box filled with oxygen. After oxygen purging for 30min, 

constant current charge/discharge tests were performed with a cell test system (Land 

CT2001A). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy 

(EIS) were performed with an electrochemical workstation (CHI 660E).

1.5 DFT Calculations

We have employed the first-principles [1,2] to perform density functional theory 

(DFT) calculations within the generalized gradient approximation (GGA) using the 

Perdew-Burke-Ernzerhof (PBE) [3] formulation. We have chosen the projected 

augmented wave (PAW) potentials [4,5] to describe the ionic cores and take valence 

electrons into account using a plane wave basis set with a kinetic energy cutoff of 

450eV. Partial occupancies of the Kohn−Sham orbitals were allowed using the 



Gaussian smearing method and a width of 0.05 eV. The electronic energy was 

considered self-consistent when the energy change was smaller than 10−5 eV. A 

geometry optimization was considered convergent when the energy change was smaller 

than 0.05 eV Å−1. The vacuum spacing in a direction perpendicular to the plane of the 

structure is 18 Å for the surfaces. The Brillouin zone integration is performed using 

2×2×1 Monkhorst-Pack k-point sampling for a structure. Finally, the adsorption 

energies (Eads) were calculated as Eads= Ead/sub-Ead-Esub, where Ead/sub, Ead, and 

Esub are the total energies of the optimized adsorbate/substrate system, the adsorbate 

in the structure, and the clean substrate, respectively. For the exciton, the higher spin-

up state is occupied by the spin-up electron from the VBM. With the occupation of 

these electronic states fixed, the structural relaxation will be calculated.



Fig. S1 SEM images of (a, b) pure PANI.



Fig. S2 TEM image of PANI@MoS2.



Fig. S3 Full chromatogram of PANI@MoS2.



Fig. S4 Tauc plot curves of (a) MoS2 and (b) PANI.



Fig. S5 UPS spectra of the (a) MoS2 and (b) PANI.



Fig. S6 the calculated band structure of the (a) MoS2, (b)PANI and (c) MoS2@PANI.



Fig. S7 Discharge/charge curves at varied currents with illumination of the (a) MoS2 
and (b) PANI.



Fig. S8 Charge/discharge profiles at current densities of 1 mA cm-2 and cutoff 

capacities of 1 mAh cm-2.



Fig. S9 FTIR spectra of the MoS2@PANI electrodes before and after 10 cycles.



Fig. S10 CV curves with and without illumination of the (a) MoS2 and (b) PANI.



Fig. S11 Nyquist plots with and without illumination of the (a) MoS2 and (b) PANI.



Fig. S12 Long cycle electrochemical performance of individual (a) MoS2 and (b) 
PANI with and without illumination.



Fig. S13 SEM images of different durations of discharge: (a) 0.5h, (b) 1h, (c) 2h and 
(d) 5h.



Fig. S14 SEM images of the discharged and recharged MoS2@PANI cathodes (scale 
bar: 500 nm).



Fig. S15 SEM images of different durations of discharge: (a) Fresh, (b) 1h.



Table S1 Comparison of the electrochemical performances of MoS2@PANI with 

reported cathode materials for Li-O2 batteries.

Materials
Discharge 

Voltage (V) 
Charge Voltage (V) Current density (mA cm-2) Energy Efficiency Ref

MoS2 
/ZnIn2S4

3.22 
3.17 
3.13

3.25 
3.29 
3.45

0.02 
0.05 
0.2

99.1%
96%

90.7%
[6]

TiO2 
/Fe2O3

3.12 
~2.84

3.2 
~3.75

0.01 
0.05

97.5%
75.7%

[7]

CsPbBr3@
PCN-333

3.19 
~2.6

3.44 
~3.7

0.01 
0.2

92.7%
70.2%

[8]

Fe2O3
2.68 
2.56

3.09 
3.15

0.06 
0.12

86.7%
81.2%

[9]

CeVO4@C
NT

~3 
~2.98

3.45 
~3.8

0.1
0.15

86.9%
78.4%

[10]

g-C3N4 3.22 3.38 0.1 95% [11]

TiO2 2.65 2.86 0.01 92% [12]

ZnS 2.47 2.08 0.026 >100% [13]

g-C3N4, 
I2/I3-

2.7 1.9 0.01 >100% [14]

Au-SnO2 3.10 3.59 100 mA g-1 86.3% [15]

MoS2@PANI 3.18 3.26 0.05 97.5% This work
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