Electronic Supplementary Information

Fabrication of Amorphous Subnanometric PalladiumNanostructuresonMetallicTransitionMetalDichalcogenides for Efficient Hydrogen Evolution Reaction

Liang Mei^{1#}, Yuefeng Zhang^{1#}, Zimeng Ye¹, Ting Han¹, Honglu Hu, Ruijie Yang¹, Ting Ying¹, Weikang Zheng¹, Ruixin Yan¹, Yue Zhang¹, Zhenbin Wang¹, Zhiyuan Zeng^{1,2*}

¹Department of Materials Science and Engineering and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, People's Republic of China. ² Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China

Corresponding authors:

Z.Y. Zeng (zhiyzeng@cityu.edu.hk)

These authors contributed equally: Liang Mei, Yuefeng Zhang

Contents

1. Supplementary Figures 1-19

Fig. S1. XRD spectra of bulk MoS₂, WS₂, and TiS₂.

Fig. S2. Photographs of exfoliated MoS₂, WS₂, and TiS₂ nanosheets dispersed in DI water.

Fig. S3. Zetapotential of exfoliated MoS₂, WS₂, and TiS₂ nanosheets solution.

Fig. S4. Raman spectra of pristine TMDs and Pd-TMDs.

Fig. S5. TEM images of MoS₂, WS₂, and TiS₂ nanosheets.

Fig. S6. TEM images of Pd-MoS₂, Pd-WS₂, and Pd-TiS₂ composites.

Fig. S7. EDS spectra of Pd-MoS₂, Pd-WS₂, and Pd-TiS₂ composites.

Fig. S8. XPS full spectra of pristine TMDs and Pd-TMD composites.

Fig. S9. Zetapotential of Pd-TMD solution.

Fig. S10. XPS spectra of Pd-TMDs after durability test.

Fig. S11. Raman spectra of Pd-TMDs after durability test.

Fig. S12. SEM and HRTEM images of Pd-TMDs after durability test.

Fig. S3. Model diagrams and possible H adsorption sites for TMDs, Pd(111) and Pd(211).

Fig. S14. The adsorption models and corresponding adsorption energy for H adsorbed on different sites of TMDs.

Fig. S15. The adsorption models and corresponding adsorption energy for H adsorbed on different sites of Pd(111) and Pd(211).

Fig. S16. Models of 1 H* adsorbed on Pd (111) and Pd(211).

Fig. S17. COHP for the ninth H* bonded to Pd (111).

Fig. S18. COHP for the ninth H* bonded to Pd (211).

Fig. S19. COHP for the H* and S in TMDs.

2. Supplementary table 1

Table S1. Compare HER performance of Pd-MoS₂, Pd-WS₂, and Pd-TiS₂ composites with Pd-decorated 2D catalysts reported in literature.

Fig. S1 | XRD spectra of bulk MoS_2 (**a**), bulk WS_2 (**b**) and bulk TiS_2 (**c**). The high purity phase of bulk MoS_2 , WS_2 , TiS_2 are confirmed; the peaks detected in bulk MoS_2 , bulk WS_2 , and bulk TiS_2 can be well indexed to MoS_2 -PDF#06-0097, WS_2 -PDF#08-0237, and TiS_2 -PDF#15-0853. The strongest peak that corresponding to (002) plane of MoS_2 and WS_2 , as well as (001) plane of TiS_2 indicate their layered structures.

Fig. S2 | Photographs of exfoliated MoS_2 nanosheets (**a**), WS_2 nanosheets (**b**) and TiS_2 nanosheets (**c**) dispersed in DI water. All these TMD nanosheets are well dispersed in DI water.

Fig. S3 | Zeta potential of exfoliated MoS_2 nanosheets solution (**a**), exfoliated WS_2 nanosheets solution (**b**) and exfoliated TiS_2 nanosheets solution (**c**). All the MoS_2 , WS_2 , and TiS_2 nanosheets solution exhibit a negative charge in DI water, which enables their well dispersibility in DI water via electrostatic repulsion.

Fig. S4 | Raman spectra of MoS_2 and $Pd-MoS_2$ (**a**), WS_2 and $Pd-WS_2$ (**b**), TiS_2 and $Pd-TiS_2$ (**c**) nanosheets.

Peaks at 152 cm⁻¹, 223 cm⁻¹, 329 cm⁻¹ are corresponding to J_1 , J_2 , J_3 of metallic (1T or 1T') MoS₂, while the peaks at 381 cm⁻¹ and 406 cm⁻¹ are attributed to the E_{2g} and A_{1g} of semiconducting MoS₂ (**Fig. S4a**). Peaks at 131 cm⁻¹, 271 cm⁻¹, 385 cm⁻¹ are corresponding to J_1 , J_2 , J_3 of metallic (1T or 1T') WS₂, while the peaks at 353 cm⁻¹ and 410 cm⁻¹ are attributed to the E_{2g} and A_{1g} of semiconducting WS₂ (**Fig. S4b**). Peaks at 224 cm⁻¹ and 334 cm⁻¹ are corresponding to E_g and A_{1g} of 1T TiS₂ (**Fig. S4c**).

Fig. S5 | TEM images of exfoliated MoS_2 nanosheets (**a**), exfoliated WS_2 nanosheets (**b**) and exfoliated TiS_2 nanosheets (**c**). The insets show the diffraction patterns. All the MoS_2 , WS_2 , and TiS_2 nanosheets exhibit nanosheets morphology and good crystallinity.

Fig. S6 | TEM images of Pd-MoS₂ (**a**), Pd-WS₂ (**b**) and Pd-TiS₂ (**c**) composites. The monodispersed Pd nanoparticles are densely decorated onto each TMD nanosheets.

Fig. S7 | EDS spectra of Pd-MoS₂ (**a**), Pd-WS₂ (**b**) and Pd-TiS₂ (**c**) composites. The atomic ration for each element in Pd-TMD composites are shown in (**d**).

Fig. S8 | XPS full spectra of Pd-MoS₂ and pristine MoS_2 (**a**), Pd-WS₂ and pristine WS₂ (**b**), Pd-TiS₂ and pristine TiS₂ (**c**). All the Pd-TMD composites exhibit strong Pd3d signal compared with pristine TMD.

Fig. S9 | Zeta potential of Pd-MoS₂ (\mathbf{a}), Pd-WS₂ (\mathbf{b}) and Pd-TiS₂ solution (\mathbf{c}).

Fig. S10 | The XPS data for Pd 3d (**a-c**), Mo 3d (**d**), W 4f (**e**), and Ti 2p (**f**) of Pd-MoS₂, Pd-WS₂, and Pd-TiS₂ after durability test.

Fig. S11 | The Raman spectra of Pd-MoS₂, Pd-WS₂, and Pd-TiS₂ after durability test.

Fig. S12 | SEM images of Pd-MoS₂ (**a**), Pd-WS₂ (**b**), and Pd-TiS₂ (**c**) after durability test. The corresponding HRTEM images are shown in (**d-f**).

Fig. S13 | Model diagrams and possible H adsorption sites for TMD (**a**), Pd (111) (**b**), and Pd (211) (**c**). Surface energy value of Pd (111) and Pd (211) (**d**).

Fig. S14 | The most stable adsorption models and corresponding adsorption energy values for H adsorbed on different sites of TiS_2 (**a**), WS_2 (**b**), and MoS_2 (**c**).

Fig. S15 | The most stable adsorption models and corresponding adsorption energy values for H adsorbed on different sites of Pd(111) (a) and Pd(211) (b).

Fig. S16 | Models of 1 H* adsorbed on Pd (111) (**a**), and Pd (211) (**b**). Pd1, Pd2, and Pd3 are atoms bonded to the 1 H*.

Fig. S17 | Models of high coverage H* adsorbed on Pd (111). Pd1, Pd2, and Pd3 are atoms bonded to the 9th H* (**a**), COHP for the ninth H* bonded to Pd1 (**b**), Pd2 (**c**), and Pd3 (**d**) of Pd (111).

Fig. S18 | Models of high coverage H* adsorbed on Pd (211) (**a**). Pd1 and Pd2 are atoms bonded to the 9th H*. COHP for the ninth H* bonded to Pd1 (**b**), Pd2 (**c**) of Pd (211).

Fig. S19 | COHP for the H* and S in TiS_2 (**a**), and WS₂ (**b**).

Table S1. Comparative analysis of electrocatalytic Activity: $Pd-MoS_2$, $Pd-WS_2$, $Pd-TiS_2$ composites vs. previously reported Pd-decorated 2D catalysts for HERApplication in 0.5M H₂SO₄.

Catalysts	η ₁₀ (mV)	Tafel slope (mV/dec)	Reference
Pd ND/DR-MoS ₂	103	41	J. Mater. Chem. A 2016, 4,
			4025-4031
7.4 % Pd-MoS ₂	205	91	<i>Appl. Surf. Sci.</i> 2023, 642 , 158563
Pd-MoS ₂ /MWCNT	120	54	<i>Int. J. Hydrog. Energy</i> 2017, 42 , 2961-2969.
1% Pd-MoS ₂	89	80	Nat. Commun. 2018, 9, 2120
Pd-graphene	80	46	<i>Int. J. Hydrog. Energy</i> 2015, 40 , 16184-16191
VS ₂ -Pd	133	75	Inorg. Chem. 2020, 59 , 10197- 10207
Pd NWs@MoS ₂	25	44	Nano Research 2016, 9 , 2662- 2671
VGN@Pd _{0.2} -MoS ₂	106	60	<i>J. Power Sources</i> 2020, 456 , 227998
d-PdTe _x	70	116.4	ACS Catal. 2023, 13 , 2601–2609
Pd-MXene	149	96	<i>Energy Fuels</i> 2023, 37 , 16856– 16865
$Pd_{0.1}TaS_2$	241	52.7	J. Mater. Chem. A 2017, 5 , 22618-22624
$Pd_{0.23}NbS_2$	157	50	<i>Chem. Mater.</i> 2019, 31 , 13, 4726–4731
Pd-MoS ₂	70	43	This work
Pd-WS ₂	113	49	This work
Pd-TiS ₂	131	61	This work