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Experimental Section

1. Materials

The primary reagents used in this study, including Co(NO3)26H2O (≥ 99%), Zn(NO3)2·6H2O (≥ 

98%), L-cysteine (≥ 98.5%), methanol (≥ 99.9%), urea (≥ 99%), and triethanolamine (TEOA, ≥ 

99%), were purchased from Sinopharm Chemical Reagent Co., Ltd. 2-methylimidazole (≥ 99.8%) 

was bought from Sigma-Aldrich Chemicals. All of the above chemicals were used as purchased 

without further purification. Moreover, the deionized water used in all experiments with a 

resistivity of 18.2 MΩ at 25 ℃, was purified through Direct-Q 3 UV water purification system 

(Millipore Corp., France).

2. Characterization

Thermogravimetric analysis (TGA) was performed using a NETZSCH TG 209 F1 Libra TGA 

analyzer at a heating rate of 10 ℃ min−1 with α-Al2O3 as the reference. Powder X-ray diffraction 

(XRD) patterns of samples were recorded on a TTR-III theta rotating anode X-ray diffractometer 

operating at 40 kV voltage and 200 mA current with Cu Kα radiation (λ = 1.54187 Å) in all cases. 

Scanning electron microscopy (SEM) images were obtained using a GeminiSEM 450 microscope. 

The transmission electron microscopy (TEM) images were obtained by transmission electron 

microscopy (TEM), using a H-7650 HITACHI microscope with 100 kV accelerating voltage. The 

high-resolution TEM (HRTEM) images, high-angle annular dark-field scanning transmission 

electron microscopy (HAADF-STEM) images, and energy dispersive X-ray spectroscopy (EDX) 

elemental mapping were executed on an FEI Talos F200X field emission high-resolution 

transmission electron microscope at 200 kV accelerating voltage. Aberration-corrected HAADF-

STEM (AC HAADF-STEM) imaging single atoms samples was performed on an FEI Themis Z 
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high-resolution transmission electron microscope with 200 kV. The nitrogen adsorption-

desorption isotherms with Brunauer-Emmett-Teller (BET) specific surface area measurements 

were measured with a Micromeritics ASAP 2020 apparatus. The X-ray photoelectron spectroscopy 

(XPS) and valence band X-ray photoelectron spectra (VBXPS) were collected on a scanning X-

ray microprobe (Thermo ESCALAB 250Xi) that used Al Ka radiation of 1486.6 eV and the C1s 

peak at 284.8 eV as an internal standard. Ultraviolet photoelectron spectroscopy (UPS) of the 

samples were investigated by a Thermo ESCALAB 250Xi analyzer having a monochromatic HeI 

light source (21.22 eV). The UV–vis diffuse reflectance spectra (DRS) of the obtained 

photocatalysts were obtained using a Shimadzu 3700 DUV UV-vis spectrometer equipped with a 

diffuse reflectance accessory. The spectra were recorded with BaSO4 as the reflectance standard 

reference. The steady-state photoluminescence (PL) spectroscopy measurements were measured 

with a Hitachi F-7000 fluorescence spectrophotometer under an incident light of 370 nm. The 

time-resolved photoluminescence (TRPL) decay curves were collected on a Laser Strobe time-

resolved spectrofluorometer (Photon Technology International (Canada) Inc.) with a GL-302 high-

resolution dye laser (lifetimes 100 ps to 50 ms, excited by a nitrogen laser), a USHIO xenon lamp 

source and a 914-photomultiplier detection system.

3. Photoelectrochemical measurements

The photoelectrochemical measurements of the photocatalyst were carried out on an 

electrochemical workstation (CHI 760E, Shanghai Chenhua Limited, China) based on a standard 

three-electrode system consisting of a catalysts-coated fluorine-tin oxide (FTO) glass as the work 

electrode, a platinum wire as the counter electrode, a saturated Ag/AgCl (saturated in KCl solution) 

as the reference electrode, and Na2SO4 (0.5 M, 100 mL) as the electrolyte solution. To prepare a 

working electrode, 2 mg of catalyst was dispersed in 1 mL ethanol containing 10 μL Nafion (5 
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wt%, D520, DuPont Inc., USA) by ultrasonication. The resulting dispersion was then loaded onto 

the 1 × 2 cm2 FTO glass (an effective area of about 1.0 cm2) and dried naturally at room 

temperature. The electrochemical impedance spectroscopy (EIS) Nyquist plots were collected with 

frequencies ranging from 10 mHz to 100 kHz under visible light and a bias of -0.2 V. The transient 

photocurrent responses (TPR) were measured for each switch turn-on/turn-off event (300 W Xe 

lamp) under a bias voltage of 0.5 V.

4. Photocatalytic experiments

As shown in Fig. S11, Photocatalytic water splitting experiments for H2 generation were 

performed in a Pyrex top-irradiated quartz vessel connected to a glass-enclosed system with a 

300 W Xe lamp (CEL-HXF300-T3, Beijing China Education Au-light Technology Co., Ltd.) as 

the light source equipping with an optical UV cut-off filter to control the wavelength of incident 

light (λ ≥ 400 nm). The spectrum of a CEL-HXE300-T3 Xe lamp (λ ≥ 400 nm) is shown in Fig. 

S12. Typically, 50 mg of photocatalyst powder was added to an aqueous solution (100 mL) of 

triethanolamine (10 vol %, as a sacrificial reagent). Prior to exposure to light, the reactional system 

was evacuated with a vacuum pump for 0.5 h in the dark with continuous stirring to remove air, 

ensure anaerobic conditions in the reaction system, and reach adsorption-desorption equilibrium. 

In addition, the temperature of the suspension was maintained at a constant 10 ℃ throughout the 

photocatalytic reaction using a cooling water circulator, and the double-layered Pyrex reactor was 

continuously stirred. The amount of H2 evolved was sampled every 1 h by an online automated 

flow-injection apparatus and then examined by an online gas chromatography (GC1120 system, 

Shanghai Sunny Hengping Limited) equipped with a thermal conductivity detector (TCD), using 

Argon as the carrier gas. After the reaction, the photocatalyst was separated from the reaction 
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solution for further use and characterization. For stability testing, the system was subjected to a 20 

h recycling experiment with intermittent evacuation every 4 h and repeated 5 times.

The apparent quantum yield (AQY) of H2 evolution was assayed by irradiating a mixture of 100 

ml of 10% TEOA solution containing 50 mg CoZnS@NSC-15/g-C3N4 photocatalyst. The 

procedure was similar to that of the H2 evolution test, except that the irradiation was supplied by 

monochromatic light of the 300 W Xe lamp equipped with different bandpass filters of λ = 400, 

420, 450, 500, 550, and 600 ± 5 nm. The AQE value was calculated by the following equation:

𝐴𝑄𝑌 (%) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑣𝑜𝑙𝑣𝑒𝑑 𝐻2 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠 × 2

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑝ℎ𝑜𝑡𝑜𝑛𝑠
× 100%
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Fig. S1 TGA curves of g-C3N4, CoZn@NC/g-C3N4, and CoZnS@NSC-15/g-C3N4 at a ramping 

rate of 10 ℃ min−1.
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Fig. S2 The Raman spectrums of CoZn@NC and CoZnS@NSC-15 composites.
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Fig. S3 EDX spectrum and elemental concentrations of CoZnS@NSC-15/g-C3N4 photocatalysts.
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Fig. S4 N2 adsorption-desorption isotherms of g-C3N4, CoZn@NC/g-C3N4, and CoZnS@NSC-

15/g-C3N4 photocatalysts.
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Fig. S5 Pore size distribution calculated by the BJH method of g-C3N4, CoZn@NC/g-C3N4, and 

CoZnS@NSC-15/g-C3N4 photocatalysts.
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Fig. S6 (a) Tauc plots and (b) VB XPS spectra of g-C3N4.
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Fig. S7 Onset level of secondary electron cutoff of UPS spectrum of (a) CoZnS@NSC-30, (b) 

CoZnS@NSC-45, and (c) CoZnS@NSC-60 nanoparticles.
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Fig. S8 Influence of CoZnS@NSC-15 loading content on photocatalytic H2 evolution of 

ConZnS@NSC-15/g-C3N4 at λ ≥ 400 nm.
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Fig. S9 The XRD patterns of ConZnS@NSC-15/g-C3N4 photocatalyst before and after cycle test.
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Fig. S10 High-resolution XPS spectra of (a) C 1s, (b) N1s, (c) O1s, (d) S 2p, (e) Co 2p, and (f) Zn 

2p for ConZnS@NSC-15/g-C3N4 photocatalyst before and after cycle test.
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Fig. S11 Photocatalysis equipment picture for the photocatalytic hydrogen evolution test.
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Fig. S12 Spectrum of the power as a function of wavelength for a CEL-HXE300 Xe lamp equipped 

with an optical UV cut-off filter (λ ≥ 400 nm).

17



Table S1. BET specific surface areas, average pore diameter and total pore volumes of g-C3N4, 

CoZn@NC/g-C3N4, and CoZnS@NSC-15/g-C3N4.

Samples SBET (m2 g−1) Vpore (cm3 g−1) Dpore (nm)

g-C3N4 76 0.64 35.36

CoZn@NC/g-C3N4 80 0.71 36.59

CoZnS@NSC-15/g-C3N4 83 0.61 30.75

Table S2. Kinetic analysis of emission decay for g-C3N4, CoZn@NC/g-C3N4, and CoZnS@NSC-

15/g-C3N4.

Samples τ1 
(ns)

Rel 
(%)

τ2 
(ns)

Rel 
(%)

τ3 
(ns)

Rel 
(%)

τ  
(ns) Χ2

g-C3N4 3.81 52.83 15.14 27.48 1.08 19.70 2.95 1.15

CoZn@NC/g-C3N4 3.13 51.34 13.42 39.12 0.79 19.54 2.42 1.09

CoZnS@NSC-15/g-C3N4 2.52 49.04 11.18 28.52 0.58 22.44 1.65 1.16
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Table S3. Comparison of our study highest H2 evolution rate with various co-catalyst modified g-

C3N4-based photocatalysts.

Co-catalyst Light Source Conditions H2 evolution rate 
(μmol h−1 g−1) Ref

10% CoZnS@NSC-15 300W Xe lamp
(λ ≥ 400 nm) 10 vol% TEOA 610.8 This 

work

2% Mo-Mo2C
300W Xe lamp
 (λ ≥ 420 nm) 10 vol% TEOA 219.7 1

4% CoNi 300W Xe lamp
 (λ ≥ 420 nm)

15 vol%      
Lactic acid 354.4 2

CB-Co1.4Ni0.6P
300W Xe lamp
 (λ ≥ 420 nm) 15 vol% TEOA 403.0 3

NiS 300W Xe lamp
 (λ ≥ 420 nm) 10 vol% TEOA 244.0 4

1% Ni2P-1.5%MoS2
300W Xe lamp
(λ ≥ 400 nm) 15 vol% TEOA 532.4 5

3% CoP/Co@NPC-15 300W Xe lamp
 (λ ≥ 420 nm) 15 vol% TEOA 374.1 6

3% Ni2P
300W Xe lamp
 (λ ≥ 420 nm) 10 vol% TEOA 128.7 7

40% CNCNT 300W Xe lamp 10 vol% TEOA 1208 8

2% CoMoS2/ 
0.5 % rGO

300W Xe lamp
 (λ ≥ 400 nm) 20 vol% TEOA 684 9
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