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Text S1 Chemicals

Iron (III) chloride hexahydrate (FeCl;:6H,0, 99%), nickel (II) chloride hexahydrate
(NiCl,-6H,0, 99%), and absolute alcohol (C,H¢O, 99%) were purchased from Macklin. Manganese
(IT) chloride tetrahydrate (MnCl,-4H,0, 99%), cerous nitrate hexahydrate (Ce(NO;);-6H,0, 99%),
N, N-dimethylformamide (DMF, 99%), triethylamine (TEA, 99%), sodium hydroxide (NaOH, 99%)
and potassium hydroxide (KOH, 99%) were bought from Aladdin Reagent. Benzenetricarboxylic
acid (CoHgOs, 99%) was obtained from J&K Chemical. Nafion solution (5 wt.%) was purchased from

Aldrich. All reagents were directly served as obtained without further depuration.

Text S2 Synthesis

Firstly, FeCl;-6H,O (1 mmol), NiCl,-6H,O (1 mmol), MnCl,-4H,0O (1 mmol), and 1,3,5-
benzenetricarboxylic acid (315.2 mg) were added to N,N-dimethylformamide (60 ml), deionized
water (5 mL) and anhydrous ethanol (2.5 mL) for stirring 30 min to form a homogeneous solution.
Then the mixed solution were poured into a 100 mL stainless-steel reactive kettle. The reaction
temperature and time for the solvothermal method were 140 °C and 48 h, respectively. Finally,
FeNiMn-MOFs were obtained by washed with ethanol for 3 times, and dried at 60 °C for 24 h. The
resulting powders were collected and used as the precursors for the medium-entropy oxides.

Ce(NOs3)3-6H,0 (100.0 mg) and NaOH (800.0 mg) were added to deionized water (70 mL) for
stirring 10 min. Then the FeNiMn-MOFs (200.0 mg) were added above solution for stirring 60 min.
Next, the mixed solution was poured into a 100 mL stainless-steel reactive kettle. The reaction
temperature and time for the solvothermal method were 200 °C and 24 h, respectively. Finally,
FeNiMnO,/CeO, were obtained by washed with ethanol for 3 times, and dried at 50 °C for 24 h. For
comparison, FeNiMnOQy, is obtained without the addition of Ce(NOj3);-6H,0, and CeO, is obtained
without the addition of FeNiMn-MOFs. As the control group, we changed the content of
Ce(NO;);-6H,O0 (50.0 mg, 100.0 mg and 150.0 mg), denoted as FeNiMnO,/CeO,-50,
FeNiMnO,/Ce0,-100 and FeNiMnO,/CeO,-150.

Text S3 Characterization
The phase composition of samples was detected by X-ray diffraction (XRD, Cu Ka, A=1.542 A,
Ultimate 111). The tube voltage is 40 kV, the tube current is 40 mA, and the scan speed is 5°/min.

The morphology of samples was observed via using transmission electron microscopy (TEM, JEOL
52
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JEM-2100F). Furthermore, the transmission electron microscope (TEM, Titan3 Cubed 60-300)
outfitted with a high-angle annular dark field (HAADF) detector and a spherical aberration (Cs) probe
corrector. The atomic level of the specimens were obtained by STEM Titan at 300 keV. Elemental
analysis was employed by STEM-EELS spectrum with a Gatan Quantum 966 system. The zeta
potential measurement was carried out using Malvern spray analyzer (Malvern Panalytical)
instruments. The X-ray photoelectron spectroscopy (XPS, Al Ka, Escalab-250X1) was operated to
analyze the elemental composition of the samples and determine the valence state of the element. The
calibration standard of experimental data was 284.6 eV binding energy of C 1s peak. Raman spectral
experiments were performed using a 96 Raman spectrometer (Horiba LabRam) with a visible

wavelength of 532 nm.

Text S4 Electrochemical measurements

Electrochemical measurements were conducted with a standard three-electrode system in the
electrochemical workstation (CHI 760E) at room temperature. Normally, 2 mg electrocatalyst powers
was dispersed in mixed solvents (0.2 mL of ethanol, 0.1 mL water and 0.02 mL Nafion solution) for

sonicating 1 h to obtain a homogeneous catalyst ink. Next, 20 pL catalyst suspension was applied

uniformly to the nickel foam electrode (1 X 1 cm?) each time and dry at room temperature. Repeat the

above process until the solution has dripped off to prepare a electrocatalyst supported nickel as
working electrodes. The platinum sheet and Ag/AgCl were regarded as the counter and reference
electrode, respectively. All potentials were calibrated to the reversible hydrogen electrode (RHE) by
the equation E(vs. RHE) = E(vs. Ag/AgCl) +0.059pH+0.197 V. The activities were appraised by
linear sweep voltammetry (LSV) curves with a scan speed of 5 mV s! in 1 M KOH solution. The

LSV were calibrated by iR compensation (90 %). The electrochemical impedance spectroscopy (EIS)

was evaluated within the scope of 102 to 105 Hz. The electrochemical surface area (ECSA) was

counted by the electrochemical double-layer capacitances (Cg4;) obtained by cyclic voltammetry (CV)
curves.[S! The CV curves of electrocatalysts were recorded at different scanning rates (20, 40, 60, 80
and 100 mV-s™") in the non-Faraday interval. The OER stability tests were carried at room temperature
by potential cycling between 0 to 0.1V (Vs RHE) at a potential sweep rate of 50 mV s! for a given
number of cycles. Besides, the durability of electrocatalyst was operated by the chronoamperometric
test.
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2 Text S5 Computational details

3 The static electronic correlations were taken into account within the GGA method.[5?! The energy
4 cutoff of plane-wave basis set is 450 eV. Residual forces is less than 0.01 eV/A. The vacuum layer
5 was set to 15 A to avoid the interaction of periodic structures. Furthermore, the Grimme’s DFT-D3
6 method is put into dispersion interaction.[53) The FeNiMnO,4 (311) and CeO, (111) crystal plane are
7 deemed as active surface to proceed out the DFT calculations.

8 For OER calculation, the four-electron pathway currently occurs in the alkaline environment in

9 accordance with the following steps:

10 OH- + *— *OH + ¢ (1)
11 *OH+ OH- — *O + H,O + ¢ (2)
12 *O + OH — *OOH + ¢ 3)
13 *OOH + OH — *+0, + H,O + ¢ 4)
14 The free energy difference for different OER steps is calculated as:

15 AG| = AGson (5)
16 AG, = AGxo — AGxon (6)
17 AG;3 = AG+oon — AG+g (7)
18 AG4=4.92 — AG+oon (8)
19 The Gibbs free energy of OER intermediates is defined as AG = AE + AEzpg — TAS, where AE,

20 AEzpg, T and AS represent the reaction energy, zero-point energy, temperature (298.15 K) and the

21 entropy, respectively.

22 AEson = Exon — E. — (Emo — 1/2Ew,) 9)
23 AE«o=E«o— E.— (Emo — Em) (10)
24 AE+«oon = Exoon — E« — (2Ewm0 — 3/2Ew, ) (11)
25 where E«oy, Exo and Ex«qop represent the total energies of *OH, *O and *OOH species adsorption

26 on the slab, respectively. The E., Ey.0 and Ey, represent energies of slab, H,O and H,, respectively.
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Figure. S1. a) TEM images of CeO,. b) HRTEM images of CeO,. Inset of b) are the corresponding SAED patterns.
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2 Figure S2. a) TEM images of FeNiMnO,medium-entropy oxide. b) HRTEM images of FeNiMnO4medium-entropy

3 oxide. Inset of b) is the corresponding SAED patterns.
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Figure S3. Crystal plane (111) of CeO,.
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Figure S4. Crystal plane (311) of FeNiMnOj.
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Figure S5. Crystal model of FeNiMnO./CeO, heterojunction.
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Figure S7. XPS survey spectra for FeNiMnO,/CeO,; heterojunction and FeNiMnO,.

S11




O 00 N OO U A W NP

W N NNNNNMNNNNRRRRRR R P R R
O W 00 N O U1 B WN P O WOoKBMNO U DM WN PR O

Intensity (a.u.)

Mn 3s

-l .
-} -

5.09 eV/|\
/ |

R

FeNiMnO,/CeO, V=323

1
[ ol
|-t -

5.18 eV I
M

FeNiMnO, vV, =3.11

80 82 84 86 88 90

Binding Energy (eV)

Figure S8. XPS survey spectra of Mn 3s for FeNiMnO,/CeO, heterojunction and FeNiMnO,.
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Figure S9. XPS survey spectra of O 1s for FeNiMnO,/CeO, heterojunction.
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Figure S10. The OER performances of the FeNiMnO,/CeO,-x in 1 M KOH. a) LSV curves. b) Tafel plots.
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4 FeNiMnO,/CeO, heterojunction, d) FeNiMnOj,.
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2 Figure S20. Charge density difference of intermediates adsorption on the Ni sites of FeNiMnO4/CeO,
3 heterojunction. The depletion of electrons is shown in cyan and accumulation of electrons is drawn in yellow, and

4 the isosurface is set to 0.005 ¢ A~ 3.
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3 electrons is shown in cyan and accumulation of electrons is drawn in yellow, and the isosurface is set to 0.005 ¢ A~
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1 Table S1. Comparison of OER performance for medium-entropy spinel oxide FeNiMnO,/CeO,

2 heterojunction with other medium/high-entropy electrocatalysts.

3

Electrolyte Mo Tafel slope
Sample Ref
(KOH) /mV /mV-dec!
FeNiMnO4/Ce02
1.0 M KOH 241 44.8 This work
heterojunction
(NiFeCoMn);S, 1.0 M KOH 289 75.6 [S4]
CoFeNiMnZnB 1.0 M KOH 261 57 [S5]
MnFeCoNiCu 1.0 M KOH 263 43 [S6]
(Lag.6Sr0.4)
1.0 M KOH 320 45 [S7]
(Cog2[FeMnNiMg]og)Os3
(MgFeCoNiZn)O 1.0 M KOH 300 45 [S8]
NiCoFeMnCrP 1.0 M KOH 270 52.5 [S9]
FeCoNiMo 1.0 M KOH 250 48 [S10]
(CI'O.zMIl().zFCoszio'zzl'lo'z)g04 1.0 M KOH 295 54 [Sl 1]
(F60.2COO.QNi().zCI'O'zMHO'z)304 1.0 M KOH 275 50.3 [812]
La(CrMnFeCo;Ni)O3 1.0 M KOH 325 51.2 [S13]
4
5 Note: n10, overpotential at 10 mA-cm.
6
7
8
9
10
11

12

S30



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

References for SI

[S1] Z. Jia, T. Yang, L. Sun, Y. Zhao, W. Li, J. Luan, F. Lyu, L. Zhang, J. Kruzic, J. Kai, J. Huang,
J. Lu and C. Liu, A novel multinary intermetallic as an active electrocatalyst for hydrogen evolution,
Adv. Mater., 2020, 32, 2000385.

[S2] S. L. Dudarev, G. A. Botton, S. Savrasov, C. J. Humphreys and A. P. Sutton, Electron-energy-
loss spectra and the structural stability of nickel oxide: An LSDA+U study, Phys. Rev. B, 1998, 57,
1505-1509.

[S3] S. Grimme, J. Antony, S. Ehrlich and H. Krieg, A consistent and accurate ab initio
parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J.
Chem. Phys., 2010, 132, 154104.

[S4] L. Wu, X. Shen, Z. Ji, J. Yuan, S. Yang, G. Zhu, L. Chen, L. Kong and H. Zhou, Facile synthesis
of medium-entropy metal sulfides as high-efficiency electrocatalysts toward oxygen evolution
reaction, Adv. Funct. Mater., 2022, 33, 2208170.

[S5] X. Wang, Y. Zuo, S. Horta, R. He, L. Yang, A. O. Moghaddam, M. Ibafiez, X. Qi and A. Cabot,
CoFeNiMnZnB as a high-entropy metal boride to boost the oxygen evolution reaction, ACS Appl.
Mater. Interfaces, 2022, 14, 48212-48219.

[S6] K. Huang, B. Zhang, J. Wu, T. Zhang, D. Peng, X. Cao, Z. Zhang, Z. Li and Y. Huang, Exploring
the impact of atomic lattice deformation on oxygen evolution reactions based on a sub-5 nm pure face-
centred cubic high-entropy alloy electrocatalyst, J. Mater. Chem. 4, 2020, 8, 11938-11947.

[S7] L. Tang, Y. Yang, H. Guo, Y. Wang, M. Wang, Z. Liu, G. Yang, X. Fu, Y. Luo, C. Jiang, Y.
Zhao, Z. Shao and Y. Sun, High configuration entropy activated lattice oxygen for O, formation on
perovskite electrocatalyst, Adv. Funct. Mater., 2022, 32, 2112157.

[S8] H. Wu, Q. Lu, Y. Li, J. Wang, Y. Li, R. Jiang, J. Zhang, X. Zheng, X. Han, N. Zhao, J. Li, Y.
Deng and W. Hu, Rapid Joule-heating synthesis for manufacturing high-entropy oxides as efficient
electrocatalysts, Nano Lett., 2022, 22, 6492-6500

[S9] D. Lai, Q. Kang, F. Gao and Q. Lu, High-entropy effect of a metal phosphide on enhanced
overall water splitting performance, J. Mater. Chem. A, 2021, 9, 17913-17922.

[S10] Y. Mei, Y. Feng, C. Zhang, Y. Zhang, Q. Qi and J. Hu, High-entropy alloy with Mo-
coordination as efficient electrocatalyst for oxygen evolution reaction, ACS Catal., 2022, 12, 10808-

10817.

S31



10

[S11]Y. Xu, L. Sun, Q. Li, L. Huo and H. Zhao, Co-prosperity of electrocatalytic activity and stability
in high entropy spinel (Cry,Mng,Feq,Nig,Zng,);0,4 for the oxygen evolution reaction, J. Mater.
Chem. A4, 2022, 10, 17633-17641.

[S12] L. He, H. Kang, G. Hou, X. Qiao, X. Jia, W. Qin and X. Wu, Low-temperature synthesis of
nano-porous high entropy spinel oxides with high grain boundary density for oxygen evolution
reaction, Chem. Eng. J., 2023, 460, 141675.

[S13] T. Nguyen, Y. Liao, C. Lin, Y. Su and J. Ting, Advanced high entropy perovskite oxide

electrocatalyst for oxygen evolution reaction, Adv. Funct. Mater., 2021, 31, 2101632.

S32



