- ² Constructing medium-entropy spinel oxide FeNiMnO₄/CeO₂
- ³ heterojunction as high-performance electrocatalyst for oxygen

4 evolution reaction

- 5 Hao Wu^{1#}, Zhichao Wang^{1#}, Yuxuan Shi^{1#}, Zexu Li², Fan Ding³, Yilun Ren¹, Fengqi Li¹, Haifeng
- 6 Bian¹, Cong Wang¹, Yurong Yang¹, Jian Gu¹, Shaochun Tang¹, Yujie Ma^{1,4*}, Yu Deng^{1*},
- 7 Xiangkang Meng^{1*}

- 8 ¹ National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced
- 9 Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing
- 10 210093, PR China
- 11 ² School of Chemistry, Beihang University, Beijing 100191, PR China
- 12 ³ Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA
- 13⁴ School of Intelligent Manufacturing and Information, Jiangsu Shipping College, Nantong 226010,
- 14 PR China
- 15 -----
- 16 **Corresponding author: Dr. Yujie Ma*
- 17 *E-mail addresses: myj@nju.edu.cn*
- 18 *Corresponding author: Dr. Yu Deng
- 19 E-mail addresses: dengyu@nju.edu.cn
- 20 *Corresponding author: Prof. Xiangkang Meng
- 21 E-mail addresses: mengxk@nju.edu.cn
- ²² [#]These authors contributed equally to this work.
- 23

1 Text S1 Chemicals

Iron (III) chloride hexahydrate (FeCl₃·6H₂O, 99%), nickel (II) chloride hexahydrate (NiCl₂·6H₂O, 99%), and absolute alcohol (C₂H₆O, 99%) were purchased from Macklin. Manganese (II) chloride tetrahydrate (MnCl₂·4H₂O, 99%), cerous nitrate hexahydrate (Ce(NO₃)₃·6H₂O, 99%), N, N-dimethylformamide (DMF, 99%), triethylamine (TEA, 99%), sodium hydroxide (NaOH, 99%) and potassium hydroxide (KOH, 99%) were bought from Aladdin Reagent. Benzenetricarboxylic acid (C₉H₆O₆, 99%) was obtained from J&K Chemical. Nafion solution (5 wt.%) was purchased from Aldrich. All reagents were directly served as obtained without further depuration.

9

10 Text S2 Synthesis

Firstly, FeCl₃·6H₂O (1 mmol), NiCl₂·6H₂O (1 mmol), MnCl₂·4H₂O (1 mmol), and 1,3,5benzenetricarboxylic acid (315.2 mg) were added to N,N-dimethylformamide (60 ml), deionized water (5 mL) and anhydrous ethanol (2.5 mL) for stirring 30 min to form a homogeneous solution. Then the mixed solution were poured into a 100 mL stainless-steel reactive kettle. The reaction temperature and time for the solvothermal method were 140 °C and 48 h, respectively. Finally, FeNiMn-MOFs were obtained by washed with ethanol for 3 times, and dried at 60 °C for 24 h. The resulting powders were collected and used as the precursors for the medium-entropy oxides.

Ce(NO₃)₃·6H₂O (100.0 mg) and NaOH (800.0 mg) were added to deionized water (70 mL) for 18 stirring 10 min. Then the FeNiMn-MOFs (200.0 mg) were added above solution for stirring 60 min. 19 Next, the mixed solution was poured into a 100 mL stainless-steel reactive kettle. The reaction 20 temperature and time for the solvothermal method were 200 °C and 24 h, respectively. Finally, 21 FeNiMnO₄/CeO₂ were obtained by washed with ethanol for 3 times, and dried at 50 °C for 24 h. For 22 comparison, FeNiMnO₄ is obtained without the addition of Ce(NO₃)₃·6H₂O, and CeO₂ is obtained 23 without the addition of FeNiMn-MOFs. As the control group, we changed the content of 24 Ce(NO₃)₃·6H₂O (50.0 mg, 100.0 mg and 150.0 mg), denoted as FeNiMnO₄/CeO₂-50, 25 FeNiMnO₄/CeO₂-100 and FeNiMnO₄/CeO₂-150. 26

27

28 Text S3 Characterization

The phase composition of samples was detected by X-ray diffraction (XRD, Cu Kα, λ=1.542 Å,
Ultimate Ill). The tube voltage is 40 kV, the tube current is 40 mA, and the scan speed is 5°/min.
The morphology of samples was observed via using transmission electron microscopy (TEM, JEOL

JEM-2100F). Furthermore, the transmission electron microscope (TEM, Titan3 Cubed 60-300) 1 outfitted with a high-angle annular dark field (HAADF) detector and a spherical aberration (C_s) probe 2 corrector. The atomic level of the specimens were obtained by STEM Titan at 300 keV. Elemental 3 analysis was employed by STEM-EELS spectrum with a Gatan Quantum 966 system. The zeta 4 potential measurement was carried out using Malvern spray analyzer (Malvern Panalytical) 5 instruments. The X-ray photoelectron spectroscopy (XPS, Al Ka, Escalab-250Xi) was operated to 6 analyze the elemental composition of the samples and determine the valence state of the element. The 7 calibration standard of experimental data was 284.6 eV binding energy of C 1s peak. Raman spectral 8 experiments were performed using a 96 Raman spectrometer (Horiba LabRam) with a visible 9 wavelength of 532 nm. 10

11

12 Text S4 Electrochemical measurements

Electrochemical measurements were conducted with a standard three-electrode system in the 13 electrochemical workstation (CHI 760E) at room temperature. Normally, 2 mg electrocatalyst powers 14 was dispersed in mixed solvents (0.2 mL of ethanol, 0.1 mL water and 0.02 mL Nafion solution) for 15 sonicating 1 h to obtain a homogeneous catalyst ink. Next, 20 µL catalyst suspension was applied 16 uniformly to the nickel foam electrode $(1 \times 1 \text{ cm}^2)$ each time and dry at room temperature. Repeat the 17 above process until the solution has dripped off to prepare a electrocatalyst supported nickel as 18 working electrodes. The platinum sheet and Ag/AgCl were regarded as the counter and reference 19 electrode, respectively. All potentials were calibrated to the reversible hydrogen electrode (RHE) by 20 the equation E(vs. RHE) = E(vs. Ag/AgCl) + 0.059pH + 0.197 V. The activities were appraised by 21 linear sweep voltammetry (LSV) curves with a scan speed of 5 mV s⁻¹ in 1 M KOH solution. The 22 LSV were calibrated by iR compensation (90 %). The electrochemical impedance spectroscopy (EIS) 23 was evaluated within the scope of 10⁻² to 10⁵ Hz. The electrochemical surface area (ECSA) was 24 counted by the electrochemical double-layer capacitances (C_{dl}) obtained by cyclic voltammetry (CV)25 curves.^[S1] The CV curves of electrocatalysts were recorded at different scanning rates (20, 40, 60, 80 26 and 100 mV·s⁻¹) in the non-Faraday interval. The OER stability tests were carried at room temperature 27 by potential cycling between 0 to 0.1V (Vs RHE) at a potential sweep rate of 50 mV s⁻¹ for a given 28 number of cycles. Besides, the durability of electrocatalyst was operated by the chronoamperometric 29 test. 30

2

10

Text S5 Computational details

The static electronic correlations were taken into account within the GGA method.^[S2] The energy 3 cutoff of plane-wave basis set is 450 eV. Residual forces is less than 0.01 eV/Å. The vacuum layer 4 was set to 15 Å to avoid the interaction of periodic structures. Furthermore, the Grimme's DFT-D3 5 method is put into dispersion interaction.^[S3] The FeNiMnO₄ (311) and CeO₂ (111) crystal plane are 6 deemed as active surface to proceed out the DFT calculations. 7

For OER calculation, the four-electron pathway currently occurs in the alkaline environment in 8 accordance with the following steps: 9

$$OH^- + * \rightarrow *OH + e^- \tag{1}$$

$$*OH + OH^{-} \rightarrow *O + H_2O + e^{-}$$
(2)

$$*O + OH^{-} \rightarrow *OOH + e^{-}$$
(3)

$$*OOH + OH^{-} \rightarrow *+O_{2} + H_{2}O + e^{-}$$
(4)

The free energy difference for different OER steps is calculated as: 14

15
$$\Delta G_1 = \Delta G_{*\rm OH} \tag{5}$$

$$\Delta G_2 = \Delta G_{*\rm O} - \Delta G_{*\rm OH} \tag{6}$$

$$\Delta G_3 = \Delta G_{*\rm OOH} - \Delta G_{*\rm O} \tag{7}$$

$$\Delta G_4 = 4.92 - \Delta G_{*\rm OOH} \tag{8}$$

The Gibbs free energy of OER intermediates is defined as $\Delta G = \Delta E + \Delta E_{ZPE} - T\Delta S$, where ΔE , 19 ΔE_{ZPE} , T and ΔS represent the reaction energy, zero-point energy, temperature (298.15 K) and the 20 entropy, respectively. 21

22
$$\Delta E_{*\rm OH} = E_{*\rm OH} - E_* - (E_{\rm H2O} - 1/2E_{\rm H2})$$
(9)

23
$$\Delta E_{*0} = E_{*0} - E_* - (E_{\rm H2O} - E_{\rm H2})$$
(10)

$$\Delta E_{*OOH} = E_{*OOH} - E_* - (2E_{H2O} - 3/2E_{H2})$$
(11)

where E_{*OH} , E_{*O} and E_{*OOH} represent the total energies of *OH, *O and *OOH species adsorption 25 on the slab, respectively. The E_* , $E_{H^{2O}}$ and E_{H^2} represent energies of slab, H_2O and H_2 , respectively. 26 27

- 28
- 29
- 30
- 31
- 32

	$d_{11} = 0.31 \text{nm}$
1	<u>JUmm</u>
2	
3	Figure. S1. a) TEM images of CeO ₂ . b) HRTEM images of CeO ₂ . Inset of b) are the corresponding SAED patterns.
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
25	
26	
27	
28	
29	
30	
31	

- 2 Figure S2. a) TEM images of FeNiMnO₄ medium-entropy oxide. b) HRTEM images of FeNiMnO₄ medium-entropy 2^{-1} with the second s
- 3 oxide. Inset of b) is the corresponding SAED patterns.

Figure S5. Crystal model of FeNiMnO₄/CeO₂ heterojunction.

2 Figurre S6. Electrostatic potential and work function distribution of a) FeNiMnO₄ and b) CeO₂. c) The energy band
3 diagrams of FeNiMnO₄ and CeO₂ before and after the formation of heterojunction.

- .

Figure S9. XPS survey spectra of O 1s for FeNiMnO₄/CeO₂ heterojunction.

Figure S10. The OER performances of the FeNiMnO₄/CeO₂-x in 1 M KOH. a) LSV curves. b) Tafel plots.

- 2

1	
2	Figure S11. Equivalent electrical circuit of electrochemical impedance spectroscopy.
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	

3 Figure S13. a) C_{dl} and ESCA of samples. Scan rate dependence of the current densities of b) CeO₂, c)

 $FeNiMnO_4/CeO_2$ heterojunction, d) $FeNiMnO_4$.

Figure S14. OER polarization curves of samples based on ECSA.

Figure S16. The Nyquist plots of FeNiMnO₄/CeO₂ before and after the stability test.

2 Figure S17. a) XRD of FeNiMnO₄/CeO₂ after the stability test. b) Raman spectra of FeNiMnO₄/CeO₂ before and
3 after the stability test.

- b

2 Figure S18. XPS spectra of a) Fe 2p, b) Ni 2p, c) Mn 2p, d) Ce 3d and e) O 1s for the FeNiMnO₄/CeO₂ after the
3 stability test

- τŢ

3 Figure S19. HAADF-STEM image and corresponding elemental mapping of FeNiMnO₄/CeO₂ heterojunction after

4 24 h stability test.

2 Figure S20. Charge density difference of intermediates adsorption on the Ni sites of FeNiMnO₄/CeO₂
3 heterojunction. The depletion of electrons is shown in cyan and accumulation of electrons is drawn in yellow, and
4 the isosurface is set to 0.005 e Å⁻³.

2 Figure S21. Charge density difference of intermediates adsorption on the Ni sites of FeNiMnO₄. The depletion of

3 electrons is shown in cyan and accumulation of electrons is drawn in yellow, and the isosurface is set to 0.005 e $Å^-$

4 ³.

2 Figure S23. Integral method for calculating the d-band center of Fe atoms in a) FeNiMnO₄/CeO₂ heterojunction;

- 3 b) FeNiMnO₄.
- T
- _

Figure S24. Integral method for calculating the d-band center of Ni atoms in a) FeNiMnO₄/CeO₂ heterojunction; b) FeNiMnO₄.

2 Figure S25. Integral method for calculating the d-band center of Mn atoms in a) FeNiMnO₄/CeO₂ heterojunction;

- 3 b) FeNiMnO₄.
- -

1 Table S1. Comparison of OER performance for medium-entropy spinel oxide FeNiMnO₄/CeO₂

2 heterojunction with other medium/high-entropy electrocatalysts.

Sample	Electrolyte (KOH)	η ₁₀ /mV	Tafel slope /mV·dec ⁻¹	Ref	
FeNiMnO ₄ /CeO ₂			241	11 9	This work
heterojunction	1.0 WI KOII	271		T IIIS WUTK	
(NiFeCoMn) ₃ S ₄	1.0 M KOH	289	75.6	[S4]	
CoFeNiMnZnB	1.0 M KOH	261	57	[85]	
MnFeCoNiCu	1.0 M KOH	263	43	[S6]	
$(La_{0.6}Sr_{0.4})$	1 0 M KOH	320	45	[\$7]	
$(Co_{0.2}[FeMnNiMg]_{0.8})O_3$		520		[2,]	
(MgFeCoNiZn)O	1.0 M KOH	300	45	[S8]	
NiCoFeMnCrP	1.0 M KOH	270	52.5	[S9]	
FeCoNiMo	1.0 M KOH	250	48	[S10]	
$(Cr_{0.2}Mn_{0.2}Fe_{0.2}Ni_{0.2}Zn_{0.2})_{3}O_{4}$	1.0 M KOH	295	54	[S11]	
$(Fe_{0.2}Co_{0.2}Ni_{0.2}Cr_{0.2}Mn_{0.2})_3O_4$	1.0 M KOH	275	50.3	[S12]	
La(CrMnFeCo ₂ Ni)O ₃	1.0 M KOH	325	51.2	[S13]	

Note: $\eta 10$, overpotential at 10 mA·cm⁻².

1 References for SI

- 2 [S1] Z. Jia, T. Yang, L. Sun, Y. Zhao, W. Li, J. Luan, F. Lyu, L. Zhang, J. Kruzic, J. Kai, J. Huang,
- 3 J. Lu and C. Liu, A novel multinary intermetallic as an active electrocatalyst for hydrogen evolution,
- 4 Adv. Mater., 2020, **32**, 2000385.
- 5 [S2] S. L. Dudarev, G. A. Botton, S. Savrasov, C. J. Humphreys and A. P. Sutton, Electron-energy-
- 6 loss spectra and the structural stability of nickel oxide: An LSDA+U study, *Phys. Rev. B*, 1998, 57,
 7 1505-1509.
- 8 [S3] S. Grimme, J. Antony, S. Ehrlich and H. Krieg, A consistent and accurate ab initio
 9 parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J.
 10 Chem. Phys., 2010, 132, 154104.
- 11 [S4] L. Wu, X. Shen, Z. Ji, J. Yuan, S. Yang, G. Zhu, L. Chen, L. Kong and H. Zhou, Facile synthesis
- of medium-entropy metal sulfides as high-efficiency electrocatalysts toward oxygen evolution
 reaction, *Adv. Funct. Mater.*, 2022, 33, 2208170.
- 14 [S5] X. Wang, Y. Zuo, S. Horta, R. He, L. Yang, A. O. Moghaddam, M. Ibáñez, X. Qi and A. Cabot,
- 15 CoFeNiMnZnB as a high-entropy metal boride to boost the oxygen evolution reaction, ACS Appl.
- 16 *Mater. Interfaces*, 2022, **14**, 48212-48219.
- 17 [S6] K. Huang, B. Zhang, J. Wu, T. Zhang, D. Peng, X. Cao, Z. Zhang, Z. Li and Y. Huang, Exploring
- 18 the impact of atomic lattice deformation on oxygen evolution reactions based on a sub-5 nm pure face-
- 19 centred cubic high-entropy alloy electrocatalyst, J. Mater. Chem. A, 2020, 8, 11938-11947.
- 20 [S7] L. Tang, Y. Yang, H. Guo, Y. Wang, M. Wang, Z. Liu, G. Yang, X. Fu, Y. Luo, C. Jiang, Y.
- 21 Zhao, Z. Shao and Y. Sun, High configuration entropy activated lattice oxygen for O_2 formation on
- 22 perovskite electrocatalyst, Adv. Funct. Mater., 2022, 32, 2112157.
- 23 [S8] H. Wu, Q. Lu, Y. Li, J. Wang, Y. Li, R. Jiang, J. Zhang, X. Zheng, X. Han, N. Zhao, J. Li, Y.
- Deng and W. Hu, Rapid Joule-heating synthesis for manufacturing high-entropy oxides as efficient
 electrocatalysts, *Nano Lett.*, 2022, 22, 6492-6500.
- [S9] D. Lai, Q. Kang, F. Gao and Q. Lu, High-entropy effect of a metal phosphide on enhanced
 overall water splitting performance, *J. Mater. Chem. A*, 2021, 9, 17913-17922.
- [S10] Y. Mei, Y. Feng, C. Zhang, Y. Zhang, Q. Qi and J. Hu, High-entropy alloy with Mocoordination as efficient electrocatalyst for oxygen evolution reaction, *ACS Catal.*, 2022, 12, 1080810817.

- [S11] Y. Xu, L. Sun, Q. Li, L. Huo and H. Zhao, Co-prosperity of electrocatalytic activity and stability
 in high entropy spinel (Cr_{0.2}Mn_{0.2}Fe_{0.2}Ni_{0.2}Zn_{0.2})₃O₄ for the oxygen evolution reaction, *J. Mater. Chem. A*, 2022, **10**, 17633-17641.
- 4 [S12] L. He, H. Kang, G. Hou, X. Qiao, X. Jia, W. Qin and X. Wu, Low-temperature synthesis of
 5 nano-porous high entropy spinel oxides with high grain boundary density for oxygen evolution
 6 reaction, *Chem. Eng. J.*, 2023, 460, 141675.
- 7 [S13] T. Nguyen, Y. Liao, C. Lin, Y. Su and J. Ting, Advanced high entropy perovskite oxide
 8 electrocatalyst for oxygen evolution reaction, *Adv. Funct. Mater.*, 2021, **31**, 2101632.
- 9