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Part 1: Experimental Procedures and Theoretical Methods

Synthesis of KZVO-MPs and KZVO-NPs

10 mmol Zn(CH3COO)2 and 10 mmol KVO3 were dissolved in 50 and 100 mL deionized water, respectively. 

Subsequently, the KVO3 solution was added into Zn(CH3COO)2 solution and the pH value of the mixture was 

adjusted to approximately 5 with acetic acid. The yielded microscale precipitate (KZVO-MPs) after magnetically 

stirring for 2 h at room temperature was collected by centrifugation, washing for three times with deionized water, 

and then drying at 80 °C in air. The nanoparticles (KZVO-NPs) were obtained after ball milling of KZVO-MPs for 50 

hours.

The synthesis path of KZVO can be depicted through the following chemical reaction1, 2:

2𝐾+ + 2𝑍𝑛2 + + (𝑉10𝑂28)
6 ‒ + 𝑛𝐻2𝑂→𝐾2𝑍𝑛2𝑉10𝑂28 ∙ 𝑛𝐻2𝑂

The pH plays a key role in the preparation of KZVO. The polyvanadate ions survive in the pH range between 2 and 

6.5. The chemical equilibria pivotal to this process are as follows:

10𝑉𝑂2
+ + 8𝐻2𝑂↔𝐻2𝑉10𝑂28

4 ‒ + 14𝐻+

𝐻2𝑉10𝑂28
4 ‒ ↔𝐻𝑉10𝑂28

5 ‒ + 𝐻+

𝐻𝑉10𝑂28
5 ‒ ↔𝑉10𝑂28

6 ‒ + 𝐻+

By carefully adjusting the concentration of H+ through the addition of acetic acid, we can successfully make the 

existence of abundant decavanadate ions possible, which will be instrumental for the subsequent fabrication of 

the final product KZVO materials. 

Material Characterizations

The crystallographic structure of the as-prepared product was identified by the powder X-ray diffractometer (XRD, 
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Ultima IV, Rigaku) with the Cu-Kα radiation. The morphology and elemental mapping of KZVO were characterized 

by the scanning electron microscopy (SEM, Phenom LE), the energy dispersive spectroscopy (EDS), and the 

transmission electron microscope (TEM, Tecnai F20). X-ray photoelectron spectroscopy (XPS, ESCALAB 250Xi, 

Thermo Scientific Instrument) was conducted to analyze the oxidation states. Thermogravimetric analysis (TGA, 

STA 449F3, Netzsch) was performed at a heating rate of 10 °C min-1 under Ar flow. The batteries were disassembled 

after discharging/charging to certain voltages at different cycles and the cathodes were washed thoroughly with 

deionized water prior to ex-situ XRD and XPS characterizations. 

Fabrication of ZIBs

The 2032 coin-type batteries were fabricated using Zn foil anodes of 10 mm in diameter, aqueous electrolytes of 4 

M Zn(CF3SO3)2, Whatman glass-fiber separators/NKK cellulose membranes(TF4050), and the KZVO-containing 

cathodes. The complexed cathode was prepared by rolling the active material, Ketjen Black (KB) conductive agent, 

and polytetrafluoroethylene(PTFE) binder in a weight ratio of 70: 20: 10 onto a titanium mesh (200 mesh) with a 

massloading of ~ 2.5 mg cm-2, and then cut into discs with the diameter of 1 cm after drying under vacuum at 80 

°C for 12 h.

Electrochemical Measurements

The cyclic voltammetry (CV) experiments were performed using the CHI600E electrochemical workstation at a scan 

rate of 0.1 mV s-1 in a voltage range of 0.2 to 1.8 V. The galvanostatic charge/discharge tests were conducted on 

the LANHE CT2001 battery testing system within a voltage range of 0.2-1.8 V at a constant temperature of 28 °C. 

Linear-scan CV measurements and electrochemical impedance spectroscopy (EIS) were carried out on the Bio-Logic 

SP-300 electrochemical workstation. The galvanostatic intermittent titration technique (GITT) was performed 

using the LANHE CT2001 battery testing instrument, current pulses of 30 minutes at a rate of 20 mA g-1 followed 

by a three-hour rest step were applied and the process was repeated until the cell voltage reached 0.2 V/1.8 V. 

Prior to the GITT test, the batteries were activated through eight cycles of galvanostatic cycling at 20 mA g-1 within 

the voltage range of 0.2-1.8 V. The Zn2+-ion diffusion coefficients were calculated by the following equation3:

𝐷
𝑍𝑛2 +

=
4
𝜏𝜋
(
𝑛𝑀𝑉𝑀

𝑆
)2(

∆𝐸𝑠

∆𝐸𝑡
)2

where τ is the constant current pulse duration; VM represents the mole volume of active materials, nM refers to the 

mole number of active materials, S is the effective contact area of active materials (herein, geometry area is 

adopted for estimation), ΔEs and ΔEt represent the change in steady-state voltage and overall cell voltage, 

respectively, when a current pulse is applied during a single step GITT experiment.



DFT calculations

The initial structural model Zn2V5O14·4H2O was created by substituting Zn for K in KZnV5O14·8H2O (ICSD# 94840). 

We employed density functional theory (DFT) to fully relax the produced configuration. The projector-augmented 

wave (PAW) pseudopotentials4 was adopted to describe the ionic shell, and the Perdew, Burke, and Ernzerhof 

(PBE)5 functional of general gradient approximation (GGA) was applied to account for the exchange and correlation 

interactions of the valence electrons. We used a plane wave energy cutoff of 520 eV and a Γ-centered Monkhorst-

Pack k-grid 4 x 3 x 5 to integrate the Brillouin zones (BZ). D3 scheme proposed by Grimme6 was utilized to take the 

dispersion interactions into consideration. A Hubbard U value of 3.25 eV7 was selected to account for the on-site 

repulsion of the localized V 3d electrons. The convergence criteria for the energy difference between each 

electronic iteration and the force exerted on each atom are 1x10-6 eV and 0.03 eV/Å, respectively. We searched 

the transition state using the climbing image-nudged elastic band (Cl-NEB) method. Initial six images between the 

endmembers were generated using the atomic simulation environment (ASE)8, and a saddle point was obtained 

until the energy and force were converged to 1x10-6 eV and 0.05 eV/Å, respectively. All the spin-polarized 

computations were conducted using the Vienna ab initio simulation package (VASP)9. 

Part 2: Supporting Figures

Figure S1. SEM images of KZVO NPs.



Figure S2. XRD and Rietveld refinement of KZVO-MPs (Rwp=10.59%, Rp=8.00%).

Figure S3. Thermogravimetric analysis of KVP-NPs.



Figure S4. SEM and EDS results for KZVO-MPs, and the obtained atomic ratio of K, Zn and V is 1:1:5.02.

Figure S5. (a) The XPS survey spectrum and (b) the derived atomic percentage of K, Zn and V.

Figure S6 (a) Voltage (V) vs. time (t) profile of the ZVO cathode during GITT measurement. (b) The linear behavior 

of the transient voltage changes E vs. τ1/2 during the discharge.



Figure S7 Capacity contribution analysis at scan rates of 0.02, 0.04, 0.06, 0.08, 0.12, 0.15 mV s-1.

Figure S8. equivalent circuit of EIS.

Figure S9. XRD patterns of the KZVO electrode at the initial state and after soaking for 12 h.



Figure S10. SEM and EDS mapping of the electrode at the initial state and after charging to 1.8 V.

Figure S11. XRD patterns of the KZVO electrode at the initial state and full charge state after 1000 cycles at the 

current of 1 A g-1.



Figure S12. (a) SEM images of KZVO electrode at initial state. (b) SEM images of KZVO electrode after 500 cycles 

at 1 A g-1. (c-d) TEM and HRTEM images of KZVO electrode after 500 cycles at 1 A g-1.

Table S1. Comparison of cycling stability and specific capacities.

Ref. Cathode
Specific capacity (mAh g-

1)@ current (A g-1)

Current (A g-

1)/C-rate

Cycle number 

(n)/Cycle 

time(days)

Retenti

on (%)

This work 275@0.02 0.3/1.2C 400/25 ~80.8

10 Na6[V10O28] 2.6H2O 228.5@0.1 0.3/~1.31C 100/~1.3 ~85.6

11 K1.1V3O8 386@0.1 0.2/~1.2C 50/~7.5 ~91.35

11 Na1.16V3O8 266.9@0.1 0.2/~0.75C 50/~4.5 ~78.8

12 Ag0.4V2O5 367@0.1 0.5/~1.36C 50/~2.1 ~78.8

13 Na1.1V3O7.9@rGO 240@0.05 0.3/~1.25C 100/~5.5 ~74.8

14 Zn3V2O7(OH)2·2H2O 213@0.05 0.2/~0.94C 300/~13.9 ~63.8

15 Ba1.2V6O16·3H2O 345.5@0.1 0.5/~1.44C 200/~7 ~75.9

16 Zn2V2O7 248@0.05 0.3/~1.2C 200/~11.8 ~86

17 V6O13 360@0.2 0.4/~1.1C 200/~13.7 ~80

18 KV2O4PO4·3.2H2O 226@0.02 0.2/~0.88C 100/~16.1 ~83

19 ZnV6O16·8H2O 365@0.5 0.5/~1.37C 300/~17.3 ~86



20 LiV2(PO4)3 198@0.136 0.136/~1C 200/~18.8 ~86

21 NH4V4O10 147@0.05 0.2/~1.36C 200/~10.2 ~97.6

22 Mn3O4 239.2@0.1 0.2/~0.84C 70/~4.6 ~64.7

23 Cu[Fe(CN)6]2/3·nH2O 60@0.06 0.06/~1C 60/~5 ~90.9

24 ZnHCFs 65.4@0.06 0.06/~1C 100/~8 ~76

25 K2MnFe(CN)6 138@0.2 0.2/~1.45C 400/~17.3 ~72.5



Table S2. Comparison of the rate performance.

Ref

.
Cathode Rate performance

This work

capacities of 262, 255, 247, 238, 228, 220, 212, 207, 200, 191, 186, 180, 167, 

160 and 150 mAh g−1 at current densities of 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 3, 5, 

8, 10, 12, 15, 18 and 20 A g−1, respectively.

26 V2O5

capacities of 242, 217, 192, 171, and 156 mAh g−1 at current densities of 0.05, 

0.1, 0.2, 0.5, and 1 A g−1, respectively.

27 MgxV2O5·nH2O
capacities of 353, 330, 291, 264, 221, 167 and 81 mAh g−1 at current densities 

of 0.05, 0.1, 0.5, 1, 2, 3, and 5 A g−1, respectively.

28 KV3O8·0.75H2O
capacities of 381, 375, 310, 290, 250, and 206 mAh g−1 at current densities of 

0.1, 0.2, 0.5, 1, 2, and 5 A g−1, respectively.

29 Zn0.1V2O5·nH2O
capacities of 450, 422, 408, 362, 317, and 280 mAh g−1 at current densities of 

0.3, 0.6, 1, 2, 4, and 6 A g−1, respectively.

30 V5O12·6H2O
capacities of 467, 439, 404, 381, 365, 337, 297 and 263 mAh g−1 at current 

densities of 0.1, 0.2, 0.5, 1, 2, 5, 10 and 20 A g−1, respectively.

31 NaCa0.6V6O16·3H2O
capacities of 347, 310, 279, 243, 202, and 154 mAh g−1 at current densities of 

0.1, 0.3, 0.6, 1.2, 2.4, and 5 A g−1, respectively.

32 Mn0.15V2O5·nH2O
capacities of 299, 268, 238, 222, 193, and 150 mAh g−1 at current densities of 

0.5, 1, 2, 3, 5, and 10 A g−1, respectively.

33 Co0.247V2O5 0.944H2O
capacities of 421, 380, 323, 260, 223, 184, 176, 165 and 163 mAh g−1 at 

current densities of 0.1, 0.3, 0.5, 1, 2, 4, 6, 8 and 10 A g−1, respectively.

34 Mg2+ doping NH4V4O10

capacities of 410, 368, 338, 306, 253, 200, 165, and 140 mAh g−1 at current 

densities of 0.1, 0.5, 1, 2, 5, 10, 15 and 20 A g−1, respectively.

10 Na6[V10O28] nH2O
capacities of 228.5, 191, 151.7, 129.7, 112.7, 96.7, and 86.4 mAh g−1 at 

current densities of 0.1, 0.2, 0.5, 1, 2, 5 and 10 A g−1, respectively.

11 K1.1V3O8

capacities of 349, 308, 280, 253, 214 and 184 mAh g−1 at current densities of 

0.2, 0.5, 1, 2, 5, and 10 A g−1, respectively.

12 Ag0.4V2O5

capacities of 353, 282, 253, 218 and 186 mAh g−1 at current densities of 0.1, 

0.3, 0.5, 1 and 2 A g−1, respectively.

35 Na2V6O16·3H2O
capacities of 361, 341, 319, 301, 277, 230 174 and 114 mAh g−1 at current 

densities of 0.1, 0.5, 1, 1.5, 3, 6, 9, and 20 A g−1,respectivel.

36 K2Zn2V10O28

capacities of 225.7, 200.8, 161.2, 126.4, 100.8 and 71.7 mAh g−1 at current 

densities of 0.05, 0.1, 0.2, 0.5, 1, and 2 A g−1, respectively.

37 NaV3O8

capacities of 400, 303, 270, 231,166 and 105 mAh g−1 at current densities of 

0.1, 0.5, 1, 2, 5 and 10 A g−1, respectively.



38 Na5V12O32

capacities of 290.6, 244.5, 199, 121.3 and 59.7 mAh g−1 at current densities of 

0.3, 0.5, 1, 2 and 5 A g−1, respectively.

38 HNaV6O16·4H2O
capacities of 362, 296, 208, 141 and 78 mAh g−1 at current densities of 0.3, 

0.5, 1, 2 and 5 A g−1, respectively.

39 K10[VIV
16VV

18O82]

capacities of 397, 383, 358, 335, 313, 285, 268, 243, 220, 175 and 133 mAh 

g−1 at current densities of 0.05, 0.1, 0.2, 0.5, 1, 2, 3, 4, 5, 7 and 9 A g−1, 

respectively.

14 Zn3V2O7(OH)2·2H2O
capacities of 200, 166, 145, 122, 105, 84, 75 and 54 mAh g−1 at current 

densities of 0.05, 0.1, 0.3, 0.5, 0.8, 1, 2 and 3 A g−1, respectively.

15 Ba1.2V6O16·3H2O
capacities of 321, 277, 247, 223, 198, 168, 151, 130 and 109 mAh g−1 at 

current densities of 0.1, 0.2, 0.3, 0.5, 1, 2, 3, 5 and 10 A g−1, respectively.

40 (NH4)0.5V2O5

capacities of 395, 259, 333, 305, 252, 204 and 154 mAh g−1 at current 

densities of 0.2, 0.5, 1, 2, 5, 10 and 20 A g−1, respectively.

41 Na3V2(PO4)3/Go
capacities of 107, 102, 99, 96, 88 and 82 mAh g−1 at current densities of 0.05, 

0.1, 0.2, 0.5, 1 and 2 A g−1, respectively.

42 H2V3O8

capacities of 410.3, 297.4, 240.5, 155 and 113.9 mAh g−1 at current densities 

of 0.1, 0.5, 1, 3 and 5 A g−1, respectively.

43 Zn3V3O8

capacities of 232, 213, 194, 173, 160, 150 and 141 mAh g−1 at current 

densities of 0.2, 0.5, 1, 2, 3, 4 and 5 A g−1, respectively.

16 Zn2V2O7

capacities of 250, 248, 231, 223, 248, 213, 209, 205, 190 and 170 mAh g−1 at 

current densities of 0.05, 0.1, 0.2, 0.3, 0.5, 0.7,0.9, 1.1, 2.2 and 4.4 A g−1, 

respectively.

44 Na3V2(PO4)3

capacities of 97, 89, 79 and 58 mAh g−1 at current densities of 0.05, 0.1, 0.5 

and 1 A g−1, respectively.

45 V2O5 2.2H2O
capacities of 451, 430, 407, 384, 362, 300 and 224 mAh g−1 at current 

densities of 0.1, 0.2, 0.5, 1, 2, 5 and 10 A g−1, respectively.

46 Ca0.67V8O20·3.5H2O
capacities of 466, 403, 373, 336, and 313 mAh g−1 at current densities of 0.1, 

0.4, 0.8, 1.6 and 2.4 A g−1, respectively.

18 KV2O4PO4·3.2H2O

capacities of 226, 223, 219, 210, 195, 181, 172, 167, 160, 152 and 135 mAh 

g−1 at current densities of 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 3, 5, 7 and 9 A g−1, 

respectively.

47 Na0.33V2O5

capacities of 367, 252, 173, 145, 137 and 96 mAh g−1 at current densities of 

0.1, 0.2, 0.5, 0.8, 1 and 2 A g−1, respectively.

19 ZnV6O16·8H2O
capacities of 400, 355, 328, 295, 238, 198 and 167 mAh g−1 at current 

densities of 0.3, 0.6, 1, 2, 5, 10 and 15 A g−1, respectively.

48 CaV6O16·3H2O
capacities of 286, 260, 235, 202, 153, 115 and 78 mAh g−1 at current densities 

of 0.2, 0.5, 1, 2, 5, 10 and 20 A g−1, respectively.

21 NH4V4O10 capacities of 147, 137, 127, 118, 105, 98, 91, 80 and 72 mAh g−1 at current 



densities of 0.05, 0.1, 0.2, 0.3, 0.6, 0.8, 1, 1.5 and 2 A g−1, respectively.

49 Zn0.3V2O5·1.5H2O
capacities of 426, 400, 389, 369, 335 and 265 mAh g−1 at current densities of 

0.2, 0.5, 1, 2, 5 and 10 A g−1, respectively.

50 KV5O13·nH2O
capacities of 444, 428, 411, 388, 370, 357, 336, 323 and 313 mAh g−1 at 

current densities of 0.5, 0.5, 1, 2, 3, 4, 6, 8 and 10 A g−1, respectively.

51 Zn0.25V2O5·nH2O
capacities of 300, 278, 270, 260, 260, and 250 mAh g−1 at current densities of 

0.05, 0.3, 0.6, 1.2, 2.4, and 3 A g−1, respectively.

52 LixV2O5·nH2O
capacities of 470, 386, 316, 236, 190 and 170 mAh g−1 at current densities of 

0.5, 1, 2, 5, 8 and 10 A g−1, respectively.

53 Ca0.25V2O5·nH2O
capacities of 340, 289, 260, 250, 220 and 200 mAh g−1 at current densities of 

0.05, 0.3, 0.6, 0.9, 1.4 and 2.9 A g−1, respectively.

17 V6O13

capacities of 370, 333, 275, 252, 205 and 142mAh g−1 at current densities of 

0.2, 0.4, 4, 6, 12 and 24 A g−1, respectively.

54 CuV2O6

capacities of 361, 316, 285, 256 and 217 mAh g−1 at current densities of 0.2, 

0.5, 1, 2 and 5 A g−1, respectively.

55 V3O7·nH2O
capacities of 481.8, 450.2, 404.7, 352.9, 280.6 and 162.5 mAh g−1 at current 

densities of 0.1, 0.2, 0.5, 1, 2 and 5 A g−1, respectively.

56 K2V8O21

capacities of 247, 226, 183, 139 and 92 mAh g−1 at current densities of 0.3, 

0.4, 1, 2 and 4 A g−1, respectively.

57 K0.5V2O5

capacities of 486, 461, 427, 398, 352 and 256 mAh g−1 at current densities of 

0.1, 0.2, 0.5, 1, 2 and 5 A g−1, respectively.

58 K4Na2V10O28

capacities of 127.6, 120.3, 106.3, 91.4, 85.8 and 84.4 mAh g−1 at current 

densities of 0.05, 0.1, 0.2, 0.5, 0.8 and 1 A g−1, respectively.

59 Mn3O4@C
capacities of 323.2, 270.1, 209.6, 130.5 and 102.3 mAh g−1 at current 

densities of 0.1, 0.2, 0.5, 1 and 2 A g−1, respectively.

60 δ-MnO2

capacities of 232, 187, 161, 145, 134, 125, 111 and 103 mAh g−1 at current 

densities of 0.76, 1.52, 2.28, 3.04, 3.8, 4.56, 6.08 and 7.6 A g−1, respectively.

61 MnO
capacities of 267, 247, 216, 172, 126 and 95 mAh g−1 at current densities of 

0.1, 0.2, 0.4, 0.6, 0.8 and 1 A g−1, respectively.

62 ZnMn2O4

capacities of 127, 132, 129, 118, 98, 83 and 70 mAh g−1 at current densities of 

1, 0.2, 0.4, 0.8,1.6, 2.4 and 3.2 A g−1, respectively.

24 ZnHCF
capacities of 65.4, 60.4, 56.8, 52.5, 45.5, 39.1 and 32.3 mAh g−1 at current 

densities of 0.06, 0.12, 0.18, 0.3, 0.6, 0.9 and 1.2 A g−1, respectively.

63 β-MnO2

capacities of 312, 247, 193, 157, 123 and 86 mAh g−1 at current densities of 

0.03, 0.06, 0.13, 0.26, 0.53 and 1.06 A g−1, respectively.

64 α-MnO2

capacities of 323, 273, 231, 197, 163, 120, 79 and 47 mAh g−1 at current 

densities of 0.016, 0.033, 0.066, 0.133, 0.266, 0.533, 1.066 and 1.666 A g−1, 

respectively.





Table S3. Comparison of the Zn2+-ion migration energy barriers.

Ref. Cathode materials energy barrier (eV)

- This work 0.58

65 MgV2O6 1.7H2O 0.896

65 Mg0.55V2O5 0.8H2O 1.16

66 V2O5 1.75H2O 0.81

67 VO2 0.78

31 NaCa0.6V6O16 3H2O 0.53

17 V6O13 0.87

11 Li1.2V3O8 0.64

11 Na1.16V3O8 0.64

68 (Na,Mn)V8O20·nH2O 0.72

17 V6O13 nH2O 0.87



Table S4. The SEM-EDS mapping at different state 

Area Initial 1st-dis.0.2V 1st-cha.1.8V 2nd-dis.0.2V 2nd-cha.1.8V

K Zn V K Zn V K Zn V K Zn V K Zn V

1 1 1.04 5 0.38 3.8 5 0 1.76 5 0.02 3.76 5 0 1.89 5

2 0.99 1.04 5 0.39 3.64 5 0.02 1.78 5 0 3.85 5 0 1.84 5

3 0.97 0.98 5 0.47 3.66 5 0 1.85 5 0.02 3.89 5 0 1.93 5

4 0.99 1.03 5 0.41 3.42 5 0 1.75 5 0 3.74 5 0 1.96 5

5 1.01 1.07 5 0.38 3.67 5 0.01 1.86 5 0.02 3.86 5 0 2.02 5

average 1 1 5 0.4 3.6 5 0 1.8 5 0 3.8 5 0 1.9 5
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