# Constructing Self-supported Pt/MoO<sub>2</sub> on Molybdenum Mesh for High-efficient Hydrogen Evolution Reaction

Jin Li,<sup>a</sup> Panpan Zhang,<sup>a</sup> Yunli Yang<sup>a</sup>, Jian Zhang,<sup>b</sup> Meisa Zhou,<sup>c</sup> Heng Zhang,<sup>d\*</sup> Guilong Liu,<sup>a</sup> Naiteng Wu,<sup>a\*</sup> Changzhou Yuan,<sup>e\*</sup> Xianming Liu<sup>a\*</sup>

<sup>a</sup>College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China <sup>b</sup>New Energy Technology Engineering Lab of Jiangsu Province, College of Science, Nanjing University of Posts & Telecommunications (NUPT), Nanjing 210023, P. R. China <sup>c</sup>School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China

<sup>d</sup>Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, P. R. China

<sup>e</sup>School of Materials Science & Engineering, University of Jinan, Jinan, 250022, P. R. China,

\*Corresponding authors

## 1. Electrochemical measurements

In this research, the HER activity was examined using a standard three-electrode system with an electrochemical workstation (CHI760E) at room temperature. The experiments involved an electrode, prepared as earlier described, serving as the working electrode. A carbon rod and an Hg/Hg<sub>2</sub>Cl<sub>2</sub> electrode were used as the counter and reference electrodes, respectively. Potentials were measured against the Hg/Hg<sub>2</sub>Cl<sub>2</sub> reference and converted to the reversible hydrogen electrode (RHE) scale using the Nernst equation:  $E_{RHE} = E_{(Hg/Hg_2Cl_2)} + 0.0591pH + 0.244$ . All potentials mentioned in this study were adjusted for a 95% IR drop, except where noted otherwise. Before conducting electrochemical tests, the working electrode underwent activation and stabilization through 100 cyclic voltammetry (CV) cycles at a scan rate of 100 mV s<sup>-1</sup>. Subsequently, the HER electrocatalytic efficiency was assessed using linear sweep voltammetry (LSV)

at a scan rate of 2 mV s<sup>-1</sup> in a 0.5 M H<sub>2</sub>SO<sub>4</sub> solution (pH 0.26). The Tafel slope was calculated from the LSV data. Additionally, prior to electrochemical measurements, the 0.5 M H<sub>2</sub>SO<sub>4</sub> solution was saturated with argon gas. The double-layer capacitance, used to estimate the electrochemical active surface areas, was measured in the non-faradaic potential range (0.1-0.2 V vs. RHE) through CV at different scan rates. Electrochemical impedance spectroscopy tests were conducted at 20 mV overpotential over a frequency range from 100 kHz to 10 mHz, with an AC potential amplitude of 5 mV. The obtained results were analyzed using Zview software. The stability of the catalyst was evaluated through 5000 CV cycles, ranging from -0.1 to -0.6 V at a scan rate of 50 mV s<sup>-1</sup>. Additionally, chronoamperometry tests were conducted at a 27 mV overpotential for a duration of 240 hours.

#### 2. Materials Characterizations

To characterize the synthesized materials, various advanced techniques were employed. The morphological features were examined by field emission scanning electron microscope (FESEM, ZEISS-Merlin) with an integrated energy dispersive X-ray (EDX) mapping function, along with transmission electron microscope (TEM, JEOL, JEM-2100F). The crystal structures of the materials were scrutinized using X-ray diffraction (XRD, Bruker D8 advance) system. Additionally, surface chemical compositions were probed by X-ray photoelectron spectroscope (XPS, Perkin-Elmer Model PHI 5600), which features a monochromatic aluminum anode X-ray source and boasts a resolution range of 0.3-0.5 eV. To analyze the elemental composition of the catalyst samples, an inductively coupled plasma optical emission spectrometer (ICP-OES, iCAP 7600) was applied.

## 3. Computational calculations

Density functional theory calculations were conducted using the Dmol3 program package within the Materials Studio 2020 software. The Perdew-Burke-Ernzerhof function

of the generalized gradient approximation was employed to describe electron exchange and correlation. Computational parameters included a self-consistent field tolerance of  $1.0 \times 10^{-7}$  Ha per atom, an energy tolerance of  $2.0 \times 10^{-7}$  Ha per atom, a maximum force gradient of 0.002 Ha Å<sup>-1</sup>, a maximum atomic displacement of 0.005 Å, an orbital cutoff of 4.6 Å, and thermal smearing of 0.005 Ha for rapid convergence.

Supercells for Pt and MoO<sub>2</sub> were modeled as  $(6 \times 6 \times 2)$  (111) slabs and  $(3 \times 3 \times 2)$ (011) slabs respectively. A 20 Å vacuum space was maintained as a periodic boundary condition. Pt clusters, each containing ten atoms, were adsorbed onto the MoO<sub>2</sub> supercells to form Pt/MoO<sub>2</sub> supercells. The Gibbs free energy change for hydrogen adsorption ( $\Delta G_{H^*}$ ) was calculated using:  $\Delta G_{H^*} = E_{total} - E_{sur} - 1/2E_{H2} + \Delta E_{ZPE} - T\Delta S$ . In this equation,  $E_{total}$  is the total energy of the adsorption state,  $E_{sur}$  the energy of the unadorned surface,  $E_{H2}$  the total energy of H<sub>2</sub> gas,  $\Delta E_{ZPE}$  the zero-point energy change, T the room temperature (298.15 K), and  $\Delta S$  the entropy change. Based on previous report,  $\Delta E_{ZPE} - T\Delta S$  is considered to be 0.24 eV, making the formula for  $\Delta G_{H^*}$  become:  $\Delta G_{H^*} = E_{total} - E_{sur} - 1/2E_{H2} + 0.24$ .



**Figure S1**. (a) XRD pattern of MoO<sub>3</sub>@Mo. (b) LSV curves of MoO<sub>3</sub>@Mo and MoO<sub>2</sub>@Mo. (c) Chronoamperometry test of MoO<sub>3</sub>@Mo and MoO<sub>2</sub>@Mo.



Figure S2. FESEM images of the sample synthesized without KI.



Figure S3. TEM images of the Mo mesh treated by KI under air.



Figure S4. EDX image of Pt/MoO<sub>2</sub>@Mo.



Figure S5. LSV curves of Pt/MoO<sub>2</sub>@Mo with different contents of chloroplatinic acid.



Figure S6. CV curves with different scan rates for (a) Pt@Mo, (b) MoO<sub>2</sub>@Mo, and (c)

Pt/MoO<sub>2</sub>@Mo.



**Figure S7**. (a) XRD pattern, (b) FESEM, and (c, d) TEM images of Pt/MoO<sub>2</sub>@Mo after stability test. (e) EDX mapping images for Mo, O, and Pt after stability test. (f) Pt 4f, and (g) Mo3d XPS spectra of Pt/MoO<sub>2</sub>@Mo before and after stability test.



Figure S8. Raman spectra for Pt/MoO<sub>2</sub>@Mo before and after stability test.

Raman spectroscopy was utilized to examine the alterations in Pt/MoO<sub>2</sub>@Mo before and after stability assessment. The peaks observed at 667, 819, and 997 cm<sup>-1</sup> are associated with the O-Mo bond vibrations of monoclinic phase MoO<sub>2</sub>, while the peaks at 337 and 380 cm<sup>-1</sup> correspond to phonon vibrations.<sup>S1</sup> These findings serve to reinforce the stability of the Pt/MoO<sub>2</sub>@Mo electrode.



**Figure S9**. Energy band diagrams of  $MoO_2$  and Pt, and the schematic illustrating of the electron transfer process between  $MoO_2$  and Pt.  $E_{VAC}$ : Vacuum energy,  $E_f$ : Fermi level.

**Table S1**. The weight percentages of Pt contents in the Pt/MoO<sub>2</sub>@Mo samples before and after stability test determined by ICP

| Element  | Before stability test | After stability test |
|----------|-----------------------|----------------------|
| Pt (wt%) | 0.67%                 | 0.62%                |

| Catalysts                             | Pt loading content<br>(wt%) | Overpotential<br>(mV) | Tafel slope<br>(mV dec <sup>-1</sup> ) | Reference  |
|---------------------------------------|-----------------------------|-----------------------|----------------------------------------|------------|
| Pt/MoO <sub>2</sub> @Mo               | 0.67                        | 26.8                  | 59.2                                   | This work  |
| 0.5 wt% Pt-                           | 0.5                         | 60                    | 43                                     | S2         |
| MoO <sub>2</sub> /MWCNTs              |                             |                       |                                        |            |
| Pt-MoO <sub>2</sub> @PC               | 8.32                        | 20                    | 22                                     | S3         |
| Pt@MoO <sub>2</sub> /MoS <sub>2</sub> | /                           | 42                    | 26.6                                   | S4         |
| Pt@MoO2/MoOC                          | /                           | 98.99                 | 81.4                                   | S5         |
| 0.5 wt% Pt                            | 0.5                         | 47                    | 32.6                                   | S6         |
| Cs/MoO <sub>2</sub> NSs-L             |                             |                       |                                        |            |
| 1.1 wt% Pt                            | 1.1                         | 9.3                   | 28.78                                  | S7         |
| SAs/MoO <sub>2</sub>                  |                             |                       |                                        |            |
| Pt/Ni-Mo-N-O                          | 0.22                        | 32                    | 31.5                                   | <b>S</b> 8 |

**Table S2**. Electrocatalytic HER parameters of Pt/MoO<sub>2</sub>@Mo synthesized in this work and electrocatalysts reported previously at 10 mA cm<sup>-2</sup> in 0.5 M H<sub>2</sub>SO<sub>4</sub>. These literatures relate to MoO<sub>2</sub> supports.

# References

- S1. Y. Mao, Y. Hu, J. Shen, R. Wang, H. Zhang, R. Wang, P. Zhao and B. Wang, J. *Alloys Compd.*, 2023, 960, 170880.
- X. Xie, Y.-F. Jiang, C.-Z. Yuan, N. Jiang, S.-J. Zhao, L. Jia and A.-W. Xu, *J. Phys. Chem. C*, 2017, **121**, 24979-24986.
- S3. Y. Jiang, M. Yang, M. Qu, Y. Wang, Z. Yang, Q. Feng, X. Deng, W. Shen, M. Li and R. He, *J. Mater. Chem. A*, 2020, **8**, 10409-10418.
- S4. B. Dong, Y.-N. Zhou, J.-C. Zhou, Y. Ma, N. Yu, R.-N. Luan, Y.-W. Dong and Y.-M.

Chai, Fuel, 2022, **324**, 124343.

- S5. S. Li, J. Liang, X. Tan, F. Li, X. Wang, L. Ma, L. Zhang and K. Cheng, *Int. J. Hydrogen Energy*, 2024, **51**, 1128-1137.
- X. Li, J. Yu, J. Jia, A. Wang, L. Zhao, T. Xiong, H. Liu and W. Zhou, *Nano Energy*, 2019, 62, 127-135.
- S7. Y. Qiu, S. Liu, C. Wei, J. Fan, H. Yao, L. Dai, G. Wang, H. Li, B. Su and X. Guo, *Chem. Eng. J.*, 2022, **427**, 131309.
- S8. W. Yu, Z. Chen, Y. Fu, W. Xiao, B. Dong, Y. Chai, Z. Wu and L. Wang, *Adv. Funct. Mater.*, 2022, **33**, 2210855.