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1. Electrochemical measurements

In this research, the HER activity was examined using a standard three-electrode 

system with an electrochemical workstation (CHI760E) at room temperature. The 

experiments involved an electrode, prepared as earlier described, serving as the working 

electrode. A carbon rod and an Hg/Hg2Cl2 electrode were used as the counter and 

reference electrodes, respectively. Potentials were measured against the Hg/Hg2Cl2 

reference and converted to the reversible hydrogen electrode (RHE) scale using the 

Nernst equation: ERHE = E(Hg/Hg2Cl2) + 0.0591pH + 0.244. All potentials mentioned in this 

study were adjusted for a 95% IR drop, except where noted otherwise. Before conducting 

electrochemical tests, the working electrode underwent activation and stabilization 

through 100 cyclic voltammetry (CV) cycles at a scan rate of 100 mV s−1. Subsequently, 

the HER electrocatalytic efficiency was assessed using linear sweep voltammetry (LSV) 
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at a scan rate of 2 mV s−1 in a 0.5 M H2SO4 solution (pH 0.26). The Tafel slope was 

calculated from the LSV data. Additionally, prior to electrochemical measurements, the 

0.5 M H2SO4 solution was saturated with argon gas. The double-layer capacitance, used 

to estimate the electrochemical active surface areas, was measured in the non-faradaic 

potential range (0.1-0.2 V vs. RHE) through CV at different scan rates. Electrochemical 

impedance spectroscopy tests were conducted at 20 mV overpotential over a frequency 

range from 100 kHz to 10 mHz, with an AC potential amplitude of 5 mV. The obtained 

results were analyzed using Zview software. The stability of the catalyst was evaluated 

through 5000 CV cycles, ranging from −0.1 to −0.6 V at a scan rate of 50 mV s−1. 

Additionally, chronoamperometry tests were conducted at a 27 mV overpotential for a 

duration of 240 hours.

2. Materials Characterizations 

To characterize the synthesized materials, various advanced techniques were 

employed. The morphological features were examined by field emission scanning electron 

microscope (FESEM, ZEISS-Merlin) with an integrated energy dispersive X-ray (EDX) 

mapping function, along with transmission electron microscope (TEM, JEOL, JEM-

2100F). The crystal structures of the materials were scrutinized using X-ray diffraction 

(XRD, Bruker D8 advance) system. Additionally, surface chemical compositions were 

probed by X-ray photoelectron spectroscope (XPS, Perkin-Elmer Model PHI 5600), which 

features a monochromatic aluminum anode X-ray source and boasts a resolution range of 

0.3-0.5 eV. To analyze the elemental composition of the catalyst samples, an inductively 

coupled plasma optical emission spectrometer (ICP-OES, iCAP 7600) was applied.

3. Computational calculations

Density functional theory calculations were conducted using the Dmol3 program 

package within the Materials Studio 2020 software. The Perdew-Burke-Ernzerhof function 
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of the generalized gradient approximation was employed to describe electron exchange and 

correlation. Computational parameters included a self-consistent field tolerance of 1.0 × 

10−7 Ha per atom, an energy tolerance of 2.0 × 10−7 Ha per atom, a maximum force gradient 

of 0.002 Ha Å−1, a maximum atomic displacement of 0.005 Å, an orbital cutoff of 4.6 Å, 

and thermal smearing of 0.005 Ha for rapid convergence.

Supercells for Pt and MoO2 were modeled as (6 × 6 × 2) (111) slabs and (3 × 3 × 2) 

(011) slabs respectively. A 20 Å vacuum space was maintained as a periodic boundary 

condition. Pt clusters, each containing ten atoms, were adsorbed onto the MoO2 supercells 

to form Pt/MoO2 supercells. The Gibbs free energy change for hydrogen adsorption (∆GH*) 

was calculated using: ∆GH* = Etotal − Esur − 1/2EH2 + ∆EZPE − T∆S. In this equation, Etotal is 

the total energy of the adsorption state, Esur the energy of the unadorned surface, EH2 the 

total energy of H2 gas, ∆EZPE the zero-point energy change, T the room temperature (298.15 

K), and ∆S the entropy change. Based on previous report, ∆EZPE − T∆S is considered to be 

0.24 eV, making the formula for ∆GH* become: ∆GH* = Etotal − Esur − 1/2EH2 + 0.24.
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Figure S1. (a) XRD pattern of MoO3@Mo. (b) LSV curves of MoO3@Mo and 

MoO2@Mo. (c) Chronoamperometry test of MoO3@Mo and MoO2@Mo.
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Figure S2. FESEM images of the sample synthesized without KI.
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Figure S3. TEM images of the Mo mesh treated by KI under air.
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Figure S4. EDX image of Pt/MoO2@Mo.

Figure S5. LSV curves of Pt/MoO2@Mo with different contents of chloroplatinic acid.
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Figure S6. CV curves with different scan rates for (a) Pt@Mo, (b) MoO2@Mo, and (c) 
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Figure S7. (a) XRD pattern, (b) FESEM, and (c, d) TEM images of Pt/MoO2@Mo after 

stability test. (e) EDX mapping images for Mo, O, and Pt after stability test. (f) Pt 4f, and 

(g) Mo3d XPS spectra of Pt/MoO2@Mo before and after stability test. 

Figure S8. Raman spectra for Pt/MoO2@Mo before and after stability test. 
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Raman spectroscopy was utilized to examine the alterations in Pt/MoO2@Mo before 

and after stability assessment. The peaks observed at 667, 819, and 997 cm−1 are associated 

with the O-Mo bond vibrations of monoclinic phase MoO2, while the peaks at 337 and 380 

cm−1 correspond to phonon vibrations.S1 These findings serve to reinforce the stability of 

the Pt/MoO2@Mo electrode.

Figure S9. Energy band diagrams of MoO2 and Pt, and the schematic illustrating of the 

electron transfer process between MoO2 and Pt. EVAC: Vacuum energy, Ef: Fermi level.

 

Table S1. The weight percentages of Pt contents in the Pt/MoO2@Mo samples before and 

after stability test determined by ICP

Element Before stability test After stability test

Pt (wt%) 0.67% 0.62%
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Table S2. Electrocatalytic HER parameters of Pt/MoO2@Mo synthesized in this work and 

electrocatalysts reported previously at 10 mA cm−2 in 0.5 M H2SO4. These literatures relate 

to MoO2 supports.

Catalysts Pt loading content 

(wt%)

Overpotential 

(mV)

Tafel slope 

(mV dec-1)

Reference

Pt/MoO2@Mo 0.67 26.8 59.2 This work

0.5 wt% Pt-

MoO2/MWCNTs

0.5 60 43 S2

Pt-MoO2@PC 8.32 20 22 S3

Pt@MoO2/MoS2 / 42 26.6 S4

Pt@MoO2/MoOC / 98.99 81.4 S5

0.5 wt% Pt 

Cs/MoO2 NSs-L

0.5 47 32.6 S6

1.1 wt% Pt 

SAs/MoO2

1.1 9.3 28.78 S7

Pt/Ni-Mo-N-O 0.22 32 31.5 S8
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