Supplementary Information

Tunable Broadband Near-Infrared Luminescence from Cr³⁺-Doped Gallium Oxide-Based Phosphors for Advanced Sensing and LED Applications

Guocheng Pan,^a Yaowu Wang,^a Jianfeng Wang,^{b*} Zhenping Wu,^c Yiheng Yue,^a Nan Lin,^a Shiqing Xu,^a Gongxun Bai^{a*}

^a College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China.

^b College of Science, China Jiliang University, Hangzhou 310018, China.

^c Laboratory of Optoelectronics Materials and Devices, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China

*Corresponding author

E-mail address: jfwang@cjlu.edu.cn (J Wang), baigx@cjlu.edu.cn (G Bai)

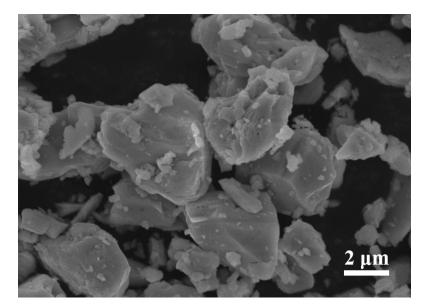
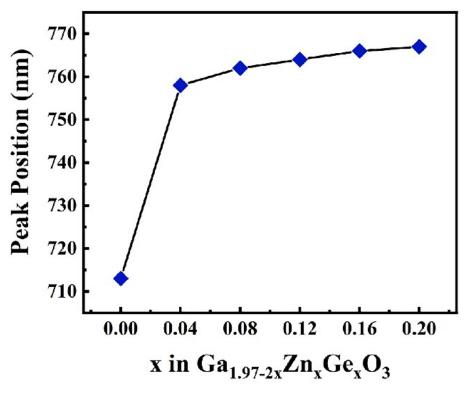



Figure S1. The SEM image of Ga_{1.57}Zn_{0.2}Ge_{0.2}Cr_{0.03}O₃ phosphor.

Figure S2. The emission spectra of peak position as a function of x in $Ga_{1.97-2x}Zn_xGe_xCr_{0.03}O_3$ (x = 0 - 0.2) phosphors.

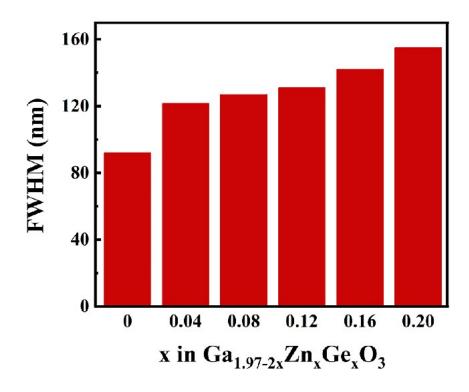


Figure S3. The emission spectra of FWHM as a function of x in $Ga_{1.97-2x}Zn_xGe_xCr_{0.03}O_3$ (x = 0-0.2) phosphors.

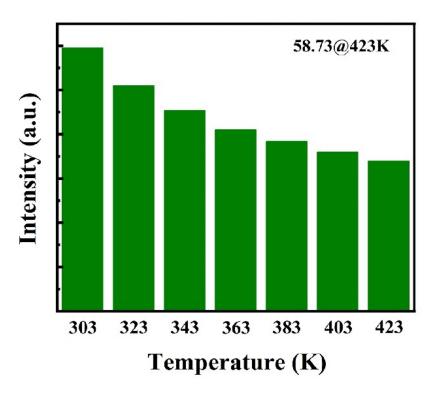


Figure S4. The intensity histograms of $Ga_{1.57}Zn_{0.2}Ge_{0.2}Cr_{0.03}O_3$ at temperature ranges of 303 K-423 K.

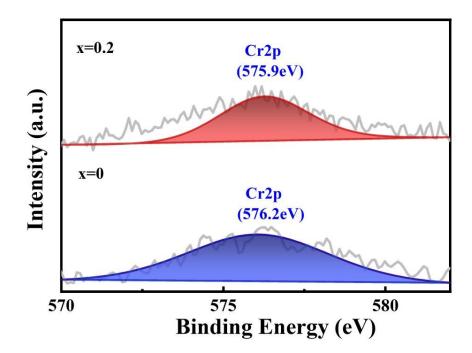


Figure S5. High-resolution Cr 2p XPS core energy level spectrum of $Ga_{2-2x}Zn_xGe_xCr_{0.03}O_3$ doped with different co-unit concentrations.

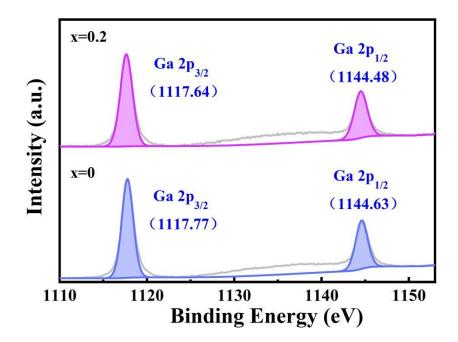


Figure S6. High-resolution Ga 2p XPS core energy level spectrum of $Ga_{2-2x}Zn_xGe_xCr_{0.03}O_3doped$ with different co-unit concentrations.