Electronic Supplementary Information

Highly Efficient NIR-II Photothermal Conversion from A 2,2'-Biquinoline-4,4'-Dicarboxylate based Photochromic Complex

Ning-Ning Zhang,^a Ya-Tong Liu^a, Li Li^c, Xiang-Tong Liu^a, Ke Xu^a, Zhen-Yu Li^b and Yong Yan^{*,a,d}

^aSchool of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252000, P. R. China.

^bSchool of Environmental and Materials Engineering, Yantai University, Yantai, 264005, P. R. China.

°School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, 454000,

P. R. China.

^dState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.

*Email: yanyong1036@gmail.com (Y. Yan)

Index

1. Table section	
Table S1	
Table S2	
Table S3	
Table S4	
Table S5	
Table S6	
Table S7	
2. Picture section	9
Fig. S1	9
Fig. S2	
Fig. 83	
Fig. S4	
Fig. 85	11
Fig. 86	11
Fig. S7	
Fig. S8	
Fig. 89	
Fig. S10	
Fig. S11	
Fig. S12	
References	

1. Table section

Table S1 Reported photothermal materials and their photothermal conversion efficiency (η) under the irradiation of a 1064 nm laser.

Items	 <i>η</i> ₁₀₆₄	Reference			
Complexes	Complexes				
$[Sr(BCA)_2(H_2O)_2]_n$ (1P)	84.5 %	This work			
Cu-THQNPs	51.34%	ACS Appl. Mater. Interfaces, 2018, 10, 25203 - 25212			
Au@MOF	48.5%	Nano Lett., 2019, 19 , 6772 - 6780			
rPMo·cTMB	48.4 %	<i>Adv. Healthcare Mater.</i> , 2022, 11 , 2102352			
pMOF-a	32.2 %	<i>Chem. Commun.</i> , 2022, 58 , 11095 - 11098			
THPTS-Pb	15.2 %	Inorg. Chem., 2024, 63 , 3327 - 3334			
COFs					
CNPs	50.6 %	Chem. Commun., 2020, 56, 7793-7796			
Py-BPy-COF NPs	55.2 %	J. Am. Chem. Soc., 2019, 141 , 14433 - 14442			
HOFs	_				
TQC@PFC-1	32 %	J. Mater. Chem. B, 2023, 11, 8649-8656			
Organic Small molecu	les				
BAF4	80 %	Angew. Chem. Int. Ed., 2021, 60, 22376–22384			
CY-1234	76.01 %	Small, 2023, 2307829			
P-Pc-HSA	64.7 %	<i>RSC Adv.</i> , 2020, 10 , 22656 - 22662			
2	62.26 %	Angew. Chem. Int. Ed., 2024, e202400913			
Zn ₄ -H ₂ Pc/DP	58.3 %	Chem. Sci., 2019, 10, 8246 - 8252			
DAF-OH ₂ ⊂GBox-4 ⁴⁺	47.4 %	Angew. Chem. Int. Ed., 2023, 135, e202301267			
$DAF_2 \subset GBox-4^{4+}$	37.6%				
$TTF_2 \subset GBox-4^{4+}$	39.9%				
CSM ₂	31.6 %	Mater. Horiz., 2020, 7, 1379 - 1386			

Polymers		
Y1	67.9 %	<i>Chem. Sci.</i> , 2021, 12 , 5177–5184
Y2	69.5 %	
Y3	76.5%	
PBBTDTS	65.0 %	Chem. Commun., 2020, 56 , 1093 - 1096
SPNs3	60.0 %	Chem. Commun., 2019, 55 , 9487 - 9490
HPW@PANI	57.76 %	Int. J. Nanomed., 2022, 17, 5565 - 5579
2MPT ^{2+•} CB	54.6 %	Angew. Chem., Int. Ed., 2019, 58, 15526 - 15531
N1@2P	53.8 %	Small, 2023, 19, 2300203
P ₃	46.0 %	ACS Nano, 2019, 13 , 7345–7354
NP ^{PSP-P} t	43.2 %	Adv. Mater., 2023, 35, 2300048
2NDTA	35 %	Adv. Funct. Mater., 2024, 2401627
SPNs	21.2 %	ACS Appl. Mater. Interfaces, 2020, 12 , 33492–33499.
SP1	2.3 %	Angew. Chem.Int. Ed., 2023, 62, e202301617
SP2	46.4 %	_
SP3	44.9 %	_
SP4	46.5 %	-
SP5	42.4 %	
Inorganic materials		
N-Doping CDs	81.3 %	<i>Carbon</i> , 2020, 162 , 220 – 233
AuPBs	80.8 %	ACS Nano, 2018, 12 , 2643 - 2651
Au ₃ Cu nanocrystals	75.2 %	Nanoscale Horiz., 2018, 3 , 624 - 631
MoO ₂ NPs	55.6 %	Sci. China Mater., 2020, 63, 1085 - 1098
CS–RuO ₂ NPs	52.5 %	Chem. Commun., 2020, 56 , 3019 - 3022
Pd Ncap	49.2 %	ACS Appl. Mater. Interfaces, 2023, 15, 33, 39081–39098
Sb-Doped SnO ₂	48.3 %	Nanoscale, 2018, 10, 2542 - 2554
Ni ₉ S ₈	46.0 %	Nanoscale, 2019, 11 , 20161 - 20170

Nb ₂ C (MXene)	45.6 %	J. Am. Chem. Soc., 2017, 139 , 16235 - 16247
V ₂ C	45.0 %	ACS Nano, 2019, 13 , 1499 - 1510
TeO ₂ /(NH ₄) _x WO ₃ nanoribbons	43.6 %	Nano Lett., 2019, 19 , 1179 - 1189
NIR-II-CD/BP hybrids	28.4 %	ACS Appl. Mater. Interfaces, 2019, 11 , 44949 - 44960
Si–Au	24.1 %	J. Mater. Chem. B, 2019, 7, 4393 - 4401
EGaIn @SiO ₂ -RGD	22.43 %	Nano Lett., 2019, 19 , 2128 - 2137
SnSe–PVP nanorods	20.3 %	Mater. Horiz., 2018, 5, 946 - 952
Au NSs	13.0 %	J. Mater. Chem. B, 2019, 7, 2001 – 2008

 Table S2. Crystal data and structural refinements for compound 1 and 1P.

	1	1P
CCDC	2193840	_
		-
Formula	$SrC_{20}H_{14}N_2O_6$	$SrC_{20}H_{14}N_2O_6$
Mr	465.95	465.95
Crystal size (mm ³)	0.42*0.05*0.03	0.45*0.05*0.03
Crystal system	monoclinic	monoclinic
Space group	I 2/a	I 2/a
<i>a</i> (Å)	7.9349(6)	7.9351(4)
<i>b</i> (Å)	11.4948(11)	11.4900(4)
<i>c</i> (Å)	19.0537(19)	19.0417(8)
α (deg)	90	90
β (deg)	100.855(5)	100.829(2)
γ(deg)	90	90
<i>V</i> (Å ³)	1706.8(3)	1705.20(13)
D _{calcd} (g/cm ³)	1.813	1.815
Ζ	4	4
F(000)	936.0	936.0
Abs coeff (mm ⁻¹)	3.204	3.207
R_1^{a}	0.0253(1570)	0.0271(2106)

ωR_2^{b}	0.0519(1743)	0.0595(2387)
GOF on F ²	1.066	1.065
${}^{a}R_{1} = \sum F_{o} - F_{c} / \sum F_{o} ;$ ${}^{b}\omega R_{2} = \{ \sum \omega [(F_{o})^{2} - (F_{c})^{2}]^{2} / \sum \omega [(F_{o})_{2}]^{2} \}$	1/2.	

Table S3 List of the primary excited states for [BCA²⁻]•• (the lowest singly unoccupied molecular orbital (SUMO) and the singly occupied molecular orbital (SOMO))

Excited State	Wavelength	Oscillator	Floctronic transition (%)
Excited State	(nm)	strength	Electronic transition (78)
7	1164.33 nm	0.0031	β -SOMO-3 $\rightarrow \beta$ -SUMO (75.9%)
9	1065.88 nm	0.0069	β -SOMO-8 $\rightarrow \beta$ -SUMO (72.8%)
10	862.59 nm	0.0340	α -SOMO $\rightarrow \alpha$ -SUMO+1 (90.7%)
13	650.95 nm	0.0445	α -SOMO $\rightarrow \alpha$ -SUMO+3 (68.7%)
14	603.35 nm	0.1006	α -SOMO $\rightarrow \alpha$ -SUMO+2 (71.5%)
16	556.14 nm	0.0206	α -SOMO $\rightarrow \alpha$ -SUMO+4 (79.5%)

Table S4 List of the molecular orbitals for $[BCA^{2-}]^{\bullet \bullet}$

Energy level	[BCA ²⁻]••	Energy level	[BCA ²⁻]••
α-SOMO (2.298 eV)		β-SOMO-8 (-1.629 eV)	

α-SUMO+1 (4.454 eV)	β-SOMO-3 (-0.704 eV)	
α-SUMO+2 (4.913 eV)	β-SUMO (0.783 eV)	
α-SUMO+3 (4.959 eV)		
α-SUMO+4 (5.229 eV)		

Table S5 List of the primary excited states for 2[BCA²⁻]^{••} (the lowest singly unoccupied molecular orbital (SUMO) and the singly occupied molecular orbital (SOMO))

Excited State	Wavelength	Oscillator	Electronic transition (%)
	(nm)	strength	
20	1491.73 nm	0.0021	β-SOMO-6→β-SUMO+1 (64.1%)
21	1428.47 nm	0.0097	β-SOMO-8→β-SUMO (70.0%)
23	1371.72 nm	0.0421	α -SOMO-1 $\rightarrow \alpha$ -SUMO (77.0%)
24	1322.29 nm	0.0019	β-SOMO-9→β-SUMO (66.3%)
25	1288.29 nm	0.0190	β -SOMO-11 $\rightarrow\beta$ -SUMO (73.8%)
28	1236.31 nm	0.0128	β -SOMO-6 $\rightarrow\beta$ -SUMO+1 (67.1%)
29	1185.66 nm	0.0059	β -SOMO-10 $\rightarrow\beta$ -SUMO (93.2%)
45	741.65 nm	0.0039	α -SOMO $\rightarrow \alpha$ -SUMO+4 (74.1%)
52	644.74 nm	0.1056	α -SOMO $\rightarrow \alpha$ -SUMO+7 (62.6%)

Table S6 List of the molecular orbitals for 2[BCA²⁻].

Energy level	2[BCA ²⁻]**	Energy level	2[BCA ^{2–}]••
<i>α</i>-SOMO-1 (6.756 eV)		β-SOMO-11 (3.266 eV)	000000 00000 000000 000000000000000000
а-SOMO (7.065 eV)		β-SOMO-10 (3.347 eV)	
а-SUMO (8.164 eV)		β-SOMO-9 (3.370 eV)	00000000000000000000000000000000000000
α-SUMO+4 (9.437 eV)		β-SOMO-8 (3.381 eV)	00000000000000000000000000000000000000
α-SUMO+7 (9.686 eV)	00000000000000000000000000000000000000	β-SOMO-6 (3.642 eV)	and the second
		β-SUMO (4.877 eV)	900090 90000 01000 000000000000000000000
		β-SUMO+1 (5.081 eV)	00000000000000000000000000000000000000

Table S7 Reported photochromic photothermal compounds and their photothermal conversion efficiency (η) under the irradiation of an 808 nm laser.

Items	η_{808}	Reference
NEU20	81.3 %	<i>Inorg. Chem. Front.</i> , 2023 , <i>10</i> , 3891–3898.
${[La_3(bcbp)_3(NO_3)_6O]}$ [La(NO ₃) ₆] _{1/3} } _n	77 %	<i>Chem. Commun.</i> , 2020 , <i>56</i> , 7399–7402.
$[Sr(BCA)_2(H_2O)_2]_n$ (1P)	53.2 %	This work
BPCA	41.9 %	Angew. Chem. Int. Ed., 2023 , 62, e202215591.
K-NDI	41.9 %	Mater. Today Chem., 2023, 27, 101324.

2. Picture section

Fig. S1 ¹H-NMR spectrum of the BCA in DMSO- d_6 .

Fig. S2 IR spectrum of the BCA.

Fig. S3 (a) Time-dependent electronic absorption spectra (measured in the diffuse reflectance mode) of the BCA. Inset: photochromic behavior of the BCA under ambient environment. (b) EPR spectra of the BCA before and after irradiation in the solid state.

Fig. S4 SEM images of 1 (left) and 1P (right).

Fig. S5 PXRD patterns of compound 1: simulated, simulated data using single-crystal data; before, measured data for as-synthesized samples; after, measured data for colored samples.

Fig. S6 IR spectra of compound 1: before, measured data for as-synthesized samples; after, measured data for colored samples.

Fig. S7 Solid-state ESR spectra of complex 1 before and after irradiation by the Xe lamp for 3 min. The data for the irradiated samples after annealing at 120 °C for 2 hours is also shown.

Fig. S8 Temperature curves of **1P** and blank quartz glass plate under the irradiation of the laser of 808 nm (a) and 1064 nm (b), respectively.

Fig. S9 Temperature decaying curve of 1P after removing the laser source of 808 nm (1.25 W/cm^2) (a) and the corresponding time-ln θ linear curve (b). The photothermal conversion

efficiency ($\eta_{808} = 53.2$ %) was calculated based on reported method¹: $\eta_{808} = \frac{hS_{\Delta}T_{max}}{I(1-10^{-A_{808}})}$, where the *I* is the laser power (1.25 W/cm²), A_{808} is the absorbance of the samples at the wavelength of 808 nm (0.386, normalized F(R)), and ΔT_{max} is the maximum temperature

change (61.5 K). *hs* can be calculated based on the formula of $\tau_s = \frac{\sum_{i} m_i C_{p,i}}{hs}$, where τ_s is the sample system time constant, m_i (0.017 g) and $C_{p,i}$ (1.12 J·(g·°C)⁻¹) are the mass and heat capacity of system components. When the laser switches off, τ_s can be estimated according to

the formula: $t = -\tau_s ln\theta$. The θ can be obtained according to the formula: $\theta = \frac{T - T_{surr}}{T_{max} - T_{surr}}$, where T is the temperature of sample, T_{max} is the maximum system temperature, and T_{surr} is the environment temperature.

Fig. S10 Temperature decaying curve of compound **1P** after removing the laser source of 1064 nm (1.25 W/cm²) (a) and the corresponding time-ln θ linear curve (b). The photothermal conversion efficiency ($\eta_{1064} = 84.5$ %) was also calculated based on reported method¹: $\eta_{1064} =$

 $\frac{hS_{\Delta}T_{max}}{I(1-10^{-A_{1064}})}$, where the *I* is the laser power (1.25 W/cm²), A_{1064} is the absorbance of the samples at the wavelength of 1064 nm (0.290, normalized F(R)), and ΔT_{max} is the maximum

temperature change (72.8 K). *hs* can be calculated based on the formula of $\tau_s = \frac{\sum_i m_i C_{p,i}}{hs}$, where τ_s is the sample system time constant, m_i (0.025 g) and $C_{p,i}$ (1.12 J·(g·°C)⁻¹) are the mass and heat capacity of system components. When the laser turns off, τ_s can be estimated according to

the formula: $t = -\tau_s ln\theta$. The θ can be obtained according to the formula: $\theta = \frac{T - T_{surr}}{T_{max} - T_{surr}}$, where T is the temperature of sample, T_{max} is the maximum system temperature, and T_{surr} is the environment temperature.

Fig. S11 Photoluminescence spectra of 1 and 1P ($\lambda_{ex} = 360$ nm) at room temperature in air. It is obvious that the fluorescence of 1P was decreased after photo irradiation, indicating the non-irradiative process in 1P was enhanced by the photoinduced electron transfer process.

Fig. S12 Solid state cyclic voltammograms of **1** at 100 mV/s in a 0.1 M (n-Bu₄N)PF₆/CH₃CN electrolyte. And cyclic voltammograms of BCA at 100 mV/s in 0.1 M (n-Bu₄N)PF₆/DMF electrolyte. The solid-state cyclic voltammograms of **1** was measured using a three-electrode

cell at room temperature. About 4 mg of **1** powder were dispersed in a solution of 1 mL ethanol, 1 mL H₂O, and 20 µL of a 5% w/w Nafion solution in water and 1-propanol for 5 min. A 20 µl aliquot of the above dispersion was drop-cast onto the working electrode, a precleaned glassy carbon electrode, and dried in air. A Pt wire and an Ag/Ag⁺ electrode acted as the counter and the reference electrode, respectively. Electrochemical measurements were carried out in 0.1M $[(n-Bu)_4N]PF_6$ solution in acetonitrile under N₂ atmosphere. The reduction potentials of the **1** was obtained from the cyclic voltammogram and referenced with respect to Fc/Fc⁺ as internal standard. The cyclic voltammogram of BCA was measured in 0.1 M $[(n-Bu)_4N]PF_6$ solution in DMF under N₂ atmosphere. The concentration of BCA was about 5×10^{-3} mmol/mL. Ferrocene was used as internal standard.

References

1 S. Wang, S. Li, J. Xiong, Z. Lin, W. Wei and Y. Xu, Chem. Commun., 2020, 56, 7399-7402.