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1. Experimental section

1.1 Experimental material

Ruthenium (III) chloride (RuCl3), sodium hydrosulfide (NaHS) and potassium hydroxide (KOH) 

were purchased from Shanghai Aladdin Biochemical Technology Co., Ltd. Sodium chloride 

(NaCl), ethanol, ethylene glycol and acetone were purchased from Sinopharm Chemical Reagent 

Co., Ltd. Nickel foam (NF, 99.8 wt %, 1.0 mm in thickness) was purchased in Suzhou Kesheng 

and Metal Materials. All reagents received were used without further purification.

1.2. Pre-treatment of nickel foam

The NF was ultrasound, treated in acetone, deionized water and ethanol for 15 min, respectively, 

and dried in a vacuum oven.

1.3. Product detection

The reaction products were analyzed by a 500 MHz liquid nuclear magnetic resonance 

spectrometer, Bruker/AVAN CE NEO 500, in which 300 μL electrolyte was added 300 μL D2O 

with 30 μL dimethyl sulfoxide used as an internal standard.

1.4. Characterization

Materials characterization: XRD measurement was performed using X 'Pert PRO MPD and the 

scan speed was 5o min-1. Scanning electron microscope (SEM) was used for the characterization 

by Hitachi S-8200. Transmission electron microscopy (TEM) and high-resolution transmission 

electron microscopy (HRTEM) were used for the characterization by JEM2100UHR. The 

vacancy of phosphorus was determined by electron paramagnetic resonance (EPR) spectroscopy, 

model Bruker A300 Germany. Using X-ray photoelectron spectroscopy (XPS) with a 

monochromatic aluminum Kα source, chemical valences and atomic compositions were 

determined. The XPS is calibrated with a C 1s spectrum, where the main line is 284.6 eV.

1.5. Electrochemical testing

Electrochemical measurement: The Gamry Reference 3000 electrochemical workstation was 

used for electrochemical analyses. The counter electrode was a graphite rod, and the reference 

electrode was Hg/HgO electrode. The reversible hydrogen electrode's relevant potential for this 

experiment was determined using the following equation: ERHE = EHg/HgO + (0.098 + 0.059 pH) V. 

In solutions containing 1.0 M KOH, 1.0 M KOH + 0.5 M EG, EGOR experiments was conducted. 

At a scan rate of 5 mV s-1, polarization curves for OER was measured utilizing linear scan 



voltammetry without IR compensation. In the frequency between 0.01 to 100 Hz, electrochemical 

impedance spectroscopy measurements were made. Using CV cycling at various scan speeds (40 

- 120 mV s-1), the electrochemically active surface area was determined. Chronoamperometry u-t 

tests was used to test the long-term stability of the system at 25 oC. The immersion area of the 

electrode is 1 cm × 1 cm.



2. Results and discussion

Figure S1. Optical images of the as-prepared electrodes.

1 μm

Figure S2. The SEM image of NF.



Figure S3. XRD pattern of Ru-Ni(OH)2.
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Figure S4. LSV curves of NF, Ru-Ni(OH)2 and Ru,S-Ni(OH)2-OV in 1.0 M KOH + 

0.5 M EG solution.
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Figure S5. LSV curves for (a) the exploration of optimal S doping content, (b) 

different EG concentrations, and (c) comparison of current density for different 

ethylene glycol concentrations at the potential of 1.40 V.
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Figure S6. Water contact angles test of the Ru,S-Ni(OH)2-OV and NF electrodes.
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Figure S7. (a-b) The cyclic voltammetry curves, (c) the ECSA of Ru-Ni(OH)2 and 

Ru,S-Ni(OH)2-OV in the non-Faradaic region.
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Figure S8. (a) CV curves for recorded between -0.2 V and 0.6 V vs. RHE in 1.0 M 

PBS (pH = 7) at a scan rate of 50 mV s-1, (b) TOFs of Ru-Ni(OH)2 and Ru,S-

Ni(OH)2-OV, (c) TOFs of Ru-Ni(OH)2 and Ru,S-Ni(OH)2-OV at the potential of 1.42 

V vs. RHE.
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Figure S9. (a) Comparison of catalytic activity of Ru,S-Ni(OH)2-OV electrodes in 

methanol, ethanol and ethylene glycol alkaline solutions, and (b) comparison of 

current density at 1.50 V potential at different alkaline alcohol solutions.
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Figure S10. The 1H NMR spectrum of Ru,S-Ni(OH)2-OV at the applied potential.
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Figure S11. (a-b) SEM and (c) TEM images after EGOR stability test.
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Figure S12. (a) High-resolution XPS of (a) Ni 2p, (b) S 2p and (c) O 1s before and 

after the reaction of Ru,S-Ni(OH)2-OV.
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Figure S13. Potential of Ru-Ni(OH)2 and Ru,S-Ni(OH)2-OV when injected with EG.
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Figure S14. Equivalent circuit model used in the fitting of the impedance data.

Rs represents solution impedance, Rct represents interfacial charge transfer 

impedance, and C represents non-ideal capacitance to fit the double layer capacitance 

(Cdl). The non-ideal bilayer behavior mainly comes from the adsorption of OH* in 

the diffusion bilayer (DDL) region. The variance of OH* is defined as Cφ, the 

absorption coverage of OH* in the reaction is analyzed, and ROH* is the 

corresponding hydroxyl adsorption impedance.
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Figure S15. Operando electrochemical impedance spectra on Ru,S-Ni(OH)2-OV 

electrode at different potentials in (a) 1.0 M KOH and (b) the corresponding Bode 

phase plots on Ru,S-Ni(OH)2-OV electrode during OER, plot of (c) charge transfer 

resistance plot and (d) CPEOH versus to the applied potential of Ru,S-Ni(OH)2-OV 

electrode.



Table S1 Comparison of the EGOR activities of Ru,S-Ni(OH)2-OV with recently 
reported electrocatalysts.

Catalysts Electrolytes
Current density 

(mA cm-2)

Potential 

(mV)
Reference 

Ru,S-Ni(OH)2-OV

1.0 M KOH + 0.5 

M EG

50

100

1.35

1.36
This work

nanoNi-Pop (CV)
1.0 M KOH + 0.1 

M EG
50 1.56 1

NiO@C/CC
1.0 M KOH + 1.0 

M EG

50

100

1.66

1.82
2

NiCo2O4/CFP
1.0 M NaOH + 

0.06 M EG

50

100

1.43

1.47
3

CuCo2O4/NF
1.0 M KOH + 0.06 

M EG

50

100

1.36

1.47
4

Ni/WC@C
1.0 M NaOH + 1 M 

EG

50

100

1.40

1.45
5

OMS-Ni1-CoP
1.0 M KOH + 0.5 

M EG

50

100

1.38

1.42
6

Bi0.13Co2.83O4-550
1.0 M KOH + 1.0 

M EG

50

100

1.39

1.42
7

Ni3N-

Ni0.2M0.8NNWs/C

C

1.0 M KOH + 0.3 

M EG

50

100

1.38

1.43
8

rGO-NiMn
1.0 M KOH + 1 M 

EG
~47.5 1.49 9

Ni-Co Oxides
1.0 M KOH + 1.0 

M EG
~55 1.49 10

Fe-Co-Ni/C
0.5 M KOH + 1.0 

M EG
~38.5 1.50 11



Branched NiSe2/C
1.0 M KOH + 1.0 

M EG
~103.6 1.60 12
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