Supporting information

Unexpected In Crystallo Reactivity of the Potential Drug Bis(maltolato)oxidovanadium(IV) with Lysozyme

Maddalena Paolillo, a Giarita Ferraro, a Irene Cipollone, a Eugenio Garribba, b Maria Monti, a * and Antonello Merlino * a

a. Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cintia, I-80126, Napoli, Italy. E-mail: montimar@unina.it; antonello.merlino@unina.it.

b. Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, Viale San Pietro, I-07100 Sassari, Italy.
Figure S1 Anomalous difference electron density map (at 3.0 σ level) of the (bis)V-containing fragment. Atoms from a symmetry related molecule are highlighted with the asterisk (*) and coloured in grey.
Figure S2 Interaction of the (bis)V-containing fragment bound to the side chain of Lys1. Atoms from a symmetry related molecule are highlighted with the asterisk (*) and coloured in grey. The side chain of Ser86* adopts two difference conformations.
Fig. S3 Proposed reactions of pyrylium ions.1
Figure S4 Maltol cleavage by diketone cleaving enzyme via molecular oxygen and subsequent hydrolytic decomposition of the products.2
Figure S5 Oxidation products of maltol: A) lactic acid and B) 3-hydroxyacrylic acid.\(^3\)
Figure S6 Structure of the cross-linked HEWL dimer formed in the crystals of the protein exposed to BMOV. The symmetry related molecule is coloured in grey. Asp87 from the symmetry-related molecule is highlighted with the asterisk (*).
Figure S7 MALDI MS spectra of the peptide mixture obtained from *in situ* hydrolysis of non-metalated HEWL (band 1.1 in Figure 4 of the main text): magnification of 1110-1150 (A) and 2600-2800 (B) m/z ranges.
Figure S8 MALDI MS spectra of the peptide mixture obtained from *in situ* hydrolysis of cross-linked HEWL dimer (band 2.1 in Figure 4 of the main text): magnification of 1110-1150 m/z range. The signals present in the reference (not metalated HEWL, band 1.1 in Figure 4 of the main text) are marked with asterisks (*).
Figure S9 MALDI MS spectra of the peptide mixture obtained from *in situ* hydrolysis of metalated monomeric HEWL (band 2.2 in Figure 4 of the main text) (A) and cross-linked HEWL dimer (band 2.1 in Figure 4 of the main text) (B): magnification of 3000-3100 m/z range.
<table>
<thead>
<tr>
<th>Data collection</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PDB code</td>
<td>9FMY</td>
</tr>
<tr>
<td>Crystallization condition</td>
<td>1.1 M NaCl 0.1M sodium acetate at pH 4.0</td>
</tr>
<tr>
<td>Soaking time</td>
<td>21 days</td>
</tr>
<tr>
<td>Space group</td>
<td>P4\textsubscript{3} 2\textsubscript{1} 2</td>
</tr>
<tr>
<td>a (\text{Å})</td>
<td>78.11</td>
</tr>
<tr>
<td>b (\text{Å})</td>
<td>78.11</td>
</tr>
<tr>
<td>c (\text{Å})</td>
<td>37.21</td>
</tr>
<tr>
<td>α/β/γ (°)</td>
<td>90.0/90.0/90.0</td>
</tr>
<tr>
<td>Molecules for asymmetric unit</td>
<td>1</td>
</tr>
<tr>
<td>Resolution range (Å)</td>
<td>55.23-1.09 (1.11-1.09)</td>
</tr>
<tr>
<td>Observations</td>
<td>1112770 (44263)</td>
</tr>
<tr>
<td>Unique reflections</td>
<td>48619 (2359)</td>
</tr>
<tr>
<td>Completeness (%)</td>
<td>99.9 (99.1)</td>
</tr>
<tr>
<td>Redundancy</td>
<td>22.9 (18.8)</td>
</tr>
<tr>
<td>Rmerge (%)</td>
<td>0.056 (1.455)</td>
</tr>
<tr>
<td>Average I/σ(I)</td>
<td>29.0 (2.2)</td>
</tr>
<tr>
<td>CC\textsubscript{1/2}</td>
<td>0.999 (0.822)</td>
</tr>
<tr>
<td>Anom. completeness (%)</td>
<td>100.0 (99.5)</td>
</tr>
<tr>
<td>Anom. Multiplicity</td>
<td>12.1 (9.7)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Refinement</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution (Å)</td>
<td>55.23-1.09</td>
</tr>
<tr>
<td>N* reflections</td>
<td>45192</td>
</tr>
<tr>
<td>N* reflections in working set</td>
<td>2841</td>
</tr>
<tr>
<td>Rfactor/Rfree</td>
<td>0.129/0.152</td>
</tr>
<tr>
<td>N* non-H atoms in the refinement</td>
<td>1272</td>
</tr>
<tr>
<td>B-factor overall (Å2)</td>
<td>19.11</td>
</tr>
<tr>
<td>Estimated occupancy of V (1)</td>
<td>0.30</td>
</tr>
<tr>
<td>Estimated occupancy of V (2)</td>
<td>0.60</td>
</tr>
<tr>
<td>Estimated occupancy of [VO(H\textsubscript{2}O)\textsubscript{5}]2+</td>
<td>0.50</td>
</tr>
<tr>
<td>Estimated occupancy of (bis)V-containing fragment</td>
<td>0.60</td>
</tr>
<tr>
<td>B-factor of V (1) (Å2)</td>
<td>27.47</td>
</tr>
<tr>
<td>B-factor of V (2) (Å2)</td>
<td>33.43</td>
</tr>
<tr>
<td>B-factor of V [VO(H\textsubscript{2}O)\textsubscript{5}]2+ (Å2)</td>
<td>22.86</td>
</tr>
<tr>
<td>B-factor of (bis)V-containing fragment (Å2)</td>
<td>15.4±2.7</td>
</tr>
<tr>
<td>Ramachandran values (%)</td>
<td></td>
</tr>
<tr>
<td>Most favoured/Additional allowed</td>
<td>96.52/3.48</td>
</tr>
<tr>
<td>Outliers</td>
<td>0.00</td>
</tr>
<tr>
<td>R.m.s.d. from ideality</td>
<td></td>
</tr>
<tr>
<td>R.m.s.d. bonds (Å)</td>
<td>1111</td>
</tr>
<tr>
<td>R.m.s.d. angles (°)</td>
<td>1515</td>
</tr>
</tbody>
</table>
Table S2: Anomalous difference electron density peaks interpreted as V centers.

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Occupancy of the V center in the model</th>
<th>Anomalous difference e.d. map peaks σ level</th>
</tr>
</thead>
<tbody>
<tr>
<td>V (1) of bis(V)-containing fragment</td>
<td>0.60</td>
<td>21.96</td>
</tr>
<tr>
<td>V (2) of bis(V)-containing fragment</td>
<td>0.60</td>
<td>16.90</td>
</tr>
<tr>
<td>V (1)</td>
<td>0.30</td>
<td>8.31</td>
</tr>
<tr>
<td>V (2)</td>
<td>0.60</td>
<td>4.61</td>
</tr>
<tr>
<td>V of [VO(H₂O)₅]²⁺</td>
<td>0.50</td>
<td>11.23</td>
</tr>
</tbody>
</table>
Table S3 Specific m/z of signals recorded in MALDI-MS and ESI-LC-MSMS analysis of metalated monomeric HEWL (band 2.2 of SDS-PAGE reported in Figure 4 of the main text) and of cross-linked HEWL dimer (band 2.1 of SDS-PAGE reported in Figure 4 of the main text). Signals are due to peptide mixtures deriving from hydrolysis with Asp-N protease followed by trypsin. Expected Molecular Weight (MW, Da) values are also reported.

<table>
<thead>
<tr>
<th>Experimental m/z (MALDI-MS) - Metalated monomeric HEWL</th>
<th>Experimental m/z (ESI-LCMSMS) - Metalated monomeric HEWL</th>
<th>Experimental m/z (MALDI-MS) - Cross-linked HEWL dimer</th>
<th>Experimental m/z (ESI-LCMSMS) - Cross-linked HEWL dimer</th>
<th>Expected MW (Da)</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1111.61</td>
<td>555.76</td>
<td>1111.66</td>
<td>-</td>
<td>1110.39</td>
<td>[62-68] + V + V=O</td>
</tr>
<tr>
<td>1127.60</td>
<td>-</td>
<td>1127.66</td>
<td>-</td>
<td>1126.39</td>
<td>[62-68] + 2V=O</td>
</tr>
<tr>
<td>2699.31</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2699.28</td>
<td>[74-97] K_{96} Ac, (Na')</td>
</tr>
<tr>
<td>2713.43</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2713.28</td>
<td>[74-97] K_{96} Ac (C-propionamide), (Na')</td>
</tr>
<tr>
<td>2742.37</td>
<td>1371.70, 915.10</td>
<td>-</td>
<td>-</td>
<td>2744.28</td>
<td>[74-97] K_{96} Ac + V=O</td>
</tr>
<tr>
<td>2756.36</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2575.28</td>
<td>[74-97] K_{96} Ac (C-propionamide) + V=O</td>
</tr>
<tr>
<td>2776.35</td>
<td>1389.14, 926.43</td>
<td>-</td>
<td>-</td>
<td>2776.35</td>
<td>[22-45] K_{33} Ac</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>4974.19</td>
<td>-</td>
<td>4974.22</td>
<td>[1-17] + [74-96] + (bis)V-containing fragment + VO_{3}</td>
</tr>
</tbody>
</table>
Notes and references

