Supporting Information

Atomically Dispersed Pd on ZrO$_2$ for Efficient Nitrite Electroreduction to Ammonia

Wenyu Du, Zeyi Sun, Chaofan Qiang, Kai Chen, Ke Chu*

School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.

*Corresponding author. chuk630@mail.lzjtu.cn (K. Chu)
Experimental section

7.40 g of ZrO(NO$_3$)$_2$·xH$_2$O and 19.22 g of urea were dissolved in 80 mL of deionized water. And the mixed solution was transferred to a Teflon-lined stainless steel autoclave and kept under 160 °C for 20 h. After cooling, the precipitates were washed with deionized water several times and dried at 80 °C for 12 h. The dried precipitates were then calcined in a muffle furnace at 500 °C for 3 h to obtain ZrO$_2$. To prepare Pd$_1$/ZrO$_2$, an impregnation solution was used by dissolving 0.30 g of PdCl$_2$ in 30 mL of deionized water. The as-prepared ZrO$_2$ was then immersed in impregnation solution for 1 h, followed by drying under vacuum at 110 °C to obtain Pd$_1$/ZrO$_2$.

Electrochemical experiments

Electrochemical measurements were carried out on a CHI-760E electrochemical workstation using a three-electrode cell, with Ag/AgCl (saturated KCl), Pt foil and catalyst coated on carbon cloth (CC, 1 × 1 cm2) as reference, counter and working electrodes, respectively. All potentials were referenced to reversible hydrogen electrode (RHE) in terms of E (V vs. RHE) = E (V vs. Ag/AgCl) + 0.198 V + 0.059 × pH. The CC substrate (1×1 cm2) was pretreated by soaking it in 0.5 M H$_2$SO$_4$ for 12 h, and then washed with deionized water several times and dried at 60 °C for 24 h. The catalyst ink was prepared by dispersing 1 mg of the catalysts in 100 μL of ethyl alcohol containing 5 μL of Nafion (5 wt%) under ultrasonication. The catalyst inks were dropped onto CC (0.2 mg·cm$^{-2}$) to form the working electrodes. The electrochemical NO$_2$RR measurements were performed 0.5 M Na$_2$SO$_4$ solution containing 0.1 M NaNO$_2$ using an H-type electrochemical cell separated by a Nafion 211 membrane. After each chronoamperometry test at certain potential for 1 h, the liquid products were analyzed by various colorimetric methods using UV-vis absorbance spectrophotometer (MAPADA P5), while the gas products (H$_2$, N$_2$) were analyzed by gas chromatography (Shimadzu GC2010).

Determination of NH$_3$

The generated NH$_3$ was determined by the indophenol blue method1. Typically, 0.5 mL of electrolyte was removed from the electrochemical reaction vessel and...
diluted 50 times with deionized water. Then 2 mL of diluted solution was removed into a clean vessel followed by sequentially adding NaOH solution (2 mL, 1 M) containing C$_7$H$_6$O$_3$ (5 wt.%) and C$_6$H$_5$Na$_3$O$_7$ (5 wt.%), NaClO (1 mL, 0.05 M), and Na$_2$Fe(CN)$_5$NO·2H$_2$O (0.2 mL, 1 wt.%) aqueous solution. After the incubation for 2 h at room temperature, the mixed solution was subjected to UV-vis measurement using the absorbance at 655 nm wavelength. The concentration-absorbance curves were calibrated by the standard NH$_4$Cl solution with a series of concentrations.

Calculations of NH$_3$ yield rate and NH$_3$-Faradaic efficiency

\[
\text{NH}_3\text{ yield rate (μg·h}^{-1}·\text{mg}_\text{cat}^{-1}) = \frac{C_{\text{NH}_3} \times V}{t \times A}
\]

\[
\text{NH}_3 - \text{Faradaic efficiency(%) =} \frac{6 \times F \times C_{\text{NH}_3} \times V}{17 \times Q} \times 100\%
\]

where c_{NH_3} (μg mL$^{-1}$) is the measured NH$_3$ concentration, V (mL) is the volume of the electrolyte, t (h) is the reduction time, A (cm2) is the surface area of CC (1 × 1 cm2), F (96500 C mol$^{-1}$) is the Faraday constant, Q (C) is the quantity of applied electricity.

Characterizations

X-ray diffraction (XRD) pattern was collected on a Rigaku D/max 2400 diffractometer. X-ray photoelectron spectroscopy (XPS) analysis was conducted on a PHI 5702 spectrometer. Transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) were recorded on a Tecnai G2 F20 microscope. Spherical aberration-corrected scanning transmission electron microscopy (AC-STEM) was performed on a Titan Cubed Themis G2 300 microscope. Online differential electrochemical mass spectrometry (DEMS, QAS 100) was performed by QAS 100 spectrometer. Various products during the electrolysis reactions were monitored at different values of m/z ionic signals.

Calculation details

Cambridge sequential total energy package (CASTEP) module was employed for the density functional theory (DFT) calculations. Electron-exchange correlations were represented by the functional of Perdew-Burke-Ernzerhof (PBE) of the generalized gradient approximation (GGA). The van der Waals interactions were
evaluated by employing the Grimme (DFT+D) scheme. The convergence criteria for structure optimization were set to: (1) energy tolerance of 1×10^{-5} eV, (2) maximum force tolerance of 0.02 eV Å$^{-1}$, (3) Monkhorst-Pack k-point sampling: $2 \times 2 \times 1$. The cutoff energy for the plane wave basis was set at 420 eV. Monoclinic ZrO$_2$ (-111) was modeled by a 3×3 supercell, and a vacuum region of 15 Å was used to separate adjacent slabs.

The free energies (ΔG, 298 K) for each reaction were given after correction5:

$$
\Delta G = \Delta E + \Delta ZPE - T\Delta S
$$

where ΔE is the adsorption energy, ΔZPE is the zero-point energy difference and $T\Delta S$ is the entropy difference between the gas phase and adsorbed state.

The Forcite module was employed for the MD simulations6. The electrolyte system was modeled by a cubic cell with placing catalyst at the center of the cell and randomly filling 1000 H$_2$O, 50 NO molecules, and 50 H atoms. The force field type was chosen as universal. After geometry optimization, the MD simulations were carried out with the total simulation time of 1 ns at a time step of 1 fs. The radial distribution function (RDF) is calculated by7:

$$
g(r) = \frac{dN}{4\pi \rho r^2 dr}
$$

where dN is the amount of NO$_2^-$ in the shell between the central particle r and $r+dr$, ρ is the number density of NO$_2^-$ and H.
Figure S1. TEM image of ZrO$_2$.
Figure S2. XANES fitted curve to determine the average Pd valence state of Pd$_1$/ZrO$_2$.

![Graph showing XANES fitted curve for Pd valence state determination.](image)
Figure S3. XPS Pd 3d spectra of Pd$_1$/ZrO$_2$.
Figure S4. PDOS profiles of ZrO$_2$ and Pd$_x$/ZrO$_2$.
Figure S5. Average potential profiles along c-axis direction for calculating the work functions (Φ) of (a) ZrO$_2$ and (b) Pd$_1$/ZrO$_2$.
Figure S6. UV-vis absorption spectra of NH$_4^+$ assays after incubated for 2 h at ambient conditions. (b) Calibration curve used for the calculation of NH$_3$ concentrations.
Figure S7. Chronoamperometry test of ZrO$_2$ in H cell.
Figure S8. Comparison of NO$_2$RR performance between ZrO$_2$ and Pd$_1$/ZrO$_2$.
Figure S9. CV measurements at different scanning rates and calculated electrochemically active surface area (ECSA) for (a, b) ZrO$_2$, (c, d) Pd$_x$/ZrO$_2$.
Figure S10. ECSA-normalized NH$_3$ yield rate and FE$_{NH3}$ of ZrO$_2$ and Pd$_1$/ZrO$_2$ at -0.6 V.
Figure S11. Amounts of produced NH$_3$ on Pd$_x$/ZrO$_2$ under different conditions: (1) electrolysis in NO$_2^-$-containing solution at -0.6 V, (2) before electrolysis, (3) electrolysis in NO$_2^-$-free solution at -0.6 V; (4) electrolysis in NO$_2^-$-containing solution at open-circuit potential (OCP).
Figure S12. Alternating cycling test on Pd$_{1}$/ZrO$_2$ with/without NO$_2^-$ at -0.6 V.
Figure S13. Free energy diagrams of various NO$_2$RR pathways (NHO/NOH) on ZrO$_2$.

Reaction coordinate

Free Energy (eV)

ZrO$_2$
Figure S14. Free energy diagrams of various NO$_2$RR pathways (NHO/NOH) on Pd$_{1}$/ZrO$_2$.
Figure S15. Optimized structures of the reaction intermediates involved in NHO/NOH pathways on ZrO$_2$.
Figure S16. Optimized structures of the reaction intermediates involved in NHO/NOH pathways on Pd$_1$/ZrO$_2$.
Figure S17. Online DEMS spectra of ZrO$_2$ during NO$_2$RR electrolysis at -0.6 V.
Figure S18. *NO₂/*H snapshots of Pd₁/ZrO₂ before and after simulation.
Table S1. Pd K-edge EXAFS fitting results of Pd$_1$/ZrO$_2$.

| Sample | Shell | CN | R (Å) | $\sigma^2 (10^{-3} \text{Å})$ | $|\Delta E_0| (\text{eV})$ | R factor |
|-------------|-------|----|-------|----------------------------|-----------------|---------|
| Pd$_1$/ZrO$_2$ | Pd-O | 1.25 | 2.01 | 6.1 | 4.9 | 0.12 |
| | Pd-Zr | 1.17 | 2.78 | | | |

CN is the coordination number, R is interatomic distance, σ^2 is Debye-Waller factor, ΔE_0 is edge-energy shift, R factor is used to value the goodness of the fitting.
Table S2. Comparison of the optimum NH₃ yield and FE₅NH₃ for the recently reported state of the art NO₂RR electrocatalysts at ambient conditions.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Electrolyte</th>
<th>NH₃ yield rate (μmol h⁻¹ cm⁻²)</th>
<th>FE₅NH₃ (%)</th>
<th>Potential (V vs RHE)</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-TiO₂/TP</td>
<td>0.1 M Na₂SO₄ (0.1 M NO₂⁻)</td>
<td>560.8</td>
<td>90.6</td>
<td>-0.6 V</td>
<td>8</td>
</tr>
<tr>
<td>Cu₃P NA/CF</td>
<td>0.1 M PBS (0.1 M NaNO₂)</td>
<td>95.7±2.1</td>
<td>91.2±2.5</td>
<td>-0.5 V</td>
<td>9</td>
</tr>
<tr>
<td>Ag@NiO/CC</td>
<td>0.1 M NaOH (0.1 M Na₂O₃)</td>
<td>338.3</td>
<td>96.1</td>
<td>-0.7 V</td>
<td>10</td>
</tr>
<tr>
<td>CoP NA/TM</td>
<td>0.1 M PBS (500 ppm NO₂⁻)</td>
<td>132.7±3.0</td>
<td>90.0±2.3</td>
<td>-0.2 V</td>
<td>11</td>
</tr>
<tr>
<td>ITO@TiO₂/TP</td>
<td>0.5 M LiClO₄ (0.1 M NO₂)</td>
<td>411.3</td>
<td>82.6</td>
<td>-0.5 V</td>
<td>12</td>
</tr>
<tr>
<td>Pd/CuO NOs</td>
<td>0.1 M K₂SO₄ (0.01 M KNO₂)</td>
<td>53.3</td>
<td>91.8</td>
<td>-1.5 V</td>
<td>13</td>
</tr>
<tr>
<td>Ni@MDC</td>
<td>0.1 M NaOH (0.1 M NO₂⁻)</td>
<td>300</td>
<td>65.4</td>
<td>-0.8 V</td>
<td>14</td>
</tr>
<tr>
<td>CF@Cu₂O</td>
<td>0.1 M PBS (0.1 M NaNO₂)</td>
<td>441.8</td>
<td>94.2</td>
<td>-0.6 V</td>
<td>15</td>
</tr>
<tr>
<td>Ni-TiO₂/TP</td>
<td>0.1 M NaOH (0.1 M NO₂⁻)</td>
<td>380.27</td>
<td>94.89</td>
<td>-0.5 V</td>
<td>16</td>
</tr>
<tr>
<td>Pd₁/ZrO₂</td>
<td>0.1 M Na₂SO₄ (0.1 M NO₂⁻)</td>
<td>438.06</td>
<td>96.75</td>
<td>-0.6 V</td>
<td>This Work</td>
</tr>
</tbody>
</table>
References

7. X. Li, P. Shen, X. Li, D. Ma and K. Chu, Sub-nm RuO$_x$ clusters on Pd metallene for synergistically enhanced nitrate electroreduction to ammonia, *ACS Nano*, 2023, **17**, 1081-1090.

12. S. Li, J. Liang, P. Wei, Q. Liu, L. Xie, Y. Luo and X. Sun, ITO@TiO$_2$ nanoarray: An efficient and robust nitrite reduction reaction electrocatalyst toward NH$_3$ production under ambient conditions, *eScience*, 2022, **2**, 382-388.

