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Experimental sections

Materials

All Chemicals were AR grade and obtained as follows: Cobalt nitrate hexahydrate 

(Co(NO3)2·6H2O), 2-methylimidazole (C4H6N2) and hydrochloric acid (HCl, 28-30 

wt%) were bought from Aladdin reagent (Shanghai, China). Potassium ferricyanide 

(K3[Fe(CN)6]) and potassium hydroxide (KOH) were supplied by Tianjin Chemical 

Reagent Co., Kay Tong. Ethanol was obtained from Tianjin Fuyu Fine Chemical Co., 

Ltd. They were ready for immediate use without further purification. Deionized (DI) 

water was used for cleaning up the surface residue of samples and preparing aqueous 

solutions throughout.

Preparation of Co MOF

Solution A was prepared by Co(NO3)2·6H2O (2 mmol) was dissolved in 20 mL of 

DI water. Solution B was prepared by 2-methylimidazole (8 mmol) was dissolved in 

20 mL DI water. Solution A was quickly poured into solution B and stirred. Then, the 

pretreated nickel foam (NF, 1 cm×1 cm) was immersed into the mixed solution and 

aged for 4 h at room temperature. Subsequently, the synthesized NF sheets were taken 

out, rinsed with DI water and dried at 60℃ overnight, denoted as Co MOF.

Preparation of Fe-doped Co MOF

K3[Fe(CN)6] (0.658 g) was dissolved in 20 mL DI water, and then 20 mL of a 

mixed solution of ethanol and water (Vethanol:VDI=1:3) was added. Co MOF was 

immersed in the final mixed solution and aged for 12 h at room temperature. The 

obtained NF sheet was removed, rinsed several times with DI water and dried at 60℃ 

overnight, denoted as Fe-doped Co MOF.

Preparation of e-Fe-MOF CNs

Fe-doped Co MOF was immersed into 10 mL of 1 M HCl aged for 15 min, 30 

min, and 60 min at room temperature. Finally, the HCl-etched NF nanosheets were 

obtained, removed, cleaned with DI water, and dried at 60℃ overnight, named as e-Fe-

MOF CNs-15, e-Fe-MOF CNs-30 and e-Fe-MOF CNs-60, respectively.
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Characterizations

Scanning electron microscope (SEM) were conducted with a JSM-7500F. 

Transmission electron microscopy (TEM), High-resolution transmission electron 

microscope (HRTEM), and the inset selected area electron diffraction (SAED) were 

taken on a JEM-2100. X-ray diffraction (XRD) analysis were performed on a TD-3500 

using Cu-Ka radiation (l ¼ 0.154059 nm at 40 kV). Raman spectra data were acquired 

by a DXR2 20192805. Fourier transform infrared (FTIR) spectra data were taken on 

Nicolet iS 10. The X-ray photoelectron spectroscopy (XPS) data were collected by the 

surface analysis system (Thermofisher Escalab Xi+). Brunauer-Emmett-Teller (BET) 

surface area and pore size distribution with Nitrogen adsorption/desorption isotherms 

were measured using an Autosorb-iQ3 instrument by the Barrette Joynere Halenda 

(BJH) model. Ultraviolet-visible spectroscopy (UV-vis) data were obtained on a 

Cary100.

Electrochemical measurements

All electrochemical tests, including cyclic voltammetry (CV), constant current 

charge discharge (GCD), and electrochemical impedance spectroscopy (EIS), were 

conducted in 1 M KOH aqueous solution using a CHI 660E.

In the three-electrode system, the work electrode is the sample prepared at 

different etching time, and the platinum sheet and Hg/HgO electrode are used as the 

counter electrode and reference electrode, respectively. The CV curve was test under a 

potential window of 0-0.6 V at different scan rates of 2-50 mV s-1. Within the potential 

window range of 0-0.5 V, GCD curves were obtained at different current densities of 

1-20 A g-1. The frequency range for EIS impedance testing is 0.01-105 Hz.

The specific capacity (C, C g-1) of the electrode were calculated based on the GCD 

curves using the following formula:1

               (S1)I tC
m


V

where I, Δt and m are the discharge current (A) and time (s) of the sample, and the 

sample quality (g).
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In the two-electrode system, an asymmetric supercapacitor (ASC) is assembled 

using e-Fe-MOF CNs-30 as the positive electrode and AC as the negative electrode, 

with a cellulose separator between the positive and negative electrodes. AC electrode 

was obtained by mixing AC powder, koqin black, and 50 μL PVDF+NMP (weight ratio 

8:1:1), perform ultrasound, and apply on the pre-treated 1 cm × 1 cm NF, dry and press. 

The loading capacity of positive and negative active substances is determined by the 

following equation:2

                    (S2)m C V
m C V

  

  





V
V

where m+, C+, ΔV+ and m-, C-, ΔV- are the mass (g), mass specific capacitance (mAh 

g-1) and working potential windows (V) of positive and negative materials, respectively. 

In particular, the mass loading of e-Fe-MOF CNs-30 is 2 mg (2 mg cm-2) and the AC 

loading is 4 mg. Similarly, the specific capacitance of the device is calculated based on 

the GCD curve using the following formula:2

                   (S3)sc
I tC

m V


V
V

where Csc is the specific capacitance (F g-1), I is the discharge current (A), Δt is the 

discharge time (s).

Moreover, the energy density and power density of the device could be calculated 

according to the formulas (S4) and (S5), as shown below:3

                    (S4)
2

2 3.6
scC VE 

V

                   (S5)3600EP
t


V

where E is energy density (Wh kg-1), Csc is specific capacitance of the device (F g-1), Δt 

is discharge time of the device (s), P is power density (W kg-1).
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Fig. S1 The optical image of Co MOF, Fe-doped Co MOF, e-Fe-MOF CNs-15, e-Fe-MOF 

CNs-30 and e-Fe-MOF CNs-60 on NF.
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Fig. S2 SEM images. (a, d) NF, (b, e) Co MOF, (c, f) e-Fe-MOF CNs-30.
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Fig. S3 Characterization data for e-Fe-MOF CNs. TEM image of (a) e-Fe-MOF CNs-15, (b) e-

Fe-MOF CNs-30. (c) HRTEM image of e-Fe-MOF CNs-30 (Inset: SAED image). (d) TEM 

image of e-Fe-MOF CNs-60.
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Fig. S4 XRD pattern for Co MOF.
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Fig. S5 Characterization data for e-Fe-MOF CNs-30. (a) SEM image. (b-f) Element mapping 

images for Co, Fe, C, N and O. (g) EDS spectrum.
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Fig. S6 Characterization data. (a) FTIR spectra. (b) Raman spectra. (c) UV-Vis spectra of Co 

MOF, Fe-doped Co MOF and e-Fe-MOF CNs-30.
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Fig. S7 N2 adsorption-desorption isotherm curves. (a) Co MOF, (b) e-Fe-MOF CNs-15 and (c) 

e-Fe-MOF CNs-60.
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Fig. S8 XPS spectra of survey scan. (a) Co MOF, Fe-doped Co MOF, (b) e-Fe-MOF CNs-30.
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Fig. S9 XPS spectra of Co 2p in Co MOF.
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Fig. S10 SEM images of (a, b) Fe-doped Co MOF.
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Fig. S11 XPS spectra of O 1s in Fe-doped Co MOF and e-Fe-MOF CNs-30.
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Fig. S12 XPS spectra of Co MOF. (a) C 1s, (b) O 1s.
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Fig. S13 XPS spectra of Fe-doped Co MOF and e-Fe-MOF CNs-30. (a, c) C 1s, (b, d) N 1s.
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Fig. S14 Electrochemical performances of Co MOF, Fe-doped Co MOF and e-Fe-MOF CNs-

30. (a) CV curves at 20 mV s-1. (b) GCD curves at 1 A g-1. (c) Specific capacity at 1 A g-1. (d) 

Nyquist plots (Inset: magnified high-frequency region and circuit diagram).
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Fig. S15 Electrochemical performances of Co MOF, Fe-doped Co MOF. (a, d) CV curves at 

different scan rates. (b, e) GCD curves at different current densities. (c, f) Nyquist plots (Inset: 

magnified high-frequency region and circuit diagram).
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Fig. S16 Electrochemical performances of e-Fe-MOF CNs-15, e-Fe-MOF CNs-30 and e-Fe-

MOF CNs-60. (a, d, g) CV curves at different scan rates. (b, e, h) GCD curves at different 

current densities. (c, f, i) Nyquist plots (Inset: magnified high-frequency region and circuit 

diagram).
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Fig. S17 The cyclic stability after 5000 charge-discharge cycles. (a) e-Fe-MOF CNs-15, (b) e-

Fe-MOF CNs-60.



S22

Fig. S18 SEM images of (a, b) e-Fe-MOF CNs-30 after 5000 charge-discharge cycles.
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Fig. S19 Electrochemical performances of e-Fe-MOF CNs-15 and e-Fe-MOF CNs-60. (a, d) 

Linear relationships between log (i) and log (v). (b, e) The capacitive contribution at a scan rate 

of 2 mV s-1. (c, f) Contribution ratios at various scan rates.
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Fig. S20 Electrochemical performances of AC negative electrode. (a) CV curves at different 

scan rates. (b) GCD curves at different current densities. (c) Nyquist plots (Inset: magnified 

high-frequency region). (d) The specific capacitance at different current densities.
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Table S1. Resistance values of e-Fe-MOF CNs-15, e-Fe-MOF CNs-30 and e-Fe-MOF CNs-

60.

Electrode materials Rs (Ω) Rct (Ω)

e-Fe-MOF CNs-15 5.024 9.486

e-Fe-MOF CNs-30 3.075 5.743

e-Fe-MOF CNs-60 3.298 5.848
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Table. S2 Comparison of specific capacities in this work with other MOF-based electrodes.

Electrode 

materials

Methods Electrolyte Current 

density

Specific 

capacitance 

or capacity

Cyclic 

stability

Ref.

This work

(e-Fe-MOF CNs-

30)

Coprecipitation 1 M KOH 1 A g-1 1431 C g-1

/2862 F g-1

84.2% after 

5000 cycles

NiCo MOF Ultrasonication 2 M KOH 1 A g-1 1202.1 F g-1 89.5% after 

5000 cycles

4

NiCoP-MOF Hydrothermal 2 M KOH 1 A g-1 728 C g-1 -- 5

ZIF-67@PAIN In-situ growth 1 M KOH 1 A g-1 512 F g-1 92.3% after 

9000 cycles

6

Ni-MOF-2 Solvothermal 6 M KOH 1 A g-1 467 C g-1 83% after 

5000 cycles

7

Zn-Co-MOF@CuO Solvothermal 3 M KOH 2 A g-1 684 F g-1 111% after 

10000 cycles

8

Ni/Co-

MOF@TCT-NH2

Solvothermal 3 M KOH 0.5 A g-1 1924 F g-1 58% after 

10000 cycles

9

Cu(NiCo)2S4/Ni3S4 Hydrothermal 6 M KOH 1 A g-1 1320 F g-1 75% after 

5000 cycles

10

Ni3S4@Co3S4 Sol-gel 1 M KOH 1 A g-1 747.3 C g-1 98.81% after 

5000 cycles

11

ZnSCO-TAA@NiF Coprecipitation 2 M KOH 10 mA 

cm-2

743.7 C g-1 81.6% after 

15000 cycles

12

CoNi0.5 MOF Solvothermal PVA/KOH 1 A g-1 663.6 F g-1 96% after 

8000 cycles

13

MnCoNi-MOF Hydrothermal 6 M KOH 1 A g-1 655 F g-1 92.3% after 

10000 cycles

14

Mxene/CoS/NF Coprecipitation 3 M KOH 2 mA 

cm-2

0.91 mAh 

cm-2

81.74% after 

10000 cycles

15



S27

Table. S3 Comparison of energy density and power density of e-Fe-MOF CNs-30//AC with 

other previously-reported devices.

Devices Electrolyte Voltage 

(V)

Energy density

(Wh kg-1)

Power density

(W kg-1)

Ref.

This work

(e-Fe-MOF CNs-

30//AC)

1 M KOH 1.6 83.73 1600

Zn-Co MOF 

NS/rGO//3D rGO

6 M KOH 1.5 43 900 16

Ni3S4@Co3S4//AC 6 M KOH 1.4 30.7 388.5 17

Cu MOF/rGO//Cu-

MOF/rGO

1 M Na2SO4 1.2 30.56 600 18

CoNi0.5 MOF//N-

doped graphene

PVA/KOH 1.6 23.44 350 13

Ni MOF@PPy//AC 2 M KOH+0.1 

M K4Fe(CN)6

1.4 38.5 7001 19

MnCoNi MOF//AC 6 M KOH 1.6 61 844 14

MOF-B-600//AC 6 M KOH 1.6 63.62 400 20

NiCoP//AC 6 M KOH 1.5 36.87 2250 21

Ni MOF//AC 6 M KOH 1.6 30.4 407.4 22

Ni MOF-10//AC 2 M KOH 1.7 50.1 2550 23

CNHC-12h//AC 6 M KOH 1.6 41.8 800 24

NiCo-LDH-1//AC 1 M KOH 1.6 59.0 935.7 25

CuCN-

MOF//CuCN-MOF

6 M KOH 1.2 68.175 5540 26

NiCo MOF//AC 2 M KOH 1.5 49.4 562.5 4

SrCo0.95Ta0.05O3-

δ@CC//AC@CC

PVA/KOH 1.6 22.82 775.09 27

SrCo0.95Cr0.05O3‑δ@

CC//PPy@CC

3 M KOH 1.3 44.9 902.01 28
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