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Regioselective syn-1,2-Hydroarylation of Internal Alkynes
Shubham Dutta,a† Manoj Sethi,a† Avijit Maity,a† Aradhana Sahoo,a Vincent Gandon,*b and Akhila K. 
Sahoo*a

The regioselective hydro-functionalization reaction is a powerful method to convert readily available alkynes into 
structurally diverse olefins. Such an efficient syn-1,2-hydroarylation of yne-acetates is described herein using aryl diazonium 
salts and silanes as aryl and hydride sources, respectively. The transformation shows excellent functional group tolerance 
and applications to late-stage functionalization, providing a straightforward entry to trisubstituted allyl acetates. DFT 
analysis sheds light on the mechanism, particularly on the role of DMSO solvent in assisting the Si–H bond cleavage.

Introduction
Peripherally decorated olefins are commonly found in various 
natural products/drugs and organic materials.1 They are also 
useful precursors for synthesizing substituted 3-membered 
carbo/heterocycles.2 In particular, tri-substituted olefins as well 
as allyl alcohol derivatives stand out as various drug building 
blocks (Figure 1A).3 Though tri-substituted olefins appear 
structurally simple at first glance, their regioselective synthesis 
has always been challenging.4 Among various approaches, 
hydroarylation via the carbometallation of the alkynes pathway 
appears to be the most efficient and the most modular.5 Except 
unsymmetrical alkynes which face regioselectivity issues in the 
carbometallation step, various research groups have used 
symmetrical alkynes for the synthesis of tri-substituted olefins 
via CH functionalization or through the addition of 
polar/radical species.6,7 For unsymmetrical alkynes, use of a 
directing group (DG) has displayed promising regioselectivity in 
the -carbometallation step (Engle group, Figure 1B).8 
Additionally, Lautens work on β-arylation of propargyl alcohols 
also exhibits high regioselectivity.9,10 Interestingly secondary 
propargyl amines (-disubstituted) undergo -arylation with 
excellent regioselectivity (the ligated metal goes to the -carbon 
to avoid steric hindrance).11 In this context, Cacchi’s work on 
internal alkynes is particularly noteworthy; however, the 
primary concern is its moderate regioselectivity.12c Despite 
these advancements in the field, there is still room for 
uncovering a sustainable regioselective hydroarylation of 
unsymmetrical alkynes (propargyl acetate).12 The present 
synthetic method aims to address the undisputed problems 
linked to the non-removable nature of the pyridyl-DG,13 the use 
of external ligands,14 the use of an expensive Rh-catalyst,15 and 
the requirement to employ harsh reaction conditions. 
In light of our recent work on cationic Pd-catalysed 
dicarbofunctionalization of unsymmetrical alkynes (yne-

acetates),16 regioselective hydroarylation of unsymmetrical 
alkynes could be achieved in the presence of a hydride source 
(Figure 1C). We surmise the site-selective coordination of 
cationic aryl-Pd(II), enabling regioselective carbo-palladation, 
followed by trapping with a hydride source. DFT computations 
shed light on this hypothesis.
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Initial tests were focused on the use of triphenyl silane 3a as a 
hydride source in the three-component reaction of 4-
phenylbut-3-yn-2-yl acetate (1a) with p-methoxyphenyl 
diazonium tetrafluoroborate (2a) (Table 1). An extensive 
screening of reaction parameters such as catalysts, solvents and 
temperatures led us to the optimized conditions: [1a (1.0 
equiv), 2a (3.0 equiv), 3a (1.2 equiv), and Pd2(dba)3 (3.0 mol%) 
in 1,4-dioxane/DMSO (9:1), 0.15 M at 25 C, for 30 min to 4 h]; 
the desired hydroarylation product 4 was isolated in 94% yield 
(entry 1). Other Pd(0) catalysts [Pd(dba)2 and Pd2(dba)3·CHCl3] 
led to reduced yields of 4 (entries 2 and 3). The solvents 1,4-
dioxane, DMSO, DMF, and 1,2-DME were found less effective 
than the 1,4-dioxane/DMSO mixture, furnishing 4 in 6177% 
yield (entries 47). On the other hand, the use of toluene only 
led to traces of 4 (entry 8). Lowering the reaction temperature 
to 0 C or raising it to 40 C diminished the product yield (entries 
9 and 10). While triethyl silane 3b also proved to be an effective 
hydride source, phenyl silane (PhSiH3) 3c failed (entries 11 and 
12). Lastly, aryl iodide (2a′) and aryl trifluoromethane sulfonate 
(2a′′) in place of 2a only provided 4 in trace amounts (entries 13 
and 14). Then, a series of aryl diazonium salts (2a2x) were 
tested in the reaction of 1a and 3a under the optimized 
conditions (Scheme 1). 

Table 1 Reaction optimization

OMe

N2BF4

MeAcO

Ph Ph H

Me

OAc

Pd2(dba)3 (3.0 mol%)

1,4-dioxane:DMSO (9:1),
0.15 M, 25 oC, 4 h

1a 2a

3a

4

OMe

Ph3SiH

deviations from the S.C.a yield of 4 (%)b

1 none 94
2 6.0 mol% Pd(dba)2 73
3 Pd2(dba)3·CHCl3 82
4 1,4-dioxane 77
5 DMSO 61
6 DMF 65
7 1,2-DME 62
8 toluene trace
9 0 oC 71

10 40 oC 75
11 Et3SiH (3b) as hydride source 82
12 PhSiH3 (3c) as hydride source trace
13 4-iodoanisole (2a′) as aryl source trace
14 4-MeOC6H4OTf (2a′′) as aryl source trace

aStandard Conditions (S.C.): 1a (0.2 mmol), 2a (0.6 mmol), silane 3a (0.24 
mmol), Pd-catalyst (3.0 mol%) in solvent (0.15 M), at 25 C for 4 h; bIsolated 
yield. 

The results demonstrate that the electron-rich p-(OMe, Me, and 
nBu)-substituted arene diazonium salts 2a2c delivered better 
results when compared to the respective electron-poor p-(CN 
and NO2)-arene diazonium salts 2d2e; the desired allyl 
acetates 48 were isolated in 2994% yield. The large variation 
of the yield could be a consequence of the facile oxidative 
addition of electron-poor diazonium salts to the Pd(0)-catalyst 

leading to faster decomposition. Likewise, compound 9 was 
made from the reaction of electron-neutral phenyl diazonium 
salt 2f with 1a and 3a (77% yield). Notably, the labile halo (-F, -
Cl, and -Br) groups were tolerated under the oxidative 
conditions, with compounds 1012 being synthesized in good 
yields. Similarly, compounds 1321 were constructed from the 
reaction of meta/para/ortho-mono/di-substituted arene 
diazonium salts 2j2r independently with 1a and 3a. Moreover, 
heterocycles such as 2,3-dihydrobenzo[b][1,4]-dioxine, 
benzo[d][1,3]dioxole, 4-carbazole, 4-morpholine phenyl, and 6-
indole-containing diazonium salts 2s2w also actively 
participated in the coupling reaction, delivering 2226 in 
3876% yield. The single crystal X-ray crystallographic analysis 
of 25 unambiguously confirmed the product regioselectivity. 
Notably, 4-hydroxyl phenyl diazonium salt 2x, despite having an 
acidic -OH group, reacted smoothly with 1e to give the desired 
hydroarylation product 27 in 84% yield.
Next, we probed the effect of various aryl groups at the alkyne 
terminus. A wide range of para-electron-rich (Me and OMe), 
electron-poor (COMe, CO2Me, and CF3), and halogen (F and Br) 
phenyl-containing alkynes (1b1h) were allowed to react with 
2a under the standard conditions to afford the desired 
hydroarylation products 2834 in moderate to excellent yields 
as single regioisomer (4089%). In addition, compounds with m-
(NO2 and CN) groups, as well as crowded m,p-methylenedioxy-
substituted propargyl acetates (1i1k), yielded products 3537 
in good yields. Moreover, single regioisomers were observed in 
sterically demanding o-F and heterocyclic 2-thienyl-containing 
products 38 and 39. Intrigued by these excellent results, we 
next explored the substitution at the propargyl position 
(1n1s). While the unsubstituted propargyl acetate delivered 
40 in 79% yield; n-propyl, phenyl, m-F phenyl, m-OCF3 phenyl, 
and m,p-diCl phenyl substituted propargyl acetates led to lower 
yields of the respective hydroarylation products 4145, yet with 
absolute regioselectivity. Next, late-stage hydroarylation of 
unsymmetrical alkynes 1t1z containing biologically relevant 
motifs (BRMs) were performed with 2a and 3a under the 
standard conditions. The trisubstituted allyl acetate-bearing 
steroid [cholesterol (46)], terpenoid [borneol (47) and menthol 
(48)], or fatty alcohol [tocopherol (49)] were constructed in 46–
78% yields. Interestingly, the reaction of the marketed drugs 
valproic acid (anti-epileptic drug) and gemfibrozil (abnormal 
blood lipid level preventer) coupled with propargyl acetates (1x 
and y) delivered the respective allyl acetates 50 (64%) and 51 
(83%).  Similarly, the isovaleric acid containing allyl acetate 52 
was isolated in 73% yield.
The practicability of the methodology was tested by scale-up 
synthesis of 4 in 1.32 g scale (89% yield, Scheme 1, within 
parenthesesc) under the standard conditions.
After the successful gram scale synthesis, the synthetic 
versatility of the newly constructed trisubstituted allyl-acetates 
was probed. Brønsted acid-mediated Friedel-Crafts cyclization 
of tri-substituted allyl acetate 4 afforded the highly substituted 
indene 53 (85%; Scheme 2). The Ru-catalyzed oxidative 
cleavage of the substituted olefin 4 provided acetyl ketone 54 
(90%). 
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Moreover, KOH-mediated acetate deprotection followed by 
Dess-Martin periodinane (DMP)-assisted oxidation of 4 
furnished vinyl ketone 56 (61% over the two steps). 
To shed light on the reaction mechanism, a few control 
experiments were performed. First, the title reaction in the 
absence of silane failed to produce 4 in detectable amount 
(Scheme 3A). To discard the possibility of protodemetalation in 
the reaction pathway, methanol was added as an additive in 
place of the silane; however, no desired product 4 was 
observed. To establish the pivotal role of the acetate group, 
propargyl alcohol 1a′ was subjected to the optimized conditions 
(Scheme 3B, equation a). The rection was unsuccessful in the 
presence of a free alcohol group and 1a′ was recovered in 89% 
yield. Although the reaction was successful in the case of 
unsymmetrical aryl-alkyl bearing internal alkynes 1aa′ (72% of 
57), 1aaʺ (69% of 58), and 1aa‴ (67% of 59), the regioselectivity 
was uncontrolled (Scheme 3B, equations bc). In contrast, the 
reaction of aliphatic propargyl acetate (1b′) and dialkyl alkyne 
(1bʺ) did not provide the desired hydroarylation product 
(Scheme 3Ca and 3Cb). This may be attributed to the absence 
of an aromatic ring, which likely hinders the initial insertion 
step. While a terminal alkyne (1b‴) and phthalimide-protected 
propargyl amine (1c′) successfully produced 60 (82%) and 61 
(52%), respectively, although with uncontrolled regioselectivity 
(Scheme 3Cc and 3C-d). However, it is worth noting that the 
possible ligand substitution by the hydride group of silane 
occurs in the absence of any O/F-salts susceptible to accepting 
the resulting silylium ion. 
Hence, to understand reaction mechanism, DFT calculations 
were performed (Figure 2).18 In our previous work,16,17 we have 
shown that oxidative addition of Pd(DMSO)2 into the C–N bond 
of phenyl diazonium cation A, coordination of the alkyne -
system to A followed by the syn-insertion of the alkyne into the 
Pd–Ph bond leading to D was achieved through the overall 
release of 19.1 kcal/. Focusing now on the reactivity of Ph3SiH, 
we first envisaged the substitution of DMSO by the silane. It 
provided the complex E (11.1 kcal/mol) in which the Si–H bond 
serves as ligand (1.62 Å in E vs 1.50 Å in Ph3SiH). The formation 
of E is endergonic by 8.0 kcal/mol. The breaking of the Si–H 
bond was modelled through TSEF, located at 9.0 kcal/mol (rate-

determining step). The DMSO ligand captures the resulting 
silylium ion Ph3Si+ by its oxygen atom. The resulting hydride 
complex F (2.9 kcal/mol) is coordinated to DMSO both by the 
S and the O atoms. Several efforts failed to obtain the reductive 
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Figure 2 Computed free energy profiles (M06L/def2-TZVPP; selected distance in Å)

elimination of the latter. The [Me2SOSiPh3]+ moiety can be used 
differently to coordinate the metal centre and engage in 
stabilizing interactions. In complex G (13.7 kcal/mol), Pd is 
bound to one Ph group, allowing the S atom to establish a 
strong hydrogen bond with the hydride ligand (max = 0.028 
eÅ3). With the assistance of this noncovalent interaction, the 
reductive elimination becomes straightforward, the 
corresponding transition state TSGH lying only 0.8 kcal/mol 
above G (12.9 kcal/mol). This last step is strongly exergonic, 
leading to H at 50.8 kcal/mol. In this complex, the 
[Me2SOSiPh3]+ moiety acts as a chelating ligand by the S atom 
and one Ph group. Finally, the recycling of the catalytically active 
species B from H is exergonic by 32.8 kcal/mol. Unfortunately 
we are unable to provide any experimental support for the 
existence of [Me2SOSiPh3]+ complex.
We then studied the formation of a pentavalent addition 
complex between D and DMSO. Formation of the 
corresponding species I (6.4 kcal/mol) is endergonic by 12.7 
kcal/mol. However, the oxidative addition transition state TSIJ 

(6.8 kcal/mol) lies 2.2 kcal/mol lower in energy than the 
tetravalent transition state TSEF (9.0 kcal/mol; see Figure 2). 
Again here, the DMSO ligand assists the formation of the Pd–H 
bond by catching the Ph3Si+ ion. In the resulting Pd hydride J, 
the tetravalent neutral part is clearly separated from the 
[Me2SOSiPh3]+ moiety. Its removal to give K (-17.4 kcal/mol) is 
exergonic by 5.8 kcal/mol. Reductive elimination takes place 
through TSKL (12.9 kcal/mol), with a low barrier of 4.5 
kcal/mol. It yields the neutral species L (25.3 kcal/mol), from 
which dissociation and regeneration of B is a highly favourable 
process (58.3 kcal/mol). Thus, there is a kinetic preference for 
the pathway involving two DMSO molecules (blue pathway), 
however, both energy profiles with one or two DMSO are viable 
and exchanges between species by association/dissociation 
(e.g. E/I) are perfectly conceivable.
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Conclusions

In summary, a palladium-catalysed three-component syn-1,2-
hydroarylation of internal-alkynes is described. The reaction 
uses readily accessible coupling partners yne-acetates, aryl 
diazonium salts, and silanes. The method offers a 
straightforward entry to unusual trisubstituted allyl acetates. 
The scope is broad, showing excellent functional-group 
tolerance. The transformation is fully regioselective as well as 
stereoselective. Moreover, the biologically relevant motifs 
(BRM) bearing yne-acetates are also used for the late-stage syn-
1,2-hydroarylation process. The reaction is even successful on a 
gram scale. The trisubstituted allyl acetates are further used for 
the construction of functionalized indene and vinyl ketone 
derivatives. The DFT studies rationalize the role of the acetate 
group in the regioselective aryl-palladation of unsymmetrical 
yne-acetates and reveal the role of DMSO solvent in assisting 
the Si–H bond cleavage. The current finding paves the way for 
the discovery of other difunctionalization strategies of 
unsymmetrical alkynes.
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