Copper-doped Bi₂MoO₆ with concurrent oxygen vacancies for enhanced CO₂ photoreduction

Jiawei Liu,^a Xin Liu,^b Chunhui Dai,^c Chao Zeng,^{*,a} Sajjad Ali,^{*,d} Mohamed Bououdina,^d Yushuai Jia^{*,b}

^a School of Chemical Engineering, Jiangxi Normal University, Nanchang 330022, PR China

^b College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022,

PR China

^c Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, School of Chemistry, Biology, and Materials Science, East China University of Technology, Nanchang 330013, PR China

^d Energy, Water, and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia

E-mail: czeng@jxnu.edu.cn; sajjad@alum.imr.ac.cn; ysjia@jxnu.edu.cn

1. Computational section

1.1 Computational setup

Theoretical calculations were conducted using spin-polarized density functional theory (DFT) implemented through the Vienna ab initio simulation package (VASP).¹ The Perdew-Burke-Ernzerhof (PBE) functional,² a type of generalized gradient approximation (GGA), was employed to calculate the exchange-correlation potentials. A $4\times2\times2$ k-points grid and an energy cutoff of 450 eV were employed for structural relaxation. Ionic relaxations were conducted with conventional energy criteria (10^{-5} eV), while force convergence thresholds were set at -0.02 eVÅ⁻¹ during optimization. Based on experimental findings, a 131 facet of Bi₂MoO₆ was selected as a representative model for CO₂ reduction. To minimize periodic image interactions, the separation between adjacent cells was adjusted to approximately 15 Å. Gas-phase molecule energies (H₂, H₂O, and CO₂) were evaluated within a box measuring 27 Å × 27 Å × 20 Å. Charge population and transfer were determined using the Bader method.³

The conversion of CO_2 to CO through photo-reduction occurs through a mechanism involving the transfer of two electrons, consisting of two elementary steps coupled with proton-electron interactions:

$$* + CO_{2(g)} + 2(H^{+} + e^{-}) \rightarrow *COOH + H^{+} + e^{-}$$
 (1)

$$*COOH + H^+ + e^- \rightarrow *CO + H_2O_{(l)}$$
⁽²⁾

$$*CO \to CO_{(q)} + * \tag{3}$$

Additionally, the *CO that has been adsorbed can undergo further reduction to *CHO and CH₄ via eight-electron CO₂ reduction products, following the subsequent route;

$$*CO + H^+ + e^- \to *CHO \tag{4}$$

$$^{*}CHO + H^{+} + e^{-} \rightarrow CH_{2}O^{*} \tag{5}$$

$$^{*}OCH_{2} + H^{+} + e^{-} \rightarrow CH_{3}O^{*} \tag{6}$$

$$*OCH_3 + H^+ + e^- \rightarrow *O + CH_{4(g)} \tag{7}$$

$$^{*}O + H^{+} + e^{-} \rightarrow ^{*}OH \tag{8}$$

$$^{*}OH + H^{+} + e^{-} \rightarrow H_2O_{(l)} + *$$

$$\tag{9}$$

where "*" denoted the active site of catalysts, (g) denoted gas phase, respectively, and $HCOOH^*$, *COOH, *CO, *CHO, CH_2O^* , CH_3O^* , and *OH, are the adsorbed intermediates.

The addition of corrections for zero-point energy, entropy, and enthalpy was performed on adsorbates to transform electronic energy into free energy.

The Gibbs free energy (G) at 0 V was modified by equation (10).

$$G = E_{DFT} + E_{ZPE} - TS + \int C_p dT$$
(10)

where E_{DFT} , E_{ZPE} , *TS*, and $\int C_p dT$ denoted electronic energy obtained from DFT optimization, zero-point vibrational energy, entropy, and heat capacity at room temperature (T=298.15 K), respectively. The computational hydrogen electrode (CHE) model was used to calculate the Gibbs free energy for the reaction step involving the coupled of proton-electron, in which the free energy of a pair of proton and electron (H⁺ + e⁻) was calculated as a function of applied potential relative to a reversible

hydrogen electrode (U *vs* RHE), i.e., $\mu(H^+) + \mu(e^-) = \frac{1}{2} \mu(H_2) - eU.^4$ The reaction free energies of each elementary reaction (- ΔG) at a given potential U_{RHE} are calculated as:

$$\Delta G = \mu (\text{product}) - \mu (\text{reactant}) - \frac{1\mu(H2)}{2} - eU_{RHE}$$
(11)

Where μ was the chemical potential. Precisely, when U=0 V then,

$$\Delta G = -U_{\rm L} \times e \tag{12}$$

Where $U_{\rm L}$ was the limiting potential, and $U_{\rm L}$ of each specific product (CO, CH₄ and H₂O) were obtained via $U_{\rm L} = -\Delta G_{\rm max}/e$, where ($\Delta G_{\rm max}$) was the maximum free energy change and determined the value of potential-determining step.

Charge transfer $\Delta\rho$ from the atoms to the crystal is calculated by,

$$\Delta \rho = \rho(\text{crystal}) - \rho(\text{atoms}) \tag{13}$$

Figure S1. Typical XPS survey spectra of Bi_2MoO_6 and Bi_2MoO_6 -10% Cu.

Figure S2. High-resolution XPS spectrum of Cu 2p for Bi_2MoO_6 -20% Cu.

Figure S3. Raman spectra of Bi_2MoO_6 and Bi_2MoO_6 -10% Cu.

Figure S4. SEM images of (a, c) Bi_2MoO_6 , and (b, d) Bi_2MoO_6 -10% Cu.

Figure S5. The yield of photocatalytic CO_2 conversion products of Bi_2MoO_6 and Bi_2MoO_6 -XCu (S1-S5: X=1%, 5%, 10%, 15% and 20%).

Photocatalyst	Light source	Activity, μmol g ⁻¹ h ⁻¹	Selectivity, %	Ref
Bi ₂ MoO ₆ -10% Cu	300 W Xe	11.40	69.3	
Co-POR	lamp 300 W Xe	0.40		5
$Bi_{24}O_{31}Cl_{10}-O_V$	300 W Xe lamp	0.9		6
2H/3C-SiC	300 W Xe	4.68		7
3D CoAl ₂ O ₄	300 W Xe lamp	4.73		8
LHTO nanosheets	300 W Xe	4	93	9
CdG-2	350 W Xe	2.59		10
Bi ₂ MoO ₆	300 W Xe	3.62		11
Au-BiOCl-OV	300 W Xe	4.85		12
BON-Br	150 W Xe	8.12		13
5 wt.% GO/TiO ₂	500 W Xe	1.86		14
CdS/CdWO ₄	300 W Xe	1.4		15
ultrathin ZnAl	300 W Xe	7.6		16
ISS/CBB	300 W Xe	9.55	92.9	17
BOC-OV	amp 300 W Xe lamp	4.19	>90	18

Table S1. Bi_2MoO_6 -10% Cu photocatalyst and other reported photocatalysts towardsphotocatalytic CO evolution rate from CO_2 reduction.

Figure S6. Original gas chromatograms of the gas products for CO_2 reduction over $Bi_2MoO_6-10\%$ Cu under different irradiation times.

Figure S7. CO₂ photoreduction activity under various conditions.

Figure S8. (a) XRD patterns, (b) typical XPS survey spectra, and (c) high-resolution XPS spectra of Bi 4f for Bi_2MoO_6 -10% Cu before and after cycling reactions.

Figure S9. Transient photocurrent responses for ${\rm Bi}_2{\rm MoO}_6$ and ${\rm Bi}_2{\rm MoO}_6$ -10% Cu.

Sample	Element	Parameter	Value	Estimated Error
	Rs	R	33.8100	0.7333
	Rct	R	2.3730E+1	1.0577E8
Bi ₂ MoO ₆	CPE-T	Y0	1 4.4333E-5	1.9591
	CPE-P	Ν	0.9537	0.4115
	Rs	R	41.0	0.7305
Bi2MoO6-	Rct	R	1368	2.2531
10% Cu	CPE-T	Y0	6.7246E-5	2.9649
	CPE-P	Ν	0.8842	0.6538

Table S2 The fitted parameters of the equivalent circuit of Bi_2MoO_6 and Bi_2MoO_6 -10% Cu in the EIS spectra.

Figure S10. Charge density difference plot of Cu/Ov-Bi2MoO6. The yellow and sky-blue color loops represent charge accumulation and depletion regions. The isosurfacevalueissetto0.002e/Bohr³.

Figure S11. In situ FT-IR spectra of Bi₂MoO₆-10% Cu in dark and under irradiation.

Figure S12. The zoomed view of the in situ FTIR spectra of Bi_2MoO_6 -10% Cu in the region of 3400-3700 cm⁻¹.

Table S3 Summary of simulation parameters obtained from DFT calculation. The DFT energies (E_{DFT}), zero-point energies (E_{ZPE}), entropies (TS), and free energy correction (G_{corr}) for the gas molecules. The values are measured in eV. The vibrational corrections for gas molecules are taken from ref.^{19,20}

Species	E _{DFT}	EZPE	TS	G _{corr}
H_2	-6.77	0.27	0.4	-6.9
CO_2	-22.9	0.31	0.4	-23.31
НСООН	-29.88	0.89	0.66	-29.99
СО	-14.78	0.14	0.98	-14.31
H_2O	-14.22	0.57	0.61	-14.32
CH_4	-24.04	1.2	0.6	-23.44

Table S4 Summary of simulation parameters obtained from DFT calculation. The DFT energies (E_{DFT}), zero-point energies (E_{ZPE}), heat capacity ($\int C_p dT$) entropies (TS), and free energy correction (G_{corr}) and free energy (ΔG) for intermediates involved in CO₂ photoreduction reaction on pristine Bi₂MoO₆. The values are measured in eV.

Number	Species	E_{DFT}	EZPE	∫C _p dT	TS	G _{corr}	$\Delta \mathbf{G}$	ΔG_n
0	*	-677.776	0.00	0.00	0.00	-677.776	0.00	0.00
1	*СООН	-703.973	0.604	0.111	0.236	-703.494	0.723	0.723
2	* <i>CO</i>	-692.927	0.135	0.024	0.035	-692.803	-0.18	0.543
3	*CH0	-696.353	0.448	0.064	0.127	-695.969	0.284	0.827
4	<i>CH</i> ₂ <i>O</i> *	-700.114	0.758	0.112	0.241	-699.485	-0.066	0.761
5	<i>CH</i> ₃ <i>O</i> *	-704.514	1.093	0.097	0.194	-703.518	-0.583	0.178
6	* <i>0</i> + <i>CH</i> ₄	-707.693	1.218	0.100	0.225	-706.599	0.369	0.547
7	*0H	-688.668	0.345	0.056	0.105	-688.372	-1.762	-1.215
8	*+ <i>H</i> ₂ <i>0</i>	-692.228	0.631	0.100	0.214	-691.712	0.120	-1.106

Table S5 Summary of simulation parameters obtained from DFT calculation. The DFT energies (E_{DFT}), zero-point energies (E_{ZPE}), heat capacity ($\int C_p dT$) entropies (TS), and free energy correction (G_{corr}) and free energy (ΔG) for intermediates involved in CO₂ photoreduction reaction on Cu/Ov-Bi₂MoO₆. The values are measured in eV.

Number	Species	E_{DFT}	EZPE	∫C _p dT	TS	G _{corr}	$\Delta \mathbf{G}$	ΔG_n
0	*	-675.093	0.00	0.00	0.00	-675.093	0.00	0.00
1	*СООН	-701.679	0.594	0.111	0.235	-701.208	0.325	0.325
2	* <i>CO</i>	-690.915	0.202	0.071	0.146	-690.788	-0.450	-0.125
3	*CH0	-693.577	0.140	0.067	0.431	-693.801	0.437	0.311
4	<i>CH</i> ₂ <i>O</i> *	-697.565	0.760	0.075	0.137	-696.867	0.384	0.695
5	<i>CH</i> ₃ <i>O</i> *	-701.623	1.061	0.098	0.194	-700.657	-0.340	-0.355
6	* <i>0</i> + <i>CH</i> ₄	-706.037	1.267	0.099	0.229	-704.900	-0.793	-0.438
7	*0H	-685.269	0.328	0.044	0.082	-684.979	-0.069	-0.506
8	*+ <i>H</i> ₂ <i>0</i>	-689.205	0.591	0.071	0.150	-688.693	-0.264	-0.770

Figure S13. The optimized structure along charge density difference plot of CO_2 adsorption (a, c) pure Bi₂MoO₆, (b, d) Cu/Ov-Bi₂MoO₆ respectively. The yellow and sky green color loops represent charge accumulation and depletion region. The isosurface value is set to 0.004 e/Bohr³.

References

- 1. G. Kresse and J. Furthmüller, Efficient iterative schemes for total-energy calculations using a plane-wave basis set, *Phys. Rev. B*, 1996, **54**, 11169-11186.
- J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. L. Zhou and K. Burke, Restoring the density-gradient expansion for exchange in solids and surfaces, *Phys. Rev. Lett.*, 2008, **100**, 136406.
- G. Henkelman, A. Arnaldsson and H. Jónsson, A fast and robust algorithm for Bader decomposition of charge density, *Comput. Mater. Sci.*, 2006, 36, 354-360.
- J. K. Norskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, Bligaard and T. H. Jónsson, Origin of the overpotential for oxygen reduction at a fuel-cell cathode, *J. Phys. Chem. B*, 2004, **108**, 17886-17892.
- J. Xu, X. W. Liu, Z. J. Zhou and M. H. Xu, Photocatalytic CO₂ reduction catalyzed by metalloporphyrin: Understanding of cobalt and nickel sites in activity and adsorption, *Appl. Surf. Sci.*, 2020, **513**, 145801.
- X. L. Jin, C. D. Lv, X. Zhou, L. Q. Ye, H. Q. Xie, Y. Liu, H. Su, B. Zhang and G. Chen, Oxygen vacancy engineering of Bi₂₄O₃₁Cl₁₀ for boosted photocatalytic CO₂ conversion, *ChemSusChem*, 2019, **12**, 2740-2747.
- Y. Z. Liu, B. Wang, D. M. Li, J. N. Shen, Z. Z. Zhang and X. X. Wang, Fabrication of 2H/3C-SiC heterophase junction nanocages for enhancing photocatalytic CO₂ reduction, *J. Colloid Interf. Sci.*, 2022, 622, 31-39.
- F. Lv, W. Y. Zhang, L. He, X. Bai, Y. Song and Y. Zhao, 3D porous flower-like CoAl₂O₄ to boost the photocatalytic CO₂ reduction reaction, *J. Mater. Chem. A*,

2023, 11, 2826-2835.

- J. Y. Xue, Y. Yu, C. Yang, K. F. Zhang, X. W. Zhan, J. M. Song, J. J. Gui, Y. K. Li, X. Jin, S. Gao and Y. Xie, Developing atomically thin Li_{1.81}H_{0.19}Ti₂O₅·2H₂O nanosheets for selective photocatalytic CO₂ reduction to CO, *Langmuir*, 2022, 38, 523-530.
- C. B. Bie, B. C. Zhu, F. Y. Xu, L. Y. Zhang and J. G. Yu, In situ grown monolayer n-doped graphene on CdS hollow spheres with seamless contact for photocatalytic CO₂ reduction, *Adv. Mater.*, 2019, **31**, 1902868.
- J. Di, X. X. Zhao, C. Lian, M. X. Ji, J. X. Xia, J. Xiong, W. Zhou, X. Z. Cao, Y. B. She, H. L. Liu, K. Loh, S. J. Pennycook, H. M. Li and Z. Liu, Atomicallythin Bi₂MoO₆ nanosheets with vacancy pairs for improved photocatalytic CO₂ reduction, *Nano Energy*, 2019, **61**, 54-59.
- Y. L. Li, Y. Liu, H. Y. Mu, R. H. Liu, Y. J. Hao, X. J. Wang, D. Hildebrandt, X. Y. Liu and F. T. Li, The simultaneous adsorption, activation and in situ reduction of carbon dioxide over Au-loading BiOCl with rich oxygen vacancies, *Nanoscale*, 2021, 13, 2585-2592.
- L. Hao, L. Kang, H. W. Huang, L. Q. Ye, K. L. Han, S. Q. Yang, H. J. Yu, M. Batmunkh, Y. H. Zhang and T. Y. Ma, Surface-halogenation-induced atomic-site activation and local charge separation for superb CO₂ photoreduction, *Adv. Mater.*, 2019, **31**, 1900546.
- 14. L. L. Tan, W. J. Ong, S. P. Chai and A. R. Mohamed, Photocatalytic reduction of CO₂ with H₂O over graphene oxide supported oxygen-rich TiO₂ hybrid

photocatalyst under visible light irradiation: Process and kinetic studies, *Chem. Eng. J.*, 2017, **308**, 248-255.

- Y. Y. Li, Z. H. Wei, J. B. Fan, Z. J. Li and H. C. Yao, Photocatalytic CO₂ reduction activity of Z-scheme CdS/CdWO₄ catalysts constructed by surface charge directed selective deposition of CdS, *Appl. Surf. Sci.*, 2019, 483, 442-452.
- 16. Y. F. Zhao, G. B. Chen, T. Bian, C. Zhou, G. I. N. Waterhouse, L. Z. Wu, C. H. Tung, L. J. Smith, D. O'Hare and T. R. Zhang, Defect- rich ultrathin ZnAllayered double hydroxide nanosheets for efficient photoreduction of CO₂ to CO with water, *Adv. Mater.*, 2015, 27, 7824-7831.
- 17. Z. Z. Zhang, M. Y. Wang, Z. X. Chi, W. J. Li, H. Yu, N. Yang and H. B. Yu, Internal electric field engineering step-scheme-based heterojunction using leadfree Cs3Bi2Br9 perovskite-modified In4SnS8 for selective photocatalytic CO₂ reduction to CO, *Appl. Catal. B-Environ.*, 2022, **313**, 121426.
- Z. Ma, P. Li, L. Ye, Y. Zhou, F. Su, C. Ding, H. Xie, Y. Bai and P. K. Wong, Oxygen vacancies induced exciton dissociation of flexible BiOCl nanosheets for effective photocatalytic CO₂ conversion, *J. Mater. Chem. A*, 2017, **5**, 24995-25004.
- A. A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl and J. K. Norskov, How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels, *Energy Environ. Sci.*, 2010, **3**, 1311-1315.
- 20. W. C. Ma, S. J. Xie, X. G. Zhang, F. F. Sun, J. C. Kang, Z. Jiang, Q. H. Zhang,

D. Y. Wu and Y. Wang, Promoting electrocatalytic CO₂ reduction to formate via sulfur-boosting water activation on indium surfaces, *Nat. Commun.*, 2019, 10, 892.