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ADDITIONAL MATERIALS AND METHODS

S1. SYNTHESIS OF LIGANDS

All reagents and solvents were purchased from commercial suppliers and used without further
purification. Compounds 4-iodopyridine! and 1-(4-bromophenyl)adamantane?  were
synthesized as previously reported. Column chromatography was carried out using silica gel
(60 A, 4063 um, Fluorochem, UK) as the stationary phase. 'H and 3C NMR spectra were
recorded using Bruker Avance NEO 500 MHz NMR spectrometer. NMR chemical shifts (3)
are reported in parts per million (ppm) using residual solvent signal as a reference for the
measured spectra in CDCls (*H = 7.26, 13C = 77.16). High-resolution mass spectra (HRMS)
were obtained on Agilent 6224 Accurate-Mass Time-of-Flight (TOF) mass spectrometer.

Samples were ionised atmospheric pressure chemical ionisation (APCI).

Synthesis and characterization of 4-(1-adamantyl)pyridine (L1):

6 7 14 15

8 16, 16'
L1

Adapted from a literature procedure.® To a solution of 4-iodopyridine (1 g, 4.88 mmol, 1.0 eq.),
copper iodide (46 mg, 0.24 mmol, 5 mol-%) and lithium chloride (206 mg, 4.86 mmol, 1.0 eq.)
in dry DMF (12 ml) under argon, 1-adamantylzinc bromide solution (0.5 M in THF; 12.7 ml,
1.3 eq.) was added. The yellow solution was stirred at 50 °C for 24 h after which it was cooled
to room temperature and diluted with EtOAc and H20. Organic layer was washed with sat.
NasEDTA (ag.) (6x) and sat. Na2COs (ag.) (3x) to remove the metal salts. The organic layer
was dried over anhydrous Na>SOs and evaporated under reduced pressure. The crude was
purified by column chromatography (SiO2, CH2CI,/CH3OH 39:1). Further purification was
done by dissolving the solid in EtOAc and 1M HCI. The mixture was stirred vigorously for 10

min after which the layers were separated. Sat. Na2COs (ag.) solution was added to HCI layer
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until pH ~11 was reached. EtOAc was added to dissolve formed white precipitate. After mixing,
EtOAc layer was separated, dried over anhydrous Na>SOs4 and evaporated under reduced
pressure to give L1 (550 mg, 2.6 mmol, 53 %) as an off-white solid. 'H NMR (500 MHz, 298
K, CDCl3) 5 8.50 (d, J = 6.2 Hz, 2H, H6), 7.23 (d, J = 6.2 Hz, 2H, H7), 2.10 (br, 3H, H15), 1.87
(br, 6H, H14), 1.85 — 1.61 (m, 6H, H16 & H16’). 13C NMR (126 MHz, 298 K, CDCl3) & 159.9
(C8), 149.8 (C6), 120.4 (C7), 42.5 (C14), 36.7 (C16 & C16), 36.3 (C13), 28.7 (C15). HRMS

(APCI+) m/z: [M+H]" Calcd for C1sH19N: 214.1590; Found 214.1588.

Synthesis and characterization of 4-(4’-(1-adamantyl)phenyl)pyridine (L2):

8 9 12 16, 16'

1-(4-Bromophenyl)adamantane (500 mg, 1.72 mmol, 1 eq.), pyridine-4-boronic acid hydrate
(253 mg, 2.06 mmol, 1.2 eq.), tetrakis(triphenylphosphine)palladium(0) (60 mg, 0.052 mmol,
3 mol-%), and K>COs (1.186 g, 8.58 mmol, 5 eq.) were evacuated and backfilled with argon
for three cycles. Toluene (10 ml), ethanol (4 ml) and Milli-Q H20 (3 ml) were sonicated and
added to the solids. The yellow solution was heated at 100 °C for 48 h. The mixture was allowed
to cool to room temperature and solvents were concentrated under reduced pressure. The crude
was dissolved in CH2Cl> and extracted with sat. Na4sEDTA (ag.) (3x) and sat. NaCl (aq.)
solution. Organic layer was dried over anhydrous Na>SO4 and concentrated under reduced
pressure. The crude was purified by column chromatography (Al.O3, PE:EtOAc 9:1—3:7).
Further purification was done by recrystallization from EtOAc to yield L2 (260 mg, 0.90 mmol,
52 %) as white solid. *H NMR (500 MHz, 298 K, CDCls) ¢ 8.64 (d, J = 5.0 Hz, 2H, H6), 7.66
—7.57 (m, 2H, H10), 7.52 — 7.46 (m, 4H, H7, H11), 2.13 (s, 3H, H15), 1.96 (s, 6H, H14), 1.80
(m, 6H, H16 & H16’). 3C NMR (126 MHz, 298 K, CDCls) § 152.70 (C12), 150.32 (C6),

148.27 (C8), 135.29 (C9), 126.81 (C10), 125.81 (C11), 121.55 (C7), 43.22 (C14), 36.85 (C16

S3



& C16°), 36.38 (C13), 29.01 (C15). HRMS (APCI+) m/z; [M+H]* Calcd for CaiHasN:

290.1930; Found 290.1901.

Synthesis and characterization of 4-pentafluorophenylpyridine (L4):

Pyridine-4-boronic acid hydrate (500 mg, 4.07 mmol 1.1 eq.),
tetrakis(triphenylphosphine)palladium(0) (128 mg, 0.11 mmol, 3 mol-%) and Na,COs (2.087
g, 19.69 mmol, 5 eq.) were evacuated and backfilled with argon for two cycles. Degassed
dioxane (14 ml), Milli-Q H20 (3 ml) and iodopentafluorobenzene (493 pl, 3.69 mmol, 1.0 eq.)
were added to the reaction mixture which was heated at 95 °C for 48 h. The reaction mixture
was cooled down to room temperature and the solvents were removed in vacuo. To the
remaining residue was added sat. Na4sEDTA (ag.) (20 mL) and DCM (40 ml). The layers were
separated, and the organic layer was extracted with sat. NasEDTA (ag.) (3x30 ml). The
combined organic layer was extracted with sat. NaCl (ag.) (20 ml), dried over anhydrous
Na>SO4, and concentrated in vacuo. The crude was purified by column chromatography (silica,
DCM—Et;0) to yield L4 (178 mg, 0.73 mmol, 20 %) as light orange solid. *H NMR (700 MHz,
298 K, CDCls) 6 8.77 (d, J = 5.0 Hz, 2H, H6), 7.37 (d, 2H, H7). **C NMR (176 MHz, 298 K,
CDCl3) 6 150.5 (C6), 144.6 (m, J = 251 Hz, CF), 141.4 (m, J = 257 Hz, CF), 138.1 (m, J = 253
Hz, CF), 134.8 (C8), 124.8 (C7), 113.4 (m, C9). 1°F NMR (470 MHz, 298K, CDCls) 6 -142.5
(d, 2F, F10), -160.9 (m, 2F, F11), -152.6 (t, 1F, F12). HRMS (APCI+) m/z: [M+H]* Calcd for

Cu1H4FsN: 245.0264; Found 246.0337.

S4



S2. MASS SPECTROMETRY

Mass spectra of complexes 1-4 in methanol (Figure S1a-S1b) and their HG assemblies (Figure
Slc-Sle) were studied in aqueous medium in positive ion mode using the electrospray
ionization method (ESI-MS). Mass spectra of HG assemblies show three relevant signals, which
correspond to free 1-4, HG assembly 1@CB7-4@CB7, and HG aqua-complex 1_ag@CB7-

4 aq@CB?7.
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1 — positive mode, MeOH
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2 — positive mode, MeOH
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Figure Sla. Results of ESI-MS analyses of compounds 1 and 2.
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3 — positive mode, MeOH
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Figure S1b. Results of ESI-MS analyses of compounds 3 and 4.
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1@CB7 — positive mode, H.O
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Figure Slc. Results of ESI-MS analyses of the of 1, L@CB7 and 1_ag@CB?7.
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2@CB7 — positive mode, H.0O
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Figure S1d. Results of ESI-MS analyses of the of 2, 201, 2@CB7 and 2_aq@CB?7.
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3@CB7 — positive mode, H.0O
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Figure Sle. Results of ESI-MS analyses of the of 3, 3@CB7 and 3_ag@CB?7.
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4@CBT7 — positive mode, H20
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Figure S1f. Results of ESI-MS analyses of the of 4, 4@CB7 and 4_ag@CB?7.
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S3. NMR SPECTROSCOPY

S3.1. NMR Spectroscopy of Lignads
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Figure S2a. *H NMR (CDCls, 500 MHz, 298 K) spectrum of L1.
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Figure S2b. *C NMR (CDCls, 126 MHz, 298 K) spectrum of L1.
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Figure S2g. *C NMR (CDCls, 176 MHz, 298 K) spectrum of L4 (* = grease).

S3.2. NMR Spectroscopy of Platinum(l1) Compounds 1-4 and Their HG Assemblies with

CB7

Table S1. *H NMR chemical shifts (ppm) for compound 1, 1_aq, 1@CB7, and 1_aq@CB7

measured in D,0O at 298 K. Data referenced using DO lock frequency.

Compound H6 H7 H14 H15 H16a e

1 847(d)  7.45(d) 2.01(s) 1.82(s) 1.73(d) 1.66(d)

1 aq 850(d)  7.52(d) 2.02(s) 1.83(s) 1.73(d) 1.66(d)

1@CB7 844(d)  7.57(d) 1.25(s) 1.09(s) 1.18(d) 0.93(d)

1 ag@CB7 8.48(d)  7.62(d) 1.26(s) 1.09(s) 1.19(d) 0.93(d)
A(L@CBT7 - 1) 0.03 +0.12 0.76 0.73 0.55 0.73
A(l_aq@CB7-1 aq)  -0.02 +0.10 0.76 0.74 -0.54 0.73
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Table S2. 'H NMR chemical shifts (ppm) for compound 2, 2_ag, 2@CB7, and 2_aq@CB7

measured in D20 at 298 K. Data referenced using D20 lock frequency.

Compound H6 H7 H14 H15 H16a H186b
2 86l(d)  7.72(d) 2.01(s) 1.87(s) 1.73(d) 1.69(d)
2 aq 8.64(d)  7.77(d) 2.02(s) 1.88(s) 1.74(d) 1.69(d)
2@CB7 8.60(br)  7.83(d) 1.24(s) 1.17(s) 1.15(d) 0.97(d)
2 ag@CB7 864(d)  7.91(d) 1.26(s) 1.18(s) 1.16(d) 0.98(d)
AQ2@CBT - 2) 001 +0.11 0.77 0.70 058 072
A(2_aq@CB7-2.ag)  -0.00 +0.14 0.76 0.70 058 071

Table S3. 'H NMR chemical shifts (ppm) for compound 3, 3_ag, 3@CB7, and 3_aq@CB7

measured in D20 at 298 K. Data referenced using D20 lock frequency.

Compound H6 H7 H10 H11 H12

3 8.64(d) 7.75(d) 7.77(m) 7.52-7.53(m)  7.52-7.53(m)

3 aq 8.67(d) 7.81(d) 7.78(m) 7.53-7.54(m)  7.53-7.54(m)
3@CB7 8.54(d) 7.31(d) 6.75(d) 6.67(t) 6.93(t)
3 ag@CB7 8.55(d) 7.04(d) 6.67(d) 6.94(t) 7.09(t)
A(3@CBT - 3) -0.10 -0.44 -1.02 -0.86 -0.59
A(3_ag@CB7-3 aq)  -0.12 -0.71 111 -0.58 -0.43
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Figure S3. 'H NMR spectra recorded for different molar ratios of compound 3/3_aq and CB7 (measured
in D20 at 293K). The fully encapsulated ligand 3 shows sharp signals at 1:2 ratio, whereas the excess

of the ligand leads to a line broadening because of faster exchange process between free and bound
forms.
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Table S4. 'H and °F NMR chemical shifts (ppm) for compound 4, 4 _aq, 4@CB7, and
4 _aq@CB7 measured in D20 at 298 K. Data referenced using D20 lock frequency.

114/19
hllmINER H6 H7 F10 F11 F12
[ppm]
4 8.78(d) 7.63(d) -143.36(d) -161.90(m) -152.03(t)
4 aq 8.81(d) 7.70(d) -143.36(d) -161.80(m) -151.78(t)
4@CB7 8.65(d) 6.79(br) -145.61(br) -155.66(br) -152.19(t)
4_aq@CB7 8.49(d) 6.48(d) -142.88(d) -154.84(m) -152.38(t)
A(A4@CB7-4) -0.13 -0.84 -2.25 +6.24 -0.16
A(4_aq@CB7-4_aq) -0.32 -1.22 +0.47 +6.96 -0.60
2 b s & SN
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Figure S4. *H NMR spectrum of compound 1 in DMSO-ds at 298K.
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Figure S6. *H NMR spectrum of compound 3 in DMSO-ds at 298K.
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Figure S8. **F NMR spectrum of compound 4 in DMF-d; at 298K.
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Figure S9. 1Pt NMR spectrum of compound 1 in DO at 298K.
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Figure S10. ***Pt NMR spectrum of compound 3 in D,0 at 298K.
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Figure S11. ***Pt NMR spectrum of compound 4 in D,O at 298K.

195pt NMR resonances of compounds 1, 3, and 4 are significantly broadened because of the
large chemical shift anisotropy (CSA). Therefore, it takes 24-48 hrs (ImM solutions) to
accumulate %Pt NMR signals with sufficient signal-to-noise ratio; for less populated forms
(1_ag@CB7, 4@CB7) and low-concentration sample (poor solubility of 2@CB7 in water) no
19pt NMR resonances were detected. Because of the long accumulation period and lower
sensitivity, 1Pt NMR provide information about the dominant (thermodynamically stable)
forms. For the HG systems of 1 and 4 where only one form dominates after 24 hours, we
obtained a single %Pt NMR resonance (Figure S12) corresponding to 1@CB7 (approx. -2290
ppm) and 4_aq@CB7 (approx. -2070 ppm), respectively. However, for two approximately
equally populated HG assemblies of compound 3, two **Pt NMR signals at -2290 ppm
(3@CB7) and -2080 ppm (3_aq@CB7) were obtained. This observation is in excellent

agreement with the *H NMR experiments discussed in detail in the main text.
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Figure S12. Pt-NMR spectrum of a) 1@CB7, b) mixture of 3@CB7 and 3_ag@CB7, and c)
4_ag@CBY7.

Stability of Compound 1 in D20:

Commercially available CB7 contains some amount of HCI and pH ~ 3 of its solution indicates
that it contains approximately 1 mM chloride (considering HCI the only source of H*). This
concentration of chlorides can influence the Pt-Cl < Pt-OH> equiulibria. Therefore we checked
the stability of the free compound 1 under similar conditions. Solid compound 1 (0.54 mg,
Immol) was dissolved in 1 mL solution of D20 adjusted to pH ~ 2.7 by using DCI solution
(Figure S13). We observed very small amount (approx. 10%) of aquated form appearing over
24 hours. Then we increased the pH to 7 using NaHCO3 and monitored the aquation process
(Figure S14). This shows little to no change in degree of conversion to the aquated form

meaning that pH has marginal effect on the aquation of the Pt-Cl bond.
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Figure S13. *H NMR spectra of compound 1 dissolved in DO and acidity adjusted to pD~3 by using
DCI.
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Figure S14. *H NMR spectra of compound 1 dissolved in D,O and acidity adjusted to pD~7 (first
pD~3 by using DCI followed by NaHCO3 to pD~7).
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Figure S15. *H NMR spectra of 1@CB?7 (guest, top; host, bottom) measured at several different times
of aquation in water (pD~4) at 298 K.
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Figure S17a. Record of *H NMR titration of compound 1_aq into 8-CD (c = 0.1 mM) measured in
D,0 at 298K. Resulting estimate of the binding constats is logKa ~ 5.7.
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Figure S17b. 'H NMR of compound 1_ag (0.36 mM) mixed with CB7 (0.34 mM) in the presence of
putrescine dihydrochloride as a competitor (1.41 mM, logKa~5.5) measured in DO at 298 K. Plot in the
bottom shows simulated dependence of the concentration of 1_aq bound in CB7 as a function of total

1 ag concentration and various binding constants.
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Figure S18. 'H NMR spectra of 2@CB?7 (guest, top; host, bottom) measured at several different times
of aquation in water at 298 K.
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Figure S23a. Record of *H NMR titration of compound 3_aq into 4-CD (¢ = 0.1 mM) measured in

D.0 at 298 K.
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Figure S23b. 'H NMR of compound 4_aq (0.40 mM) mixed with CB7 (0.30 mM) in the presence of
putrescine dihydrochloride as a competitor (1.12 mM, logKa~5.5) measured in DO at 298 K. Plot in the
bottom shows simulated dependence of the concentration of 4_aq bound in CB7 as a function of total

4_aq concentration and various binding constants.
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Figure S27. *H NMR spectra of 4_aq (1 mM solution) with addition of CB7 (0%, 5%, 20%, and

120%) measured at several different time of sample aquation in D,O at 298 K.
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S4. SOLUBILITY MEASUREMENT USING ICP-MS
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Figure S28. Solubility (concentration in mM) of cisplatin and compounds 1-4 and their HG complexes
with CB7 in water at 295 K as determined by ICP-MS.

S5. MOLECULAR MODELLING

S5.1. MM parametrization of host

The initial structures for the host molecules were generated in Avogadro and minimized with
the UFF force field.* Structures were then pre-optimized in Orca using the B3LYP® functional
and def2-TZVPP basis set in implicit water solvent model. Parametrization of the metal center
was performed by the MCPB.py module in Amber 22 package. We employed a bonded model
approach, bond and angle force constants were calculated with the Seminario method, force
constants for the dihedral angles were initially neglected (as per default by MCPB.py).
Geometry optimization, frequency and esp calculations were all performed in Gaussian 16.C1°
package with same the setup that was used in the Orca pre-optimization. Ligands were

parametrized using the gaff2 force field.
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S5.2. MM parametrization of guest

Initial structure was obtained from the work of Kulhanek et al.” It was then re-optimized in Orca
and described by the gaff2 force field. Atomic charges were obtained by the standard RESP®
procedure. Esp calculation was performed in Gaussian 16.C1. All DFT calculations were

performed with the same level of theory as the host structures.

S5.3. Unbiased MD simulation - calculation setup

After parametrization, complexes were manually assembled in PyMol® and then processed with
the tleap program from the Amber 22 package. The complexes were solvated with OPC° type
water with 12 A thick shell in the truncated octahedral box. The net charge was neutralized with
ClI" anions.

Periodic boundary conditions were used. Particle-mesh Ewald method (PMEM)*! was used
to handle the long-range interactions. The cutoff used both for PMEM and Lennard-Jones
interactions was set to 8 A. Time step used for integration was 2 fs, SHAKE? algorithm was
used for constraining the bonds that involve hydrogen atoms.

Before the performance of the MD run, the whole system was gradually equilibrated in ten
steps. First, only the solvent atoms were optimized, while the complex was restrained. The
system was then heated to 300 K for the duration of 100 ps at the constant volume using the
Langevin thermostat with the collision frequency of 5 ps™, while the complex was restrained.
System was then gradually equilibrated at constant pressure of 1 bar (Monte Carlo barostat)
with the same thermostat; collision frequency was adjusted to 2 ps™?. Restrain on the system
was getting smaller every step. Final equilibration was run for 300 ps with the same setup
described earlier with no restraints imposed on the system.

MD simulation was then performed on the equilibrated system. Simulation was held at the
constant temperature 300 K with Langevin thermostat, employing the ’middle’ thermostat

scheme based on the leapfrog algorithm. Reference pressure was set to 1 bar, pressure was
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regulated by isotropic position scaling with Monte Carlo barostat. Production dynamics were
calculated by a GPU™ accelerated version of the pmemd package in Amber. Total simulated

time was 2 us.

S5.4. Unbiased MD simulation - analysis
All of the trajectory analyses were performed with the help of the cpptraj program from the
Amber package. To analyze the stability of the complexes, oriented distance was calculated for

each snapshot.

S5.5. Adaptive Biasing Force simulations - calculation setup

The Adaptive Biasing Force*®® (ABF) method was employed to calculate the free energy
profiles of the complexes. All ABF calculations were done using the PMFLib® package
connected with the pmemd program from the Amber package. To improve the sampling along
the chosen collective variables, Multiple Walker Approach (MWA) was employed, which
utilizes a server/client architecture with fully asynchronous communication pattern. More
detailed description of the implementation of the method can be found at the work of Kulhanek
etal. '’

MD setup for the ABF simulation was the same as described earlier in the MD section. For each
ABF simulation, ten clients were employed. Exchange of the mean force between the clients
and server was performed every 40 ps. Each client started from the different configuration of
the system. These were taken from the unbiased MD run, separated by 10 ns each. Integration

of the mean forces was performed using the RFD algorithm.

S5.6. Collective Variables

To explore the dissociation of the complexes, oriented distance (ODIS, D) was chosen as a
sampling collective variable (CV). ODIS is defined as a distance between the plane and point,
where the point was defined as a center of mass of ring C and N atoms of phenylpyridine moiety
(group A) and plane was defined by the middle plane carbon atoms of the cucurbituril molecule
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(group B). ODIS was sampled in interval that ranges from -2 to 15 A with the bin size of 0.1 A.
Outside this interval, harmonic potential was applied with force constant 4 kcal mol™ A 2,
To further improve the sampling along ODIS, two helper CVs were employed. ORAD,
defined as the radial distance of the point (defined by group A) from z-axis of reoriented
coordinate system along principal moments of the tensor inertia | (defined by group B), was
employed to prevent the guest escaping the imaginative cylinder defined by the host.
When the value of ORAD exceeded 2.5 A force constant of magnitude 4 kcal mol * A ~2 was
applied. Finally, PVANG, the angle between the normal vector of the plane (defined by group
B) and the vector pointing from the point B (defined by the C12 phenylpyridine atom) to the
point C (defined by the Pt atom), was employed to prevent the guest from rotating out of axial
orientation. It was constrained to the interval (-5; 5)°. Outside of it, force constant of magnitude

4 kcal mol™* deg?) was applied.

S5.7. Effect of the planarity

Since MCPB.py neglects the dihedral torsions, we wanted to explore the effects of it on the
overall ODIS of the complex 3_ag. For this, we chose the improper torsion defined by the atom
sequence C6-Pt-N5-C7, thus impacting the deviation of the Pt from the plane of the aromatic
ring. We prepared seven different systems in the tleap, each differing in the value of the force
constant of the improper torsion. For each system, production run was performed with the same

setup as described before and subsequently the ODIS and NICS were calculated.
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Figure S29. Distribution of oriented distance (ODIS) of compound 4 (left) and 4_aq (right) with respect
to middle plane of CB7. Note additional position around -0.75A representing more compact
encapsulation of ligand in case of aquated form 4_aq.
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Figure S30. Effect of scaled force constant ke intended to keep planarity of the Pt center relative to
aromatic ring in the MD simulation of 3_aq@CB7 (for details, see section Methods). The ODIS
histograms (shown for ke =0, 5, 10, 20 kcal mol* @2) are evaluated by means of three gaussian curves

(91, g2, g3) fitted the distribution of oriented distance as obtained from 2 ps trajectories.
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Figure S31. Free energy profile of dissociation of 3_ ag@CB7 and 4_aq@CB?7 calculated using ABF
approach (for computational setup, see section Methods). There are two key differences between binding
processes of 3_aq vs 4_aq: Position of global minima is shifted ~2.5 A towards bound form for
4 aq@CB7. We also detected two times higher barrier (8 vs 4 kcal mol?) of encapsulation for

4_aq@CBY7. Free energy profiles also indicate narrower distribution of bound state of 4_aq.
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Figure S32. Free energy profile of dissociation of 4@CB7 and 4_aq@CB?7. The effect of aquation and
doubled charge of guest results in a shift of global minimum and its stabilization by 4 kcal mol. On the

contrary the energy barrier of encapsulation remains unaffected.
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Figure S33. Dependence of the calculated Ad values on the Oriented Distance of 3@CB7. Each curve
represents one NMR active atom. Each horizontal line represents measured experimental value for the
corresponding atom. The positive contributions to the curves arise from the region of the carbonyl rim,
negative contributions represent a situation when the atom is inside the cavity. Bolztmann weighted
averages of these curves are represented in the main text along side experimental values in Figure 6.
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Figure S34. Dependence of the calculated A¢ values on the Oriented Distance of 4@CB7. Separate

scaling of y-axis is introduced for the hydrogen and fluorine atoms.
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Figure S36. Dependence of the calculated Ad values on the Oriented Distance of 4_aq@CB?7. Separate

scaling of y-axis is introduced for the hydrogen and fluorine atoms.
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Table S5. Theoretical Ad values and the experimental NMR shifts for 3_aq@CB?7.

Ad [ppm]
Atom
NICS-MD? NICS-QMP Rigid Scan® Experiment

H6 -0.10 -0.29 0.04 -0.12

H7 -0.78 -0.78 -0.49 -0.71
H10 -0.77 -0.80 -0.82 -1.11
Hil -0.75 -0.58 -0.01 -0.58
H12 -0.40 -0.27 -0.33 -0.43

aNICS-MD refers to the average of the distributions that resulted from the projecting of the
calculated NICS grid onto the geometries from the MD simulation. °NICS-QM test referes to
the values calculated by projecting the NICS grid onto the structures that were used for the
explicit QM calculation (Rigid Scan). °Rigid Scan was already showed in the main text. While
the average values from the original MD NICS calculation are in better numerical agreement
with the experiment, they fail to reproduce the clear trends in Ad values which are observed in
the experiment. This is generally case for all studied systems. However, altough the values from
the rigid scan replicate the experimental trends to some extend, there are bigger numerical
discrepancies, the most obvious example being atom H11. The sources of the discrepancies can
be numerous, including the used method (functional, basis set, etc.), model (e.g. missing
solvation layer around carbonyl portal, different pH used in the experiment) and the energy
profile that was used to calculate the populations of the which were then used to weight the final
Ao values. Finally, the numbers from the test NICS calculation show that even when various
structural motifs such as tilting of the host are omitted from the model, it does not really matter.
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