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Figure S1. SEM images of (a) Ti3AlC2 MAX and (b) multi-layered Ti3C2Tx.

Figure S2. AFM image and the height profile of a Ti3C2Tx flake.

Figure S3. SEM and EDS images of the delaminated Ti3C2Tx.
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Figure S4. SEM and EDS images of the Ti3C2Tx-Co composite.

Figure S5. STEM image of the Ti3C2Tx-Co composite and corresponding EDX 
elemental mapping images of C, Ti, Co and O.
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Figure S6. The SEM and EDS images of Ti3C2Tx-CoSx@S composite.

Figure S7. TGA profiles of the Ti3C2Tx-Co and Ti3C2Tx-CoSx@S composite in N2 

atmosphere.
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Figure S8. TGA profiles of the Ti3C2Tx and Ti3C2Tx@S composite in N2 atmosphere. 

According to our previous research,1 the Ti3C2Tx host material lost ~6.1% in the 

same temperature range, presumably due to the release of entrapped structural water. 

Therefore, the mass fraction of sulfur in the Ti3C2Tx@S composite is estimated to be 

~24.9 wt%.

Figure S9. (a) XPS full-spectra of Ti3C2Tx@S, Ti3C2Tx-Co and Ti3C2Tx-CoSx@S. (b) 

High-resolution XPS spectra of C 1s in Ti3C2Tx@S, Ti3C2Tx-Co and Ti3C2Tx-CoSx@S.
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Figure S10. Rate performances of Ti3C2Tx and Ti3C2Tx-Co cathodes from 0.5 to 2 A 

g−1.

Figure S11. (a) CV curves of Ti3C2Tx-CoSx@S cathode at sweep rates of 0.2~1 mV s−1. 

(b) Logarithmic curve of peak current versus sweep rate from (a). (c) CV curves of 

Ti3C2Tx@S cathode at sweep rates of 0.2~1 mV s−1.
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Figure S12. XPS full-spectra of Ti3C2Tx-CoSx@S cathodes at charged-1.8 V (a) and 

discharged-0.01 V (b) states. 

Figure S13. (a) The molecular structures of Al2S3. (b) Side (left) and top (right) views 

of the optimized structure of Ti3C2Tx monolayer.  

Figure S14. Side views of the stable adsorption and dissociation configurations of Al2S3 
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on Ti3C2Tx monolayer.

Figure S15. Top views of the stable adsorption and dissociation configurations of Al2S3 

on Ti3C2Tx monolayer.

Figure S16. Side views of the stable adsorption and dissociation configurations of Al2S3 

on Ti3C2Tx−CoS2 heterostructure surface.
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Figure S17. Top views of the stable adsorption and dissociation configurations of Al2S3 

on Ti3C2Tx−CoS2 heterostructure surface.
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Table S1. Comparison of the electrochemical performance of Ti3C2Tx-CoSx@S cathode 

in this work with other cathode materials reported for AIBs.

Cathodes
Initial 
capacity
(mAh g-1)

Final capacity
(mAh g-1)

Rate
(mA g-1)

CE 
(%)

Ref.

ZnSe/SnSe2 386 124 (150th) 100 98 2

Co3Se4/ZnSe@C 207 116 (500th) 200 95 3

CoSe2@TiO2/Ti3C2 100 102 (500th) 1600 80 4

Co9S8 NP@NPC@MXene 160 111 (1000th) 1000 98 5

MXene@BDTO 229 134 (500th) 500 98 6

TBAOH-FL-V2CTx 190 80 (100th) 200 95 7

Ti3C2@CTAB-Se 250 132 (400th) 200 95 8

Cu/MoO2@C@S 967 254 (100th) 500 98 9

358 215 (1000th) 1000
Ti3C2Tx-CoSx@S

308 190 (1500th) 1500
100 This work
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