Supplementary Information

Surface plasmon resonance and structure defects synergetic effect of ZnCdS₂/NiMoO₄@Cu Z-scheme heterojunction for enhanced photocatalytic CO₂ reduction to CH₄

Zhentao Hu,^a Lei Huang,^a Bojing Sun, *^{a,b} Dongfang Hou, *^{a,b} Xiu-qing Qiao,^{a,b} Meidi Wang,^{a,b} Huijuan Ma,^b and Dong-Sheng Li*^{a,b}

^a College of Materials and Chemical Engineering, Key Laboratory of Inorganic College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002, P.R. China
^b Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
E-mail: <u>sunbojing@ctgu.edu.cn</u> (Bojing Sun); <u>dfhouok@126.com</u> (Dongfang Hou); lidongsheng1@126.com (Dong-sheng Li).

Fig. S1. a-b The SEM images of ZCS and ZCS/NMO.

Fig. S2. a-b The SEM images of NiMoO₄ and Cu.

Fig. S3. The XRD patterns and magnified patterns of ZCS and ZCS/NMO-X

Fig. S4. The XRD patterns and magnified patterns of ZCS and ZCS/NMO@Cu-X

Fig. S5. High resolution XPS spectra of Cu 2p of ZCS/NMO@Cu

Fig. S6. Photothermal maps of ZCS, ZCS/NMO, and ZCS/NMO@Cu under near-infrared light irradiation at different times.

Fig. S7. a Pore size distribution of ZCS, ZCS/NMO and ZCS/NMO@Cu. **b** Nitrogen sorption isotherms of ZCS, ZCS/NMO and ZCS/NMO@Cu. **c** Pore size distribution of ZCS, ZCS/NMO-X and ZCS/NMO@Cu-X. **d** Nitrogen sorption isotherms of ZCS, ZCS/NMO-X and ZCS/NMO@Cu-X.

Fig. S8. CO₂ TPD profiles of ZCS/NMO and ZCS/NMO@Cu.

Fig. S9. a UV-vis absorption spectra of ZCS and ZCS/NMO-X. b UV-vis absorption spectra of ZCS/NMO@Cu-X

Fig S10. CO_2 reduction performance under near-infrared light irradiation.

Fig S11. Mass spectra of ${}^{13}CH_4$ generated from the isotopic ${}^{13}CO_2$ photoreduction.

Fig S12. Band gap spectra of $ZnCdS_2$ and $NiMoO_4$.

Fig S13. Fluorescence spectra of ZCS/NMO@Cu under visible irradiation.

Fig S14. Static experiment of ZCS and NMO.

Sample	Surface area	Mean pore diameter	Pore volume
	(m ² /g)	(nm)	(cm ³ /g)
ZCS	68.43	17.10	0.29
ZCS/NMO-1	68.6	18.82	0.32
ZCS/NMO-2	85.45	17.10	0.37
ZCS/NMO-3	95.05	15.71	0.37
ZCS/NMO-4	128.97	12.48	0.40
ZCS/NMO-5	97.7	25.15	0.61
ZCS/NMO@Cu-1	56.19	28.71	0.40
ZCS/NMO@Cu-2	49.11	34.56	0.42
ZCS/NMO@Cu-3	51.29	34.05	0.44
ZCS/NMO@Cu-4	38.46	32.79	0.32

 Table S1 Specific surface areas and pore volume of ZCS, ZCS/NMO-X and ZCS/NMO@Cu-X.

Catalyst	Light Source	CH ₄ yield	Selectivity	Ref
UiO-66/Co ₉ S ₈	300W Xe lamp,	$240.9 \text{ umol} \cdot \text{g}^{-1} \cdot \text{h}^{-1}$	~100%	1
	AM 1.5	240.9 µmor g m	10070	1
CuSnInS ₄	300W Xe lamp,	5.83 umol·g-1·h-1	67.3%	2
	>420 nm	5.65 µmor g n ,		L
Vs-CuIn ₅ S ₈	300W Xe lamp,		- 100%	3
	>420 nm	8.7 μ mol·g ⁻¹ ·h ⁻¹ ,	10070	5
Bi ₂ WO ₆ /ZnIn ₂ S ₄	300W Xe lamp,		94.5%	4
	>420 nm	5.12 μ mol·g ⁻¹ ·h ⁻¹ ,		4
C ₆₀ /CuS@ZnIn ₂ S ₄	300W Xe lamp	$13.6 \text{ umal} (a^{-1} \cdot b^{-1})$	~100%	5
	(>400 nm), H ₂ O	45.0 µmor g *n ,		-
ZnIn ₂ S ₄ /N-doped	300W Xe lamp,	1.01 umol· a^{-1} ·h ⁻¹	42.4%	6
graphene	>420 nm	1.01 µmor g m		
TiO₂-Cu₂ZnSnS₄	400 W Xe lamp,	1.01 umol·g ⁻¹ ·h ⁻¹	0.05%	7
110 ₂ -Cu ₂ Zii3ii3 ₄	≥420 nm	101 pinor 8 -		
Cu-ZnIn ₂ S ₄ /ZIF-67	300W Xe lamp,	22 27 umol·g-1·h-1	94.7%	8
	400-780 nm	22.27 µmor g m		Ū
NH ₂ -B-TiO ₂ -	300W Xe lamp,	$3.34 \text{ umol} \cdot \text{g}^{-1} \cdot \text{h}^{-1}$	16%	9
Cu _x S	>420 nm	5.54 µmor g n		,
BiOBr/CdIn ₂ S ₄	300W Xe lamp,	1.50 umplug-lub-l	16 7%	10
	>420 nm	1.50 µmor g m	10.770	10
SnS_2	150W halogen	0.13 µmol cm ⁻²	92%	11
	lamp, AM 1.5	5.15 pinor em	<u>, , , ,</u>	

Table S2 Comparison of photocatalytic CO_2 conversion to CH_4 performance of our photocatalysts with previously reported system of similar catalytic materials.

CuS@SnS ₂	300W Xe lamp, ≥400 nm	77.5 μmol·g ⁻¹ ·h ⁻¹	35.6%	12
MoO ₃ /MoS ₂ /CuS	300W Xe lamp, >420 nm	44.64 μmol·g ⁻¹ ·h ⁻¹	85.5%	13
MoS ₂ /SnS ₂ /r-GO	8W mercury lamp, H ₂ O	50.548 μmol·g ⁻¹ ·h ⁻¹	42.4%	14
In_2S_3/WS_2	400W Xe lamp, >420 nm	16 μmol·g ⁻¹ ·h ⁻¹	47%	15
Co-ZnS/MoS ₂ /graphene	350W Xe lamp, >420 nm	23.4 µmol∙g ⁻¹ ·h ⁻¹	~100%	16
MS/In ₂ S ₃	300W Xe lamp, >420 nm	68.41 μmol·g ⁻¹ ·h ⁻¹	80.3%	17
BiOI/MoS ₂ /CdS	300W Xe lamp, >420 nm	46.22 μmol·g ⁻¹ ·h ⁻¹	55.6%	18
ZnFe ₂ O ₄ /ZnO/CdS	300W Xe lamp, >420 nm	105.9∙µmol∙g ⁻¹ ∙h ⁻¹	28.5%	19
ZnCdS ₂ /NiMoO ₄ @Cu	300W Xe lamp, >420 nm	92.17 μmol·g ⁻¹ ·h ⁻¹	~100%	This work

Samples	τ ₁ (ns)	A ₁	$\tau_2(ns)$	A_2	τ(ns)
ZCS	1.87	49.48	6.33	50.52	4.12
ZCS/NMO	0.85	18.83	4.17	81.17	3.55
ZCS/NMO@Cu	1.91	43.91	6.20	56.09	4.32

Table S3 Time-resolved fluorescence spectra of ZCS, ZCS/NMO-X and ZCS/NMO@Cu-X

- S. Yang, W.J. Byun, F. Zhao, D. Chen, J. Mao, W. Zhang, J. Peng, C. Liu, Y. Pan, J. Hu, J. Zhu, X. Zheng, H. Fu, M. Yuan, H. Chen, R. Li, M. Zhou,
 W. Che, J.B. Baek, J.S. Lee, J. Xu, CO₂ Enrichment Boosts Highly Selective Infrared-Light-Driven CO₂ Conversion to CH₄ by UiO-66/Co₉S₈
 Photocatalyst, Adv. Mater. 2024, **36**, 2405825.
- Y. Chai, Y. Kong, M. Lin, W. Lin, J. Shen, J. Long, R. Yuan, W. Dai, X. Wang, Z. Zhang, Metal to non-metal sites of metallic sulfides switching products from CO to CH₄ for photocatalytic CO₂ reduction, *Nat. Commun.* 2023, **14**, 4034
- 3 X. Li, Y. Sun, J. Xu, Y. Shao, J. Wu, X. Xu, Y. Pan, H. Ju, J. Zhu, Y. Xie, Selective visible-light-driven photocatalytic CO₂ reduction to CH₄ mediated by atomically thin CuIn₅S₈ layers, *Nat. Energy*. 2019,**4**, 8, 690-699.
- 4 W. Yang, F. Zhou, N. Sun, J. Wu, Y. Qi, Y. Zhang, J. Song, Y. Sun, Q. Liu, X. Wang, J. Mi, M. Li, Constructing a 3D Bi₂WO₆/ZnIn₂S₄ direct Z-scheme heterostructure for improved photocatalytic CO₂ reduction performance, *J. Colloid Interface Sci.* 2024, **622**, 695-706.
- 5 Y. Ding, Y. Chen, Z. Guan, Y. Zhao, J. Lin, Y. Jiao, G. Tian, Hierarchical CuS@ZnIn₂S₄ Hollow Double-Shelled p–n Heterojunction Octahedra Decorated with Fullerene C₆₀ for Remarkable Selectivity and Activity of CO₂ Photoreduction into CH₄, ACS Appl. Mater. Interfaces 2022, **14**, 7888–7899
- 6 Y. Xia, B. Cheng, J. Fan, J. Yu, G. Liu, Near-infrared absorbing 2D/3D Znln₂S₄/N-doped graphene photocatalyst for highly efficient CO₂ capture and photocatalytic reduction, *Sci China Mater* 2020, **63**, 4, 552–565.
- 7 A. Raza, H. Shen, A.A. Haidry, M.K. Shahzad, L. Sun, Facile in-situ fabrication of TiO₂-Cu₂ZnSnS₄ hybrid nanocomposites and their photoreduction of CO₂ to CO/CH₄ generation, *Appl. Surf. Sci* 2020, **529**, 147005.
- 8 Z. Li, J. Xiong, Y. Huang, Y. Huang, G.I.N. Waterhouse, Z. Wang, Y. Mao, Z. Liang, X. Luo, Rational design of spatial charge separation and targeted active site Cu for highly selective photocatalytic CO₂ reduction to CH₄, *Chem. Eng. J.* 2024, **495**, 153310.
- 9 Z. Chen, X. Zhu, J. Xiong, Z. Wen, G. Cheng, A p–n Junction by Coupling Amine-Enriched Brookite–TiO₂ Nanorods with Cu_xS Nanoparticles for Improved Photocatalytic CO₂ Reduction, *Materials* 2023, **16**, 3, 960.
- 10 M. Shen, Y. Li, T. Luo, Z. Wang, M. Zhou, Y. Wang, S. Xu, Z. Li, In-situ construction of Bi-MOF-derived S-scheme BiOBr/CdIn₂S₄ heterojunction with rich oxygen vacancy for selective photocatalytic CO₂ reduction using water, *Sep. Purif* 2025, **355**, 129713.
- 11 T.T. Mamo, M. Qorbani, A.G. Hailemariam, R. Putikam, C.-M. Chu, T.-R. Ko, A. Sabbah, C.-Y. Huang, S. Kholimatussadiah, T. Billo, M.K. Hussien, S.-Y. Chang, M.-C. Lin, W.-Y. Woon, H.-L. Wu, K.-T. Wong, L.-C. Chen, K.-H. Chen, Enhanced CO₂ photoreduction to CH₄ via *COOH and *CHO intermediates stabilization by synergistic effect of implanted P and S vacancy in thin-film SnS₂, *Nano Energy* 2024, **128**, 109863.
- 12 Y. Yin, Y. Chen, X. Yu, Q. Zhang, Y. Ru, G. Tian, The cooperative p-n heterojunction and Schottky junction in Au-decorated hierarchical CuS@SnS2 hollow cubes for boosted charge transport and CO₂ photoreduction, *Chem. Eng. J.* 2024, **497**, 154713.
- 13 X. Zheng, Y. Li, H. Peng, J. Wen, Solar-light induced photoreduction of CO₂ using nonthermal plasma sulfurized MoO₃@MoS₂-CuS composites, *J. Environ. Chem. Eng.* 2021, **9**, 4, 105469.
- S. Yin, J. Li, L. Sun, X. Li, D. Shen, X. Song, P. Huo, H. Wang, Y. Yan, Construction of Heterogenous S–C–S MoS₂/SnS₂/r-GO Heterojunction for Efficient CO₂ Photoreduction, *Inorg. Chem.* 2019, **58**, 15590–15601.
- 15 A.G. Alhamzani, T.A. Yousef, M.M. Abou-Krisha, K.Y. Kumar, M.K. Prashanth, L. Parashuram, B. Hun Jeon, M.S. Raghu, Fabrication of layered In₂S₃/WS₂ heterostructure for enhanced and efficient photocatalytic CO₂ reduction and various paraben degradation in water, *Chemosphere* 2023, **322**, 138235.
- 16 G.-J. Lee, Y.-H. Hou, H.-T. Huang, W. Wang, C. Lyu, J.J. Wu, Microwave-assisted solvothermal synthesis of chalcogenide composite photocatalyst and its photocatalytic CO₂ reduction activity under simulated solar light, *Catalysts* 2020, **10**, 7, 789.
- 17 W. Cai, Z. Qian, C. Hu, W. Zheng, L. Luo, Y. Zhao, Systematic investigation of MoS₂-metal sulfides (Metal = In, Sn, Cu, Cd) heterostructure via metal-sulfur bond for photocatalytic CO₂ reduction, *Chem. Eng. J.* 2024, **479**, 147718.
- 18 Y. Li, H. Luo, Y. Bao, S. Guo, D. Lei, Y. Chen, Construction of Hierarchical BiOI/MoS₂/CdS Heterostructured Microspheres for Boosting Photocatalytic CO₂ Reduction Under Visible Light, *Sol. RRL* 2021, **5**, 2100051.
- B. Feng, Q. Wang, P. Liu, Z. Yuan, D. Pan, M. Ye, K. Shen, Z. Xin, Z-scheme heterojunction enhanced photocatalytic performance for CO₂ reduction to CH₄, *Nanoscale* 2024, d4nr02897j.