Supporting Information for

Room-temperature phosphorescence and dual-emission behavior of simple biphenyl derivatives unlocked by intermolecular interaction with cyclic silver pyrazolate

Arina P. Olbrykh,^{a,b} Alisia V. Tsorieva,^c Vladislav M. Korshunov,^c Alexander F. Smol'yakov,^a Ivan A. Godovikov,^a Alexander A. Korlykov,^a Ilya V. Taydakov,^c Aleksei A. Titov,^{*a} Oleg A. Filippov,^{*a} Elena S. Shubina^a

a A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), 119991 Moscow, Vavilov St. 28, bld. 1, Russia.

E-mail: tit@ineos.ac.ru (AAT); h-bond@ineos.ac.ru (OAF)

b Higher Chemical College, Mendeleev University of Chemical Technology of Russia, Miusskaya Sq. 9, 125047 Moscow, Russia

c P.N. Lebedev Physical Institute of the Russian Academy of Sciences, 53 Leninskiy Prospekt, 119991 Moscow, Russia

1. Physical measurement and instrumentation

¹H, ¹⁹F, and ¹³C NMR measurements were carried out on Bruker Avance-III-500 spectrometer with CryoProbe Prodigy operating at 500.13 MHz.

The diffuse reflectance spectra of investigated compounds were recorded with a JASCO V-770 spectrophotometer operating within 200–2500 nm (HPLC SuperGradient, Panreac, Spain).

The photoluminescence spectra were obtained using a Horiba Fluorolog QM spectrofluorimeter with a 75 W xenon arc lamp as excitation source and a R13456 (/Hamamatsu, Japan) photomultiplier tube sensitive in the 200-980 nm emission range as a detector.

The photoluminescence quantum yields were measured for solid samples by an absolute method using the same experimental setup equipped with a G8 (GMP, Switzerland) integration sphere.

Single-crystal X-ray diffraction study

Single crystals of compounds **1Ag**, **2Ag** and **7Ag** were selected for the data collection under an optical microscope. For the diffraction experiments the crystals were coated with an oil-based cryoprotectant and mounted on cryoloops. Studies were conducted using a Rigaku SuperNova XtaLAB (**2Ag**) and Rigaku XtaLAB Synergy-S (**1Ag** and **7Ag**) X-ray diffractometers, where the former is operated with monochromatic micro-focus CuK α tube (λ = 1.54184 Å) at 50 kV and 1.0 mA and equipped with a CCD HyPix 3000 hybrid photon counting detector, and the latter is

operated with monochromatic micro-focus CuKα tube PhotoJet-S (λ [CuKα] for **7Ag**, λ [MoKα] for **1Ag**) at 50 kV and 1.0 mA and equipped with a CCD HyPix 6000HE hybrid photon counting detector. All data collection strategies were designed to collect more than half of the Ewald sphere. Frame widths were 0.5 s. CrysAlisPro software was used for the integration and correction of diffraction data for polarization, for background and Lorentz effects, for a numerical absorption correction based on Gaussian integration over a multifaceted crystal model, and for an empirical absorption correction based on spherical harmonics implemented in the SCALE3 ABSPACK algorithm.^{S1} The unit cell parameters were refined using a least-squares technique. The structure was solved by a dual-space algorithm and refined using SHELX programs, which were incorporated in the *OLEX2* program package.^{S2-54} The carbon-bound H atoms were placed in calculated positions and were included in the refinement in the 'riding' model approximation, with C–H bond lengths of 0.95 Å. The *U*_{iso}(H) parameters were fixed at 1.2*U*_{eq}(C) for the C–H bonds.

Table S1. Crystallographic data, data collection and refinement parameters of crystal structures of samples **1Ag**, **2Ag**, **7Ag**.

Compound	7Ag	2Ag	1Ag
Formula	C ₁₅ H ₃ Ag ₃ F ₁₈ N ₆ , C ₁₂ H ₈ I ₂	C ₁₅ H ₃ Ag ₃ F ₁₈ N ₆ , C ₁₂ H ₈ F ₂	C ₁₅ H ₃ Ag ₃ F ₁₈ N ₆ , C ₁₂ H ₁₀
Space group	P21/c	P21/n	C2/c
a [Å]	13.3886(3)	12.9970(1)	27.1546(3)
b [Å]	18.1861(4)	21.2672(3)	12.88400(15)
<i>c</i> [Å]	15.3291(3)	35.6158(4)	28.4468(4)
α [°]	90	90	90
β [°]	109.789(2)	92.443(1)	97.3645(11)
γ [°]	90	90	90
<i>V</i> [ų]	3512.01(14)	9835.61(19)	9870.3(2)
Ζ	4	12	12
Calculated density [g/cm ³]	2.53	2.27	2.19
μ [mm ⁻¹]	28.3	15.62	1.90
Radiation type	Cu <i>Κ</i> α	Cu <i>Κ</i> α	Μο Κα
Angle range 2ϑ [°]	7.02 – 139.99	4.84 – 138.55	3.72 – 76.07
	$-16 \le h \le 13,$	$-15 \le h \le 15,$	$-44 \le h \le 46,$
Index range	$-22 \leq k \leq 21,$	$-25 \le k \le 23,$	$-20 \le k \le 21,$
	-18 ≤ <i>l</i> ≤ 18	-42 ≤ <i>l</i> ≤ 43	-48 ≤ <i>l</i> ≤ 49
Total reflections, unique	24362, 6598, 5480	111104, 18286, 15516	220298, 25668, 19871
reflections and reflections			
with $F^2 > 2\sigma(F^2)$			
R _{int} , R _o	0.0551, 0.0504	0.0940, 0.0556	0.0687, 0.0321
$R_1 [F^2 > 2\sigma(F^2)], wR_2 [F^2 >$	0.0322, 0.0771	0.0469, 0.1237	0.0441, 0.0947
2σ(<i>F</i> ²)]			
R_1 and wR_2 (all data)	0.0419, 0.0811	0.0553, 0.1295	0.0643, 0.1043
S	1.049	1.024	1.078
ρ _{max} , ρ _{min} [e ⁻ Å ⁻³]	1.07, -0.90	1.13, -1.04	1.74, -1.56

Single-crystal X-ray diffraction experiments of complexes **3Ag**, **4Ag**, **3/4Ag**, **5Ag** were carried out with a Bruker APEX-II diffractometer. The APEX II software^{S5} was used for collecting frames of data, indexing reflections, determination of lattice constants, integration of intensities of reflections, scaling, and absorption correction. The structures were solved by dual-space algorithm and refined in anisotropic approximation for non-hydrogen atoms against F 2 (*hkl*). Hydrogen atoms of aromatic fragments were calculated according to those idealized geometry and refined with constraints applied to C-H bond lengths and equivalent displacement parameters (U eq (H) = 1.2U eq (X), X - central atom of XH₂ group; U eq (H) = 1.5U eq (Y), Y - central atom of YH₃ group). All structures were solved with the ShelXT^{S2} program and refined with the ShelXL^{S3} program. Molecular graphics was drawn using OLEX2^{S4} program.

Table S2. Crystallographic data, data collection and refinement parameters of crystal structures

of	3Ag,	4Ag,	3/	′4Ag,	5Ag	samples.
----	------	------	----	-------	-----	----------

Compound	3Ag	4Ag	3/4Ag,	5Ag
Empirical formula	$C_{27}H_{11}Ag_3Cl_2F_{18}N_6$	$C_{27}H_{11}Ag_3Br_2F_{18}N_6$	$C_{27}H_{11}Ag_3BrClF_{18}N_6$	$C_{27}H_{11}Ag_3CIF_{19}N_6$
Formula weight	1155.93	1244.85	1200.39	1139.51
Temperature/K	120	296.15	120.00	120.00
Crystal system	triclinic	triclinic	triclinic	triclinic
Space group	<i>P</i> -1	<i>P</i> -1	<i>P</i> -1	<i>P</i> -1
a/Å	12.3392(6)	12.2479(8)	12.2937(5)	12.6900(11
b/Å	12.6908(7)	12.6464(8)	12.6654(5)	13.0350(11)
c/Å	12.8767(7)	12.8813(9)	12.8884(5)	22.228(2)
α/°	78.070(2)	80.986(3)	79.543(2)	89.400(3)
β/°	64.247(2)	65.501(3)	65.004(2)	83.802(4)
γ/°	73.652(2)	76.007(3)	74.907(2)	69.652(3)
Volume/Å ³	1734.38(16)	1758.1(2)	1750.22(12)	3425.8(5)
Z	2	2	2	4
$\rho_{calc}g/cm^3$	2.213	2.352	2.278	2.209
µ/mm⁻¹	1.960	4.055	3.008	1.912
F(000)	1104.0	1176.0	1140.0	2176.0
Padiation	ΜοΚα (λ =	$M_{0}K_{0}(\lambda = 0.71072)$	ΜοΚα (λ = 0.71073)	ΜοΚα (λ =
Radiation	0.71073)	MORU(N = 0.71073)		0.71073)
20 range for data	3 36 to 56 638	3 326 to 61 07	3.342 to 52	3.334 to 56.622
collection/°	5.50 10 50.058	5.520 (0 01.07		
	-16 < h < 16 -16 <	-17 < h < 13 -15 < k	-15 ≤ h ≤ 15, -15 ≤ k	-16 ≤ h ≤ 16, -17
Index ranges	k < 16 -17 < l < 17	< 18 -18 < 1 < 18	≤ 15, -15 ≤ l ≤ 15	≤ k ≤ 17, -29 ≤ l ≤
	K 2 10, 17 2 1 2 17	310, 1031310		29
Reflections collected	28076	21252	25252	51396
	8584 [R _{int} =	9909 [Rint = 0.0264.	6850 [R _{int} = 0.0377,	16829 [R _{int} =
Independent reflections	0.0459, R _{sigma} =	$R_{sigma} = 0.0431$	R _{sigma} = 0.0398]	0.0290, R _{sigma} =
	0.0519]	· · · · · · · · · · · · · · · · · · ·		0.0402]
Data/restraints/parameters	8584/0/521	9909/0/506	6850/0/447	16829/66/871
Goodness-of-fit on F ²	1.158	1.080	1.094	1.136
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0365, wR_2 =$	$R_1 = 0.0314$, $wR_2 =$	$R_1 = 0.0383, wR_2 =$	$R_1 = 0.0340,$
	0.0936	0.0675	0.0930	$wR_2 = 0.0817$
Final R indexes [all data]	$R_1 = 0.0489, wR_2 =$	R ₁ = 0.0478, wR ₂ =	$R_1 = 0.0499, wR_2 =$	$R_1 = 0.0498,$
	0.0966	0.0705	0.0969	$wR_2 = 0.0848$
Largest diff. peak/hole / e	1.64/-1.05	1.13/-0.89	1.76/-1.91	1.27/-1.21
A ⁻³				

The low quality crystals of **6Ag** do not allowed the complete refinement of the XRD structure. Needles crystals splicing due to growthing leading to the twinning/ Moreover, the presence of two different halogens leads to a superposition of their locations, similar to that observed for **5Ag**. The positions of silver atoms do not raise any doubts, and the typical structure of {biphenyl - [AgL]₃}_∞ can be observed in complex **6Ag**. Furthermore, the distances between Ag3-Ag3 centroids and planes fall within the range observed for other complexes (6.3-6.4 Å and 6.15-6.25 Å correspondingly). The ball-and-stick diagram of unspecified structure is given below:

Figure S1. Ball-and-stick diagram demonstrating main structural motive of 6Ag.

X-ray powder diffraction study

Prior to the powder XRD study, all samples were ground to a fine powder and placed on a Si(911) zero-background flat holder. All measurements were carried out with a D8 Advance (Bruker AXS) diffractometer in the Bragg-Brentano focusing geometry using CuKα radiation, the scan rate was 0.5 deg·min⁻¹ and the angular step was 0.02°. Several scans for each sample were measured and patterns were processed with DIFFRACplus EVA.^{S6} The phase analysis of all samples was carried out with DIFFRAC TOPAS 5.0^{S7} software using single-crystal X-ray data and Rietveld refinement procedure. To verify the phase composition of studied compounds the Rietveld refinement of collected powder X-ray data was carried out starting from single-crystal X-ray data. Atomic coordinates were fixed, while cell and March-Dollase preferred orientation parameters were refined. As a result, powder samples of 3Ag, 4Ag, 3-4Ag and 7Ag are almost identical to corresponding single-crystal data. At the same time, 1Ag, 2Ag and 5Ag, some low-intensive X-ray maxima near 10° cannot be satisfactorily described by X-ray data. These maxima are probably the results of sample decomposition due to the grinding process.

2. Experimental section

General Information

All manipulations were performed under a dry argon atmosphere by standard Schlenk techniques. Commercially available argon (99.9%) was additionally purified from traces of oxygen and moisture by sequential passage through a Ni/Cr catalyst column and 4 Å molecular

sieves. HPLC-grade toluene were additionally purified by standard dehydration over Na and freshly distilled under argon before use. Dichloromethane, CCl₄ were dried over CaH₂ and freshly distilled under argon. Biphenyls 1-4, 7 were purchased from commercial producers.

General procedure for synthesis of biphenyls 5-6.^{S8}

4-chloro-4'-fluoro-1,1'-biphenyl (5). The product was purified by column chromatography using mixture of EtOAc/petroleum ether =1/10 as an eluent. White solid. Yeild = 73%. ¹H NMR (500 MHz, 0.55CCl₄/0.1CD₂Cl₂): δ 7.57-7.54(m, 2H), 7.52-7.50(d, J = 8.6 Hz, 2H), 7.46-7.44(d, 2H), 7.19-7.16(t, 2H)ppm. ¹⁹F NMR (282 MHz, 0.55CCl₄/0.1CD₂Cl₂): δ -115.04 ppm. ¹³C NMR (126 MHz, 0.55CCl₄/0.1CD₂Cl₂): δ 163.87, 161.90, 139.01, 136.48, 133.85, 129.28, 128.85, 128.78, 128.48, 116.17, 116.00 ppm.

4-bromo-4'-fluoro-1,1'-biphenyl (6). The product was purified by column chromatography using mixture of EtOAc/petroleum ether =1/10 as an eluent. White solid. Yeild = 67%. ¹H NMR (500 MHz, 0.55CCl₄/0.1CD₂Cl₂): δ 7.61-7.60(d, 2H), 7.57-7.54(m, 2H), 7.46-7.44(d, 2H), 7.19-7.16(t, 2H) ppm. ¹⁹F NMR (282 MHz, 0.55CCl₄/0.1CD₂Cl₂): δ –115 ppm. ¹³C NMR (126 MHz, 0.55CCl₄/0.1CD₂Cl₂): δ 163.91, 161.93, 139.48, 136.48, 133.42, 132.23, 128.76, 121.95, 116.20, 116.03 ppm.

Complexes 1-7.

Initial trinuclear silver complex [AgL]₃ was obtained according to a previously published procedure.^{S9}

General procedure for complexes 1Ag-7Ag.

The solution of $[AgL]_3$ (0.03 mmol) and corresponding biphenyl (0.03 mmol) was dissolved in a mixture of CH_2Cl_2 (1 mL) and CCl_4 (1 mL). Crystals have been obtained at -10°C and dried under reduced pressure at 40°.

Elemental analysis for complexes obtained

1Ag. Calc. for C₂₇H₁₃Ag₃F₁₈N₆ (%): C, 29.83; H, 1.21; N, 7.73. Found (%): C, 29.58; H, 1.38; N, 8.00.

2Ag. Calc. for C₂₇H₁₁Ag₃F₂₀N₆ (%): C, 28.88; H, 0.99; N, 7.48. Found (%): C, 28.69; H, 1.28; N, 7.49.

3Ag. Calc. for C₂₇H₁₁Ag₃F₁₈Cl₂N₆ (%): C, 28.06; H, 0.96; N, 7.27. Found (%): C, 27.89; H, 1.15; N, 7.39.

4Ag. Calc. for C₂₇H₁₁Ag₃F₁₈Br₂N₆ (%): C, 26.05; H, 0.89; N, 6.75. Found (%): C, 25.98; H, 1.07; N, 6.98.

3/4Ag. Calc. for C₅₄H₂₂Ag₆Br₂Cl₂F₃₆N₁₂ (%): C, 27.02; H, 0.92; N, 7.00. Found (%): C, 27.24; H, 1.1 2; N, 6.84.

5Ag. Calc. for C₂₇H₁₁Ag₃F₁₉ClN₆ (%): C, 28.46; H, 0.97; N, 7.38. Found (%): C, 28.50; H, 1.13; N, 7.51.

6Ag. Calc. for C₂₇H₁₁Ag₃F₁₉BrN₆ (%): C, 27.39; H, 0.94; N, 7.10. Found (%): C, 27.52; H, 1.05; N, 7.02.

7Ag. Calc. for C₂₇H₁₁Ag₃F₁₈I₂N₆ (%): C, 24.22; H, 0.83; N, 6.28. Found (%): C, 24.08; H, 1.00; N, 6.31.

3. Computational details.

Calculations were performed with ORCA 5.04 software package^{S10,S11} applying ω B97X-D3 functional^{S12} and ZORA Hamiltonian. The applied basis set was SARC-ZORA-TZVP^{S13} for silver atoms and ZORA-TZVP for H, C, N, F and Cu atoms. The geometry taken from the crystal structures were partially optimized, freezing positions of Ag atoms. All possible configurations of partially optimized [AgL]₃{BP}[AgL]₃ fragments are gathered in the Table S3. Electronic transitions were calculated under the TD-DFT approach utilizing the same computation level as the Tamm-Dankoff approximation considering 20 lowest energy singlet and triplet excitations. If symmetry forbidden dark states were not considered it stated in the corresponding part of discussion. Analysis of natural transition orbitals (NTO) and contributions from certain atomic orbitals to the electronic transitions were performed with the Multiwfn 3.8 package^{S14}.

Table S3. Principal geometry of calculated $[AgL]_{3}{BP}[AgL]_{3}$ complexes

Table S4. Data for allowed singlet-triplet intersystem crossing pathways. S_1 and S_2 are lowest symmetry allowed LC^{BP} (S_1) and $BP \rightarrow [AgL]_3$ CT type state (S_2).

complex	E S ₁ , eV LC ^{BP} symmetry allowed	E S₂, eV [AgL]₃ involved	E T ₁ , eV	SOC <s0 t1></s0 t1>	SOC <s1 t1></s1 t1>	SOC <s2 t1></s2 t1>	SOC <sn t1>; % of CT ^a</sn t1>
1Ag ^{h2t}	4.983	5.142	3.498	0.8	2.5	17.0	S ₉ ; 22.1; 69%
1Ag ^{h2h}	5.037	5.104	3.517	5.8	0.8	17.3	S ₈ ; 25.5; 55%
2Ag ¹	4.977	5.131	3.464	9.1	3.6	15.9	S ₈ ; 14.5; 42%
2Ag ²	5.131	5.177	3.563	10.3	2.5	17.7	S ₈ ; 20.0; 46%
2Ag ³	5.045	5.104	3.527	7.0	9.2	12.4	S ₈ ; 15.9; 47%
3Ag ^{axial}	4.759	n/a ^b	3.327	0.02	3.5	n/a⁵	S ₉ ; 22.5; 71%
3Ag ^{nonaxial}	4.811	n/a ^b	3.367	0.02	2.5	n/a⁵	S ₁₀ ; 23.1; 80%
4Ag ^{axial}	4.691	n/a ^b	3.310	0.02	2.5	n/a⁵	S ₉ ; 29.4; 71%
4Ag ^{nonaxial}	4.735	n/a ^b	3.344	0.1	2.3	n/a⁵	S ₉ ; 27.5; 79%
5Ag ^{displaced}	4.882	5.159	3.404	4.2	2.1	12.4	S ₉ ; 23.3; 73%
5Ag ^{h2h}	5.003	5.132	3.486	6.9	1.6	15.5	S ₈ ; 23.2; 52%
5Ag ^{h2t}	4.876	5.148	3.401	2.6	3.0	17.5	S₀; 26.4; 65%

^a data for second possible CT singlet state, singlet number is absolute, CT impact value calculated as a difference between hole and electron distribution on the biphenyl fragment of the complex ^b For centrosymmetric **3Ag** and **4Ag** there are no low lying CT type states

Figure S2. Typical view of high lying CT type state on the example of S_{10} for **3Ag**^{nonaxial}. HONTO (left) LUNTO (right) as isosurfaces as 0.04 a.u, 0.92 fraction of transition electron density.

		triplets				SOCME			
	λ, nm	K _{phos}	%FC	λ, nm	$K_{fluor}*10^7$	%FC	<s<sub>0 T₁></s<sub>	<s<sub>1 T₁></s<sub>	
1	317.5	0.1	0	228.2	2.2	0.24	0.4	0.2	
2	316.2	0.7	0.01	230.5	4185.4	0.04	0.4	0.0	
5	323.7	5.9	38.38	233.4	4.9	2.61	0.5	0.2	
3	327.4	8.4	0.06	233.2	138.1	0.17	0.6	0.4	
4	328.4	229.2	23.41	233.9	42.8	0.39	1.5	3.4	
7	330.4	1182.7	0.12	256.6	54.7	0.02	2.4	95.2	

Table S5. Main characteristics calculated for excited states of free biphenyls

Figure S3. ¹H NMR spectra of **1** (a) and **1** in the presence of 1 eq. of $[AgL]_3$ (b) $(0.55CCl_4/0.1CD_2Cl_2)$.

Figure S4. ¹H NMR spectra of **1** (a) and **1** in the presence of 1 eq. of $[AgL]_3$ (b) $(0.55CCl_4/0.1CD_2Cl_2)$.

Figure S5. ¹H NMR spectra of **2** (a) and **2** in the presence of 1 eq. of $[AgL]_3$ (b) $(0.55CCl_4/0.1CD_2Cl_2)$.

Figure S6. ¹³C NMR spectra of **2** (a) and **2** in the presence of 1 eq. of $[AgL]_3$ (b) $(0.55CCl_4/0.1CD_2Cl_2)$.

Figure S7. ¹H NMR spectra of **3** (a) and **3** in the presence of 1 eq. of $[AgL]_3$ (b) $(0.55CCl_4/0.1CD_2Cl_2)$.

Figure S8. ¹³C NMR spectra of **3** (a) and **3** in the presence of 1 eq. of $[AgL]_3$ (b) (0.55CCl₄/0.1CD₂Cl₂).

Figure S9. ¹H NMR spectra of 4 (a) and 4 in the presence of 1 eq. of $[AgL]_3$ (b) $(0.55CCl_4/0.1CD_2Cl_2)$.

Figure S10. ¹³C NMR spectra of **4** (a) and **4** in the presence of 1 eq. of $[AgL]_3$ (b) (0.55CCl₄/0.1CD₂Cl₂).

Figure S11. ¹H NMR spectra of **5** (a) and **5** in the presence of 1 eq. of $[AgL]_3$ (b) $(0.55CCl_4/0.1CD_2Cl_2)$.

Figure S12. ¹³C NMR spectra of **5** (a) and **5** in the presence of 1 eq. of $[AgL]_3$ (b) $(0.55CCl_4/0.1CD_2Cl_2)$.

Figure S13. ¹H NMR spectra of **6** (a) and **6** in the presence of 1 eq. of $[AgL]_3$ (b) $(0.55CCl_4/0.1CD_2Cl_2)$.

Figure S14. ¹³C NMR spectra of **6** (a) and **6** in the presence of 1 eq. of $[AgL]_3$ (b) $(0.55CCl_4/0.1CD_2Cl_2)$.

Figure S15. ¹³H NMR spectra of **7** (a) and **7** in the presence of 1 eq. of $[AgL]_3$ (b) (0.55CCl₄/0.1CD₂Cl₂).

Figure S16. ¹³C NMR spectra of **7** (a) and **7** in the presence of 1 eq. of $[AgL]_3$ (b) $(0.55CCl_4/0.1CD_2Cl_2)$.

	3-2 4			
	1	2	2	Λ
I	141.60	127.43	128.95	4 127.39
+1 eq. [AgL]3	141.17	127.89	129.31	126.52
Δδ, ppm	-0.43	+0.46	+0.64	-0.87
	F−4″	2 1 1 - - - - - - F		
L	136.73	128.82	115.99	162.71
+1 eq. [AgL]3	136.36	129.61	116.09	162.74
Δδ, ppm	-0.37	-0.21	+0.1	+0.03
	3-2 CI—4 ^{//}	1		
L	134.24	129.35	128.44	138.76
+1 eq. [AgL]3	134.33	129.46	128.12	138.24
Δδ, ppm	+0.09	+0.11	-0.32	-0.52
	3-2 Br-4	1Br		
L	122.36	132.34	128.74	139.24
+1 eq. [AgL]3	122.37	132.39	128.62	138.98
Δδ, ppm	+0.01	+0.04	-0.12	-0.26
	3-2 Br—4	2 ^{2'-3'} 1-1' [″] 4'-F		
L	139.48	128.83	121.95	128.76
+1 eq. [AgL]3	139.18	128.59	121.97	128.49
Δδ, ppm	-0.3	-0.24	+0.02	-0.27
	3-3 Br-4	2 2'-3' 1-1' [″] 4'-F		
	1'	2'	3'	4'
L	136.48	132.23	116.12	162.92
+1 eq. [AgL]3	135.95	132.31	116.21	162.96
Δδ, ppm	-0.53	+0.08	+0.09	+0.04

Table S6. ¹³C NMR data for initial biphenyls and in the presence of [AgL]₃.

Figure S17. Diffuse reflectance spectra of investigated crystalline compounds.

Figure S18. Emission spectra of solid samples of **2Ag-6Ag** and **3/4Ag** measured at different excitations (300-370 nm) at 300K.

Figure S19. Optical excitation spectra of solid samples of **2Ag-6Ag** and **3/4Ag** registered at phosphorescence maxima (black curve) and fluorescence maxima (red curve) at 300K.

Figure S20. Phosphorescence spectra of solid samples of complexes obtained (λ_{exc} =320 nm) (time delay 10 µs).

Figure S21. Photoluminescence spectra registered at 77 K (blue curve) and 300 K (green curve) and room temperature phosphorescence of **5Ag** compound upon excitation at 310 nm.

Figure S22. The PL spectra of free polyurethane-based matrix (grey curve) and polyurethanebased matrix covered with **BP 2** (green curve) and **2Ag** (red curve) under excitation at 360 and 310 nm at 300 K. PL spectra of **2Ag** compounds in crystalline powder at the same excitation conditions are for reference.

Figure S23. The CIE 1931 coordinates for 2Ag, 3Ag, 6Ag and 3/4Ag.

Figure S24. The normalized emission (red curves, λ_{exc} =310 nm) and excitation (black lines, recorded on the corresponding emission maxima) spectra of free BPs **1-6**.

Figure S25. PL decays recorded for **3Ag** and **4Ag** with a pulsed laser excitation at 376 nm.

Figure S26. The XRPD patterns (blue) and result of Rietveld refinement (red) for **1Ag**. Difference curve is shown by grey line.

Figure S27. The XRPD patterns (blue) and result of Rietveld refinement (red) for **2Ag**. Difference curve is shown by grey line.

Figure S28. The XRPD patterns (blue) and result of Rietveld refinement (red) for **3Ag**. Difference curve is shown by grey line.

Figure S29. The XRPD patterns (blue) and result of Rietveld refinement (red) for **4Ag**. Difference curve is shown by grey line.

Figure S30. The XRPD patterns (blue) and result of Rietveld refinement (red) for **5Ag**. Difference curve is shown by grey line.

Figure S31. The XRPD patterns (blue) and result of Rietveld refinement (red) for **3/4Ag**. Difference curve is shown by grey line.

Figure S32. The XRPD patterns (blue) and result of Rietveld refinement (red) for **7Ag**. Difference curve is shown by grey line.

Table S7. Energetic characteristics of 10 lowest singlet excittions (without symmetry restrictions) and fragment $(Ag_3^1 \text{ and } L_3^1 \text{ from one macrocycle, } Ag_3^2 \text{ and } L_3^2 \text{ from second macrocycle, and biphenyl})$ contributions to the transition electron density for all possible units of complexes **1Ag-5Ag**. Lowest symmetry allowed transition marked as italic, MLCT states market with bold.

					1Ag, l	head-to	o-tail							
		Е				C	GS (hole)				ES	(electro	n)	
	eV	cm⁻¹	nm	f	Ag_3^1	L_3^1	Ag_3^2	L_3^2	BP	Ag_3^1	L_3^1	Ag_3^2	L_3^2	BP
S1	4.977	40140.8	249.1	0.00002	4	3	5	3	85	5	4	5	4	81
S2	4.983	40193.6	248.8	0.23517	5	3	5	3	84	6	4	6	4	80
S 3	5.142	41475.4	241.1	0.00988	19	10	20	11	39	21	9	23	9	38
S4	5.175	41736.1	239.6	0.00009	19	10	19	10	42	33	13	33	13	8
S5	5.197	41913.6	238.6	0.00016	28	14	28	15	15	32	13	32	13	9
S6	5.264	42461.0	235.5	0.03791	17	10	17	10	47	18	9	18	9	45
S7	5.300	42743.5	234.0	0.07420	26	14	25	13	22	29	13	27	12	19
S8	5.475	44156.8	226.5	0.00000	17	8	17	8	49	33	13	33	13	8
S9	5.794	46734.3	214.0	0.00952	9	4	9	4	76	35	12	34	12	6
S10	5.856	47231.4	211.7	0.00013	11	9	12	9	60	9	9	8	9	65
					1Ag, h	ead-to	-head							
		Е				G	SS (hole)				ES	(electro	n)	
	eV	cm⁻¹	nm	f	Ag_3^1	L_3^1	Ag_3^2	L_3^2	BP	Ag₃¹	L_3^1	Ag_3^2	L_3^2	BP
S1	4.902	39534.0	252.9	0.00624	4	4	4	3	85	8	4	8	4	75
S2	5.037	40622.3	246.2	0.24658	4	4	3	3	86	4	4	4	4	84
S3	5.104	41166.8	242.9	0.00186	41	21	7	4	27	51	20	11	5	13
S4	5.167	41672.9	240.0	0.00255	13	7	44	21	16	14	7	50	19	10
S5	5.187	41839.6	239.0	0.00473	9	6	7	5	73	10	6	8	5	72
S6	5.237	42240.7	236.7	0.01954	47	23	10	5	15	53	21	12	5	8
S7	5.264	42459.1	235.5	0.00932	7	4	51	26	12	7	4	57	22	9
S8	5.477	44176.8	226.4	0.01144	8	6	8	5	73	32	12	27	11	18
S9	5.706	46020.7	217.3	0.04021	7	7	6	5	75	19	8	23	9	41
S10	5.928	47809.9	209.2	0.00246	35	39	6	5	15	53	21	6	4	15
					2/	Ag; iso	1							
		E				C	GS (hole))			ES	(electro	n)	
	eV	cm⁻¹	nm	f	Ag_3^1	L_3^1	Ag_3^2	L_3^2	BP	Ag_3^1	L_3^1	Ag_3^2	L_3^2	BP
S1	4.831	38964.0	256.6	0.00666	4	3	3	2	88	9	5	5	4	77
S2	4.977	40144.3	249.1	0.24114	4	3	5	3	86	5	4	7	4	80
S3	5.131	41388.1	241.6	0.01656	19	10	13	7	51	32	12	27	11	18
S4	5.222	42118.3	237.4	0.01184	9	5	40	20	27	10	5	43	17	24
S5	5.228	42165.4	237.2	0.01909	54	26	5	3	11	60	23	6	4	7
S6	5.260	42421.1	235.7	0.02423	25	13	31	16	16	27	12	34	14	12
S7	5.275	42548.3	235.0	0.00311	5	3	21	11	60	5	3	22	10	59
S8	5.460	44034.2	227.1	0.00062	14	7	18	9	52	27	10	38	15	10
S9	5.726	46187.0	216.5	0.01776	9	5	6	3	77	34	12	25	9	20
S10	5.951	47996.7	208.3	0.00639	5	4	34	46	12	4	4	54	22	16
					2/	Ag; iso	2							
		E				C	SS (hole)				ES	(electro	n)	
	eV	cm⁻¹	nm	f	Ag₃¹	L_3^1	Ag ₃ ²	L_3^2	BP	Ag₃¹	L_3^1	Ag ₃ ²	L_3^2	BP

S1	4.872	39295.2	254.5	0.01346	3	2	3	2	89	9	5	6	4	76
S2	5.131	41380.8	241.7	0.24874	3	3	3	2	89	4	4	4	3	85
S 3	5.177	41759.2	239.5	0.00035	10	6	9	5	70	20	9	19	8	45
S4	5.304	42777.5	233.8	0.01139	58	28	2	2	10	60	25	2	2	10
S5	5.333	43013.2	232.5	0.01123	41	19	16	9	15	43	18	18	8	13
S6	5.352	43167.2	231.7	0.01675	6	4	34	18	37	7	4	38	17	34
S7	5.368	43298.9	231.0	0.01981	6	3	54	27	10	6	4	56	24	11
S8	5.586	45057.7	221.9	0.01002	10	6	13	7	65	30	12	28	12	18
S9	5.786	46663.5	214.3	0.05336	5	4	7	5	80	29	11	34	13	13
S10	5.948	47975.6	208.4	0.00257	41	55	1	1	2	66	25	1	2	7
					2/	Ag; iso	3							
		E				G	iS (hole)				ES	(electro	n)	
	eV	cm⁻¹	nm	f	Ag_3^1	L_3^1	Ag_3^2	L_3^2	BP	Ag_3^1	L_3^1	Ag_3^2	L_3^2	BP
S1	4.835	38996.4	256.4	0.01200	3	2	4	3	88	4	3	15	6	71
S2	5.045	40689.2	245.8	0.15716	10	6	4	3	77	18	7	6	4	65
S3	5.104	41162.7	242.9	0.06955	12	7	15	8	58	22	10	20	8	40
S4	5.186	41825.7	239.1	0.02807	19	10	36	18	17	21	10	39	16	14
S5	5.254	42373.7	236.0	0.01094	24	12	5	3	55	26	12	6	4	52
S6	5.315	42869.5	233.3	0.00757	6	4	56	27	7	7	4	58	24	8
S7	5.319	42902.0	233.1	0.02222	52	25	8	5	10	56	23	8	5	8
S8	5.476	44168.9	226.4	0.00208	10	5	6	3	75	35	14	16	7	28
S9	5.733	46236.1	216.3	0.01653	4	3	7	4	81	21	7	39	14	19
S10	5.913	47690.8	209.7	0.00009	1	1	40	56	2	1	2	66	24	7
					34	Ag; axia	al							
		E				G	S (hole)				ES	(electro	n)	
	eV	cm⁻¹	nm	f	Ag₃¹	L_3^1	Ag ₃ ²	L_3^2	BP	Ag₃¹	L_3^1	Ag ₃ ²	L_3^2	BP
S1	4.759	38386.8	260.5	0.46504	3	2	3	2	89	4	3	4	3	86
S2	4.834	38991.3	256.5	0.00000	4	2	4	2	88	6	4	6	4	82
S3	5.111	41220.2	242.6	0.00352	9	5	9	5	73	7	4	7	4	78
S4	5.156	41583.3	240.5	0.00000	24	12	24	12	27	32	13	32	13	10
S5	5.212	42037.7	237.9	0.03398	26	13	26	13	21	29	13	29	13	16
S6	5.262	42444.0	235.6	0.00000	26	14	26	14	21	32	14	32	14	9
S7	5.288	42646.8	234.5	0.03794	28	14	28	14	14	32	14	32	14	7
S8	5.518	44503.8	224.7	0.00000	15	7	15	7	56	31	12	31	12	14
S9	5.743	46323.9	215.9	0.02329	7	4	7	4	78	34	12	34	12	7
S10	5.747	46356.5	215.7	0.00000	14	9		9	55	8	7	8	7	70
		_			3Ag;	non-a	xial							
		E		<i>c</i>	. 1	. 1	iS (hole)			. 1	ES	(electro	n)	
~ ~	eV	cm ⁻¹	nm	t	Ag₃¹	L3 ¹	Ag₃²	L3 ²	BP	Ag₃¹	L3 ¹	Ag ₃ ²	L3 ²	Bb
S1	4.759	38384.6	260.5	0.00000	3	2	3	2	89	6	4	6	4	/9
52	4.811	38803.9	257.7	0.43444	3	2	3	2	90	4	3	4	3	86
\$3	5.132	41396.2	241.6	0.00264	7	4	6	4	79	5	4	5	4	82
54	5.205	41979.8	238.2	0.00009	27	13	22	12	26	35	14	29	12	10
55	5.209	42011.0	238.0	0.03938	28	14	31	15	13	30	13	34	14	10
S6	5.290	42664.9	234.4	0.00000	30	15	29	14	12	33	14	33	13	7
S7	5.336	43039.5	232.3	0.02601	30	15	29	14	12	32	13	31	13	10
58	5.458	44018.8	227.2	0.00000	11	5	11	5	68	32	12	32	12	13
_	_		_	-										

S10	5.796	46746.5	213.9	0.00777	5	2	4	2	87	35	12	35	12	6
					4/	Ag; axia	al							
		E				G	S (hole))			ES	(electro	n)	
	eV	cm ⁻¹	nm	f	Ag_3^1	L_3^1	Ag_3^2	L_3^2	BP	Ag_3^1	L_3^1	Ag_3^2	L_3^2	BP
S1	4.691	37836.6	264.3	0.56559	3	2	3	2	90	4	3	4	3	87
S2	4.823	38904.1	257.0	0.00000	4	2	4	2	88	5	4	5	4	82
S3	5.101	41146.3	243.0	0.00106	7	4	6	4	79	5	3	5	3	84
S4	5.203	41966.8	238.3	0.00000	24	12	24	12	27	32	13	32	13	9
S5	5.241	42269.9	236.6	0.03180	28	14	28	14	15	32	13	32	13	10
S6	5.276	42555.3	235.0	0.00000	25	13	24	13	26	31	14	31	14	10
S7	5.324	42941.7	232.9	0.03147	28	14	28	14	16	32	14	32	14	7
S8	5.543	44710.7	223.7	0.00000	16	8	16	8	50	30	12	30	12	15
S9	5.758	46441.6	215.3	0.02245	7	4	7	5	77	34	13	34	13	7
S10	5.766	46502.1	215.0	0.00000	12	8	12	8	59	8	7	8	7	70
					4Ag	; non-a	xial							
		E				Ģ	S (hole))			ES	(electro	n)	
	eV	cm⁻¹	nm	f	Ag_3^1	L_3^1	Ag_3^2	L_3^2	BP	Ag_3^1	L_3^1	Ag_3^2	L_3^2	BP
S1	4.720	38070.6	262.7	0.00000	3	2	3	2	90	7	4	7	4	78
S2	4.735	38194.0	261.8	0.52374	3	2	3	2	91	4	3	4	3	87
S3	5.093	41073.8	243.5	0.00238	5	4	5	4	82	4	3	4	3	85
S4	5.218	42083.8	237.6	0.02089	30	14	30	14	12	32	14	32	14	9
S5	5.222	42122.2	237.4	0.00001	25	13	25	13	24	31	13	31	13	11
S6	5.294	42696.8	234.2	0.00000	29	15	29	15	12	33	13	33	13	8
S7	5.335	43027.9	232.4	0.02405	30	15	30	15	10	32	14	32	14	8
S8	5.494	44313.5	225.7	0.00000	10	5	10	5	69	30	11	29	11	19
S9	5.714	46083.1	217.0	0.00000	11	8	11	8	63	9	8	9	8	66
S10	5.800	46779.5	213.8	0.01371	5	2	5	2	86	34	12	35	12	6
					5Ag; h	ead-to	-head							
		E				Ģ	SS (hole))			ES	(electro	n)	
	eV	cm⁻¹	nm	f	Ag_3^1	L_3^1	Ag ₃ ²	L_3^2	BP	Ag_3^1	L_3^1	Ag_3^2	L_3^2	BP
S1	4.810	38797.5	257.7	0.01310	3	2	3	2	89	7	4	8	4	76
S2	5.003	40352.5	247.8	0.34006	3	3	3	2	89	4	3	4	3	85
S3	5.132	41394.5	241.6	0.00220	7	4	4	3	82	15	7	13	6	60
S4	5.226	42148.2	237.3	0.00262	3	2	52	26	17	3	3	57	23	15
S5	5.273	42531.7	235.1	0.00951	54	26	5	3	12	58	23	5	3	11
S6	5.292	42685.6	234.3	0.01989	50	25	4	3	19	54	22	4	3	17
S7	5.316	42880.0	233.2	0.01643	3	2	58	29	8	3	2	62	24	8
S8	5.497	44339.8	225.5	0.00792	12	6	6	4	72	25	10	33	12	20
S9	5.769	46532.2	214.9	0.03451	6	4	5	4	81	32	12	21	8	27
S10	5.934	47863.2	208.9	0.00205	2	3	38	52	5	2	3	62	24	10
				5A	g; head	-to-tail	displace	ed						
		E				Ģ	S (hole))			ES	(electro	n)	
	eV	cm⁻¹	nm	f	Ag_3^1	L_3^1	Ag ₃ ²	L_3^2	BP	Ag_3^1	L_3^1	Ag_3^2	L_3^2	BP
S1	4.763	38418.5	260.3	0.00230	4	2	4	3	87	8	4	10	5	73
S2	4.882	39372.3	254.0	0.35960	3	3	3	2	88	5	4	4	3	85
S3	5.159	41609.2	240.3	0.00040	15	8	11	6	60	16	8	12	5	59
S4	5.185	41818.2	239.1	0.00891	23	12	22	12	32	26	11	25	11	27
S5	5.224	42131.3	237.4	0.01573	24	12	32	16	16	27	11	36	16	11

S6	5.261	42435.3	235.7	0.01165	12	7	42	21	19	13	7	46	19	16
S7	5.297	42720.2	234.1	0.01141	40	20	14	7	19	48	20	15	7	10
S8	5.486	44247.6	226.0	0.00661	14	7	9	5	64	25	10	33	13	19
S9	5.723	46162.2	216.6	0.02097	7	4	5	3	80	42	14	27	10	7
S10	5.798	46764.9	213.8	0.02973	18	11	9	6	55	9	10	8	7	65
					5Ag; ł	nead-to	o-tail							
		E				e	S (hole)				ES	(electro	n)	
	eV	cm⁻¹	nm	f	Ag_3^1	L_3^1	Ag_3^2	L_3^2	BP	Ag_3^1	L_3^1	Ag_3^2	L_3^2	BP
S1	4.745	38270.0	261.3	0.00290	4	3	3	3	87	8	4	8	5	75
S2	4.876	39328.2	254.3	0.34047	3	3	3	2	89	4	3	5	3	84
S 3	5.148	41517.5	240.9	0.01243	19	10	19	11	41	21	9	23	10	37
S4	5.164	41648.2	240.1	0.00913	35	18	6	4	37	40	16	6	4	34
S5	5.187	41836.8	239.0	0.00272	14	8	28	14	36	17	8	35	14	25
S6	5.202	41955.9	238.3	0.00298	21	11	35	17	17	26	11	40	16	8
S7	5.270	42503.7	235.3	0.03014	23	12	29	15	22	27	12	31	13	16
S8	5.438	43858.5	228.0	0.00106	15	8	11	6	60	31	12	32	12	13
S9	5.714	46088.0	217.0	0.01102	8	5	6	3	78	36	13	28	10	13
S10	5.750	46380.9	215.6	0.00861	14	10	10	8	59	8	8	13	10	61

Table S8. Energetic characteristics of 10 lowest triplet excitations (without symmetry restrictions) and fragment (Ag_3^1 and L_3^1 from one macrocycle, Ag_3^2 and L_3^2 from second macrocycle, and biphenyl) contributions to the transition electron density for all possible units of complexes **1Ag-5Ag**.

					1Ag,	head-to-	tail						
		Е			(GS (hole)				ES	(electroi	n)	
	eV	cm⁻¹	nm	Ag₃¹	L_3^1	Ag ₃ ²	L_3^2	BP	Ag ₃ ¹	L_3^1	Ag₃²	L_3^2	BP
T1	3.498	28215.8	354.4	3	2	3	2	91	3	3	3	3	87
T2	4.331	34931.9	286.3	4	4	4	4	85	4	5	4	5	83
Т3	4.442	35828.1	279.1	3	2	3	2	89	4	4	4	4	85
T4	4.582	36960.3	270.6	4	4	4	4	84	4	4	4	5	83
T5	4.621	37270.3	268.3	7	5	7	5	77	6	4	6	4	79
T6	4.682	37762.5	264.8	28	14	28	14	17	29	14	29	13	15
T7	4.701	37917.7	263.7	27	17	28	17	12	27	17	28	17	11
Т8	4.710	37990.4	263.2	22	20	28	24	7	23	20	28	24	5
Т9	4.722	38085.6	262.6	10	44	9	33	5	11	42	10	33	5
T10	4.730	38147.3	262.1	10	32	11	42	4	11	31	13	41	4
					1Ag, h	ead-to-h	ead						
		E			(GS (hole)				ES	(electro	n)	
	eV	cm⁻¹	nm	Ag_3^1	L_3^1	Ag ₃ ²	L_3^2	BP	Ag_3^1	L_3^1	Ag ₃ ²	L_3^2	BP
T1	3.517	28363.5	352.6	3	3	2	3	90	3	4	3	4	86
Т2	4.283	34542.9	289.5	5	4	5	4	82	5	5	5	5	82
Т3	4.387	35380.9	282.6	3	3	3	3	89	5	4	5	4	82
T4	4.501	36303.2	275.5	9	6	7	5	72	10	6	8	5	71
T5	4.627	37317.1	268.0	15	8	11	6	59	16	8	11	6	60
T6	4.644	37459.8	267.0	37	17	9	5	31	38	16	9	6	31
T7	4.678	37731.0	265.0	9	12	37	20	22	9	12	39	20	21
Т8	4.712	38004.8	263.1	14	66	3	5	12	17	64	3	5	12

Т9	4.717	38045.8	262.8	26	48	6	6	14	28	46	6	6	14
T10	4.724	38100.0	262.5	3	6	11	76	4	3	7	13	73	4
					2	Ag; iso1							
		Е			C	GS (hole)				ES	(electro	n)	
	eV	cm⁻¹	nm	Ag_3^1	$L_3{}^1$	Ag ₃ ²	L_3^2	BP	Ag_3^1	L_3^1	Ag ₃ ²	L_3^2	BP
T1	3.464	27936.7	358.0	3	2	3	2	90	4	3	3	3	87
Т2	4.157	33524.7	298.3	3	2	2	2	91	5	4	4	4	84
Т3	4.324	34877.5	286.7	5	4	4	4	84	4	5	4	4	83
T4	4.557	36753.4	272.1	3	2	3	2	90	4	3	3	4	86
T5	4.562	36795.7	271.8	9	5	5	3	78	8	5	5	4	78
Т6	4.701	37916.5	263.7	24	14	34	18	10	26	13	36	17	7
Т7	4.713	38009.6	263.1	15	10	40	29	6	15	10	41	28	6
Т8	4.721	38075.7	262.6	39	34	10	9	8	40	34	11	9	7
Т9	4.728	38132.1	262.2	5	59	12	20	4	7	57	13	19	4
T10	4.734	38183.8	261.9	4	22	7	65	3	5	21	8	63	3
					2	Ag; iso2							
		E			C	GS (hole)				ES	(electro	n)	
	eV	cm⁻¹	nm	Ag_3^1	L_3^1	Ag_3^2	L_3^2	BP	Ag_3^1	L_3^1	Ag ₃ ²	L ₃ ²	BP
T1	3.563	28741.0	347.9	2	2	3	2	91	3	3	3	3	87
Т2	4.205	33919.0	294.8	2	2	2	2	92	5	3	5	3	84
Т3	4.334	34959.0	286.0	3	4	4	3	85	4	4	4	4	84
T4	4.526	36503.1	273.9	3	2	3	2	90	5	4	4	3	84
T5	4.626	37313.1	268.0	5	4	5	3	83	6	4	5	4	80
Т6	4.711	37996.4	263.2	6	90	1	2	1	8	86	1	3	2
T7	4.722	38085.5	262.6	1	2	6	89	1	1	3	8	86	2
T8	4.732	38169.6	262.0	12	82	1	2	3	14	79	1	2	4
т9	4.740	38232.0	261.6	1	2	7	89	1	1	2	- 8	86	2
T10	4,745	38269.2	261.3	7	88	, 1	2	3	- 8	- 85	1	2	3
	117 10	5626512	20110		2	- 40. is03	-	5	C	00	-	-	5
		F			2					FS	(electro	n)	
	۵\/	cm ⁻¹	nm	$\Delta \sigma_2^1$	1.1	$\Delta \sigma_2^2$	1 a ²	RD	$\Delta \sigma_2^1$	12 ¹	$\Delta \sigma_2^2$	1.2 ²	RD
Т1	3 5 2 7	28//7 2	351 5	~₅₃ 2	_₃ 2	~₅₃ 2	_₃ ?	Q1	~ <u></u> €₃	_3 2	~ <u>6</u> ₃ 2	L3 /	87
T2	J.JZ7	20447.2	297 0	2	2	2	2	92	<u>л</u>	л Л	5	-т Л	82
T2	4.175	3/071 1	237.0	5	2 /	5	2 /	83	-т Л	- 5	5	- 5	82
тл	4.550	36/02 2	200.4	3	-	7	3	87	4 5	1	5	1	02 81
14 T5	4.524	26977 Q	274.0	2	5	4	5	70	2	4	10	4	60
та	4.572	27500.0	271.2	12	7	10	10	14	11	7	10	10	12
то т7	4.031	37303.0 27740 E	200.0	12	7 21	40	19	14 16	14	20	47	19	15
то	4.000	2010E 7	204.9	45	21	12 6	20 20	10 2	43	20	12	, ол	201
	4.725	38105.7	202.4	1	2	0	89 2	2	1	2	9	84 2	3
19 T10	4.730	38152.8	262.1	7	8/	1	2	3	9	83	1	2	4
110	4.736	38200.6	261.8	/	8/		2	2	9	84	T	2	3
		_			3/	Ag; axial						,	
		E			(SS (hole)	2			ES	(electro	n)	
-	eV	cm ⁻¹	nm	Ag₃¹	L3 ¹	Ag₃²	L3 ²	BP	Ag₃¹	L3 ¹	Ag₃²	L_{3}^{2}	BP
ľ1	3.327	26834.0	372.7	2	2	2	2	92	3	3	3	3	89
T2	4.229	34109.7	293.2	4	3	4	3	87	4	4	4	4	85
Т3	4.286	34568.4	289.3	2	2	2	2	92	3	3	3	3	87
T4	4.572	36873.0	271.2	6	4	6	4	81	5	4	5	4	83

T5	4.589	37008.8	270.2	3	2	3	2	89	3	3	3	3	88
T6	4 682	37764.4	264.8	26	- 13	26	- 13	22	27	13	27	13	19
T7	4 703	37933.0	263.6	19	28	19	28	6	20	27	20	27	6
тя	4.705 1/712	38004 6	263.0	6	20	6	20	50	6	10	6	10	50
то	4.712	28020 2	203.1	7	20	7	20	10	Q	22	0 0	22	10
T10	4.713	20020.2	202.9	15	22	15	22	19	0 16	22	16	22	19
110	4.721	30074.9	202.0	15	20~	1J	55	J	10	52	10	52	4
		-			3Ag	; non-axi	al			50	(- I h		
	.,	E 1		• 1	. 1	35 (noie)			• 1	ES	(electro	n)	
T 4	ev		nm aca a	Ag₃⁺	L3 ⁺	Ag₃²	L3 ⁴	BP	Ag₃⁺	L3 ⁺	Ag₃²	L3 ⁴	BP
	3.367	2/160.2	368.2	2	2	2	2	92	3	3	3	3	89
12	4.190	33/95./	295.9	3	2	3	2	90	5	4	5	4	83
13	4.244	34234.2	292.1	3	3	3	3	88	4	4	4	4	85
T4	4.501	36306.4	275.4	5	4	5	4	81	5	5	5	5	80
T5	4.590	37023.5	270.1	3	3	3	3	88	4	3	3	3	87
Т6	4.674	37695.9	265.3	29	14	28	13	16	29	14	28	13	16
T7	4.687	37801.3	264.5	26	21	26	20	7	26	21	26	20	7
Т8	4.701	37912.3	263.8	6	34	6	34	20	7	33	7	33	20
Т9	4.718	38053.1	262.8	9	38	9	38	7	10	36	10	36	7
T10	4.733	38173.0	262.0	4	26	4	26	39	5	25	5	26	39
					4/	Ag; axial							
		E			C	GS (hole)				ES	(electro	n)	
	eV	cm⁻¹	nm	Ag₃¹	L_3^1	Ag₃²	L_3^2	BP	Ag ₃ ¹	L_3^1	Ag ₃ ²	L_3^2	BP
T1	3.310	26697.8	374.6	2	2	2	2	91	3	3	3	3	88
T2	4.223	34062.7	293.6	3	3	3	3	87	3	4	3	4	86
Т3	4.283	34546.9	289.5	2	2	2	2	92	3	3	3	3	86
T4	4.574	36894.5	271.0	5	3	5	3	83	4	4	4	4	84
T5	4.584	36972.5	270.5	4	3	4	3	87	3	4	3	4	86
Т6	4.695	37869.2	264.1	17	10	17	10	47	17	10	17	10	45
T7	4.712	38003.7	263.1	9	11	9	11	60	9	10	9	10	62
Т8	4.714	38017.3	263.0	7	42	7	42	3	8	41	8	40	3
Т9	4.718	38051.6	262.8	4	40	4	40	12	5	38	5	38	13
T10	4.736	38199.5	261.8	7	85	1	2	4	9	82	1	3	5
					4Ag	: non-axi	al						
		F			(, SS (hole)				FS	(electro	n)	
	eV	cm ⁻¹	nm	Ag ₃ 1	L3 ¹	Ag ₃ ²	L3 ²	BP	Ag ₃ ¹	L3 ¹	Ag ₃ ²	L ₃ ²	BP
T1	3.344	26973.2	370.7	2	2	2	2	92	3	3	3	-3	89
T2	4.166	33602.8	297.6	4	2	4	2	88	5	4	5	4	82
т3	4.223	34059.2	293.6	2	3	2	3	90	4	4	4	4	84
т4	4 472	36065.2	2773	5	4	5	4	81	6	4	6	4	80
T5	4 563	36806.8	271 7	3	3	3	3	88	3	3	3	२	87
т6	4.505	37619.6	265.8	1	10	1	10	73	5	10	5	10	71
T7	1 692	378/01	264.3	- 28	12	ד 28	12	73 21	28	12	28	12	71 71
т <u>о</u>	4.052	27207 2	204.5	10	20	10	20	6	20	27	20	27	7
	4.099	2/05/.0	203.9	19	20	19	20	10	20	27	20	27	10
19	4.717	20110 4	202.0	4	57 25	4	57 25	10	4	24	4	24	19
110	4.725	56110.4	202.4	11	35	11	35	ð	12	54	12	54	ð
		-			5Ag; h	ead-to-h	iead				/ I ·	,	
		E		. 1	(hole) אנ ר			. 1	ES	(electro	n)	
	eV	cm⁻¹	nm	Ag₃¹	L_3^1	Ag₃²	L_3^2	BP	Ag₃¹	L_3^1	Ag₃²	L_3^2	BP

T1	3.486	28115.9	355.7	3	3	2	2	90	3	4	3	4	86
Т2	4.202	33891.0	295.1	3	2	2	2	91	6	4	5	4	81
Т3	4.258	34339.8	291.2	4	4	4	4	85	4	4	4	5	83
T4	4.530	36537.5	273.7	5	4	8	5	78	5	4	8	5	77
T5	4.547	36674.2	272.7	3	3	3	3	89	5	4	5	4	82
T6	4.698	37891.1	263.9	3	3	32	55	7	3	4	34	52	7
Т7	4.713	38008.9	263.1	7	77	2	10	4	10	74	2	10	4
Т8	4.714	38019.0	263.0	2	10	6	77	5	2	10	8	74	6
Т9	4.720	38070.8	262.7	9	75	3	10	3	11	73	3	10	3
T10	4.727	38123.0	262.3	6	17	25	46	6	7	17	26	44	7
				5A	g; head	-to-tail di	isplaced	k					
		E			(GS (hole)				ES	(electro	n)	
	eV	cm⁻¹	nm	Ag_3^1	L_3^1	Ag_3^2	L_3^2	BP	Ag_3^1	L_3^1	Ag_3^2	L_3^2	BP
T1	3.404	27457.9	364.2	3	2	3	2	90	4	3	3	3	86
Т2	4.164	33585.7	297.7	3	2	3	2	91	6	4	5	4	81
Т3	4.278	34504.5	289.8	5	4	5	4	83	4	5	5	5	82
T4	4.521	36461.2	274.3	7	4	8	5	76	7	5	8	5	76
T5	4.563	36807.1	271.7	3	3	3	2	89	3	3	4	4	85
Т6	4.698	37889.5	263.9	35	19	14	13	19	36	19	15	12	18
Т7	4.707	37962.7	263.4	15	10	29	37	10	16	9	30	35	10
Т8	4.721	38079.1	262.6	4	4	22	64	6	4	5	24	61	6
Т9	4.734	38181.0	261.9	5	60	4	25	5	6	59	5	25	6
T10	4.738	38214.5	261.7	5	27	10	52	5	6	26	11	50	6
					5Ag;	head-to-	tail						
		Е			(GS (hole)				ES	(electro	n)	
	eV	cm⁻¹	nm	Ag_3^1	L_3^1	Ag₃²	L_3^2	BP	Ag_3^1	L_3^1	Ag₃²	L_3^2	BP
T1	3.401	27430.9	364.6	3	2	2	2	90	3	3	3	3	87
Т2	4.147	33448.5	299.0	3	2	3	2	90	5	4	5	4	82
Т3	4.261	34364.8	291.0	5	4	4	4	83	4	4	4	5	83
T4	4.487	36188.1	276.3	6	4	7	5	77	6	4	7	5	77
T5	4.569	36852.0	271.4	4	3	3	3	86	5	4	4	4	84
Т6	4.667	37644.4	265.6	11	6	45	26	11	12	6	47	25	10
Т7	4.678	37727.2	265.1	48	22	6	14	10	49	21	7	13	10
Т8	4.698	37894.9	263.9	5	11	12	62	11	5	11	14	59	11
Т9	4.707	37962.8	263.4	2	6	10	77	5	2	7	12	74	5
T10	4.715	38026.7	263.0	20	65	2	7	5	22	63	2	8	5

 Table S9. XYZ coordinates of optimized
 47
 21.122152000
 4.554465000
 16.333323000
complexes

47 19.502196000 1.811762000 17.503082000

~~~	anlavas			9	18.566364000	1.954084000	20.899203000
con	npiexes.			9	22 314042000	-1 015916000	13 517695000
1Ag	^{n2t} ; E=-38149.187	294210853		9	21 246062000	6 921897000	14 140554000
47	15.229808000	4.977655000	13.299648000	9	16 890888000	2 480694000	19 650969000
47	17.649406000	4.613838000	10.806689000	9	21 681085000	7 069746000	18 788043000
47	16.029450000	1.871135000	11.976449000	9	25 377026000	2 672496000	11 789717000
9	18.578286000	4.468394000	7.408915000	9	23.377020000	7 336570000	15 020051000
9	14.823931000	7.453335000	14.779144000	0	23.171480000	7.330373000	12 875665000
9	15.918946000	-0.495817000	14.155234000	9	22.930002000	1 524012000	12.873003000
9	20.262349000	3.947582000	8.647888000	9	23.177200000	7.062510000	10 565220000
9	15.487690000	-0.654305000	9.541833000	9	20.045720000	7.903319000	17 455256000
9	11.801484000	3.748505000	16.547033000	9	20.045720000	1.307979000	17.455356000
9	13.986434000	-0.906678000	13.290152000	9	23.070924000	1.373001000	12.082102000
9	14.244566000	-1.010072000	15.432010000	9	22.059971000	-2.99/392000	14.3395/1000
9	11.994290000	4.903716000	14.725746000	/	22.916110000	3.196134000	14.332263000
9	17.298470000	-1.541926000	8.752016000	/	22.403561000	4.389833000	14.659883000
9	17.133971000	-1.087440000	10.863037000	9	17.256480000	3.581358000	21.476092000
9	13.509323000	5.044945000	16.250421000	7	19.682694000	0.003310000	16.418653000
9	15.078026000	9.432937000	13.952918000	7	19.422265000	3.602855000	18.628542000
7	14.242997000	3.228900000	13.985563000	7	20.679901000	-0.194947000	15.546793000
7	14.754442000	2.036229000	13.652757000	9	18.004959000	-1.264465000	18.542549000
9	19.888188000	2.842660000	6.827549000	7	20.069778000	4.678486000	18.167947000
7	17.459413000	6.428344000	11.878789000	9	20.718497000	-2.293224000	12.807352000
7	17.733432000	2.820990000	9.683854000	9	16.901866000	-2.183429000	16.925707000
7	16 464555000	6 623306000	12 754568000	9	16.898176000	-0.029207000	17.167574000
9	19 103560000	7 729574000	9 736813000	6	18.894470000	5.321431000	19.955514000
7	17 090498000	1 743816000	10 147524000	6	17.856695000	2.993724000	20.436260000
, q	16 421440000	8 730748000	15 484213000	6	22.575146000	6.755102000	13.970176000
g	20 221237000	8 634767000	11 351048000	6	21.399100000	-1.917698000	13.903149000
a	20.221257000	6 483558000	11.086657000	6	22.930006000	5.308635000	13.843412000
6	18 265522000	1 101535000	8 250581000	6	20.473149000	-1.371550000	14.945039000
6	10,203323000	2 421164000	7 869701000	6	19.763951000	5.716503000	18.953345000
6	14 501212000	0 220002000	1/ 227020000	6	24.500937000	2.232090000	12.698678000
6	14.391313000	-0.330008000 9 252497000	14.337880000	6	23.813026000	4.715485000	12.957083000
6	14.227050000	1 11E047000	14.390003000	6	18.710871000	3.973104000	19.698882000
6	14.257059000	1.115947000	14.475199000	6	18.860480000	-1.051716000	16.360578000
0	10.002900000	7.806080000	13.346902000	6	19.319290000	-1.967348000	15.431727000
0	17.399004000	0.705310000	9.303088000	6	20.343087000	7.068964000	18.693775000
6	12.6/3/15000	4.190264000	15.635081000	6	23.763334000	3.378585000	13.312359000
6	13.361293000	1.707176000	15.368041000	6	17.662901000	-1.138671000	17.252169000
6	18.444452000	2.451097000	8.613119000	1	18.691723000	0.507845000	7.569851000
6	18.271263000	7.492055000	11.924870000	1	18.234851000	9.360725000	13.118753000
6	17.808211000	8.409675000	12.849686000	1	12.785652000	1.239906000	16.147948000
6	16.826381000	-0.6491/5000	9.626980000	1	18.884307000	-2.911775000	15.152904000
6	13.405605000	3.04446/000	15.013090000	1	24.396591000	5.181286000	12.182173000
6	19.459847000	7.590743000	11.021941000	1	18 469116000	5 915156000	20 745691000
6	18.963664000	2.894622000	13.595795000	1	21 221976000	3 568867000	11 144005000
6	19.524366000	0.901238000	12.326446000	1	19 997409000	4 667346000	12 921664000
6	20.394304000	1.624500000	11.527864000	1	20 9/9207000	1 13/668000	10 7378/1000
6	19.837706000	3.609267000	12.768337000	1	19 382367000	-0 158795000	12 158958000
6	18.821104000	1.526160000	13.347123000	1	18 177/65000	0.130733000	12.150550000
6	20.549976000	2.983108000	11.758397000	1 1	17 176052000	1 799632000	15 367011000
6	18.214868000	3.570654000	14.696468000	⊥ 1	15 95/057000	2 80202000	17 1/7220000
6	17.658400000	5.563606000	15.968387000	1	16 222721000	2.03/330000 E 22100F000	17 556512000
6	16.786976000	4.841093000	16.766077000	1	17 2022121000	2.221002000	16 126726000
6	17.339026000	2.856940000	15.522560000	1	10 006165000		14 220702000
6	18.360783000	4.938454000	14.947346000	Т	19.000102000	5.549893000	14.529792000
6	16.628496000	3.483081000	16.533897000				
47	21.921794000	1.447945000	15.010124000				

1Ag	^{h2h} : E=-38149.187	681373842 Ha		6	25.568183000	8.483206000	3.978360000
47	24.856194000	12.743329000	7.995782000	1	25.210399000	7.510853000	4.295765000
47	26.271959000	9.703055000	7.069907000	6	24.760327000	13.345285000	3.706644000
47	27.687723000	12.743329000	6.144032000	1	25.514245000	13.435921000	2.934803000
9	21.009957000	11.293793000	10.536303000	6	26.733713000	8.590030000	3.232717000
9	24.995140000	6.891324000	8.354295000	1	27.286095000	7.700614000	2.957649000
9	22.912302000	12.076860000	11.199478000	6	24.031284000	14.474746000	4.045204000
7	25.682310000	14.595324000	7.377447000	1	24.238592000	15.409928000	3.539441000
9	23.759366000	7.300260000	6.636679000	47	23.718335000	11.422719000	0.850651000
7	23.994089000	10.895636000	8.625089000	47	21.298549000	11.057263000	3.343783000
7	24.414246000	9.750301000	8.072813000	47	22.919773000	8.311645000	2.176117000
9	24.001722000	17.554764000	8.451154000	9	20.751480000	10.764715000	6.883892000
9	22.859160000	6.554602000	8.459925000	9	24.051732000	13.846691000	-0.716494000
6	22.594395000	9.278406000	9.280365000	9	23.791952000	5.726818000	0.320509000
1	21.775413000	8.756957000	9.744369000	9	18.933267000	10.628687000	5.735633000
9	22.933599000	15.747933000	7.934419000	9	22.979493000	5.551901000	4.125956000
9	24.299903000	15.742454000	9.600546000	9	27.746926000	10.371835000	-1.635847000
6	22.903471000	10.627185000	9.349924000	9	25.424180000	5.862173000	1.722207000
6	22.209544000	11.705425000	10.118343000	9	25.825608000	5.384977000	-0.347281000
6	23.585132000	8.773144000	8.457488000	9	26.704434000	11.737055000	-0.315831000
6	25.238709000	15.854317000	7.447133000	9	21.185734000	4.796388000	5.078212000
6	25.943399000	16.661698000	6.569196000	9	21.164735000	5.341360000	2.983144000
1	25.827504000	17.716891000	6.392515000	9	25.830697000	11.190316000	-2.210360000
6	23.799902000	7.373334000	7.982451000	9	24.435360000	15.451346000	0.674627000
6	24.116704000	16.225642000	8.363812000	7	24.792093000	9.706316000	0.249275000
7	26.668276000	14.552389000	6.474602000	7	24.389851000	8.497099000	0.656604000
9	27.595607000	17.186859000	4.278840000	9	19.235742000	9.318233000	7.431727000
9	29.098642000	16.197923000	5.476976000	7	21.434926000	12.848560000	2.202419000
9	27.958950000	15.065435000	4.038003000	7	21.113745000	9.226247000	4.388866000
6	26.833897000	15.781765000	5.976479000	7	22.450840000	13.028032000	1.351459000
6	27.876981000	16.060155000	4.941887000	9	19.710954000	13.556446000	4.341885000
9	22.031753000	12.810242000	9.371760000	7	21.584486000	8.113668000	3.810008000
9	30.724407000	12.843483000	5.082116000	9	22.953565000	15.709573000	-0.872143000
9	31.756811000	11.307984000	3.954635000	9	19.195375000	15.391824000	3.311242000
9	27.631212000	6.926792000	5.910874000	9	18.484539000	13.488218000	2.569597000
9	29.874056000	12.097712000	3.244339000	6	20.530394000	7.497553000	5.680802000
9	28.834465000	7.262591000	7.665781000	1	20.121832000	6.905142000	6.480760000
7	28.700896000	10.928308000	5.764740000	6	19.843235000	9.896594000	6.392104000
7	28.227425000	9.776587000	6.255343000	6	25.062849000	6.134662000	0.454257000
9	29.764571000	6.574934000	5.834996000	6	23.460100000	14.824009000	-0.009393000
6	30.116713000	9.308877000	5.157739000	6	25.219729000	7.586655000	0.136311000
1	30.953008000	8.783992000	4.730044000	6	22.405812000	14.286128000	0.903549000
6	29.830912000	10.662425000	5.100458000	6	21.243025000	7.071217000	4.572755000
6	30.553437000	11.732678000	4.349240000	6	26.539179000	10.714718000	-1.175448000
6	29.066670000	8.797999000	5.901363000	6	26.190292000	8.203785000	-0.633932000
6	28.824408000	7.385784000	6.330129000	1	26.996218000	7.749640000	-1.183677000
6	22.780781000	13.194176000	5.632384000	6	20.479708000	8.870741000	5.512716000
1	22.004168000	13.122248000	6.384408000	6	20.760233000	14.000627000	2.285698000
6	24.522757000	12.117216000	4.324277000	6	21.336935000	14.959659000	1.471727000
6	23.519380000	12.066348000	5.300387000	1	21.027558000	15.978776000	1.316090000
1	23.308681000	11.140767000	5.821588000	6	21.642876000	5.682456000	4.189462000
6	27.181060000	9.843631000	2.852244000	6	25.870025000	9.546527000	-0.526084000
1	28.095491000	9.946971000	2.280744000	6	19.532831000	14.110657000	3.129681000
6	24.854822000	9.621438000	4.325286000	1	23.938700000	9.502050000	4.890537000
6	25.293436000	10.897841000	3.948200000				
6	26.476800000	10.982390000	3.214009000				
1	26.873756000	11.945503000	2.919090000				
6	23.033265000	14.404035000	5.002695000				
1	22.455692000	15.281887000	5.262191000				

2Ag	¹ : F=-38347.9848	55971896 Ha		1	21.529728000	3.615749000	-2.963522000
47	17 533257000	6 885894000	-0 528058000	6	19 818604000	2 355438000	-3 182113000
47	14 402702000	5 903562000	-1 543253000	6	18 462863000	2 263644000	-3 419582000
47 //7	16 761070000	3 /8//18000	-0 670392000	1	17 978937000	1 296107000	-3 /3//26000
4/ 0	10.701070000	10 171022000	1 101476000	6	17.578557000	2 420769000	2 622407000
9	17.020055000	10.171033000	-1.101470000	1	17.742314000	2 225055000	-3.033497000
9	17.050955000	11.700879000	-0.201758000	L C	10.070150000	5.555665000	-5.799508000
9	17.008001000	9.986577000	0.959045000	0	18.356482000	4.088895000	-3.018307000
9	12.559316000	8.355048000	-3.0191/1000	6	16.226078000	5.903514000	-4.196509000
9	11.869596000	8.185133000	-0.985319000	1	15./169/2000	4.958227000	-4.334416000
9	12.065150000	10.139485000	-1.89/429000	47	17.48/106000	2.851932000	-6.720998000
9	12.460541000	5.026121000	-4.003285000	47	20.228468000	4.868062000	-6.633463000
9	11.185220000	3.274297000	-3.998401000	47	17.116314000	6.264254000	-7.303143000
9	11.155777000	4.645873000	-2.327381000	9	14.707973000	0.890041000	-7.202662000
9	16.021017000	0.157034000	-2.271942000	9	14.991165000	1.531897000	-5.165976000
9	15.633935000	0.561744000	-0.188045000	9	12.993452000	1.435471000	-6.000666000
9	14.198115000	-0.560143000	-1.360823000	9	18.345215000	-0.515173000	-8.020481000
9	18.940763000	1.328608000	-0.179057000	9	19.395429000	-1.574385000	-6.455134000
9	20.942180000	1.472795000	0.637212000	9	17.776965000	-0.220939000	-5.962440000
9	19.222624000	1.791295000	1.908140000	9	23.855812000	1.627802000	-6.237349000
7	19.011484000	5.428090000	-0.159316000	9	23.262814000	3.312271000	-7.461953000
7	15.996999000	8.321235000	-0.738771000	9	23.022203000	3.403849000	-5.322139000
7	14.778312000	7.939677000	-1.136724000	9	18.065041000	10.002134000	-8.892387000
7	14.050859000	3.865295000	-1.952739000	9	16.683552000	9.230506000	-7.426027000
7	14.863399000	2.924385000	-1.454988000	9	17.947752000	10.922504000	-6.942875000
7	18.672621000	4.141695000	-0.004830000	9	13,789251000	6.703956000	-9.200248000
6	20 855450000	4 322309000	0 446490000	9	12 283741000	6 643558000	-7 648613000
1	21 871261000	4 086936000	0 712505000	9	14 209867000	7 557773000	-7 267451000
6	20 316380000	5 550283000	0 107442000	7	15 583365000	3 714290000	-6 910947000
6	20.010000000	6 870865000	-0.018667000	7	19.3033030000	1 08/612000	-6 733145000
6	21.003103000	10 20/070000	0.018007000	7	20 /01 20000	2 77202000	6 642512000
6	17.247073000	0 657076000	-0.230743000	7	20.491289000	2.772020000 6.054271000	-0.042313000 6.647554000
6	10.012109000	9.057070000	1 027620000	7	19.900105000	0.954271000	-0.047554000
1	14.7791860000	10.171204000	-1.05/029000	7	10.055200000	1.500285000	7.111450000
T C	14.472026000	11.201048000	-1.088534000		15.422798000	4.973148000	-7.331841000
0	14.037901000	9.037469000	-1.323211000	0	13.380533000	4.089153000	-7.039530000
6	12.626650000	8.932422000	-1.805411000	1	12.318487000	3.966606000	-6.991266000
6	11.951099000	4.049061000	-3.225116000	6	14.3/4/66000	3.1/081/000	-6.731264000
6	13.036113000	3.253424000	-2.5/503/000	6	14.259686000	1./5136/000	-6.279145000
6	13.173210000	1.880321000	-2.483505000	6	18.834153000	-0.406362000	-6.775103000
1	12.530003000	1.115863000	-2.883312000	6	19.819424000	0.712496000	-6.660070000
6	14.347517000	1.730111000	-1.765241000	6	21.195567000	0.654584000	-6.518468000
6	15.050510000	0.466202000	-1.391632000	1	21.822696000	-0.215183000	-6.430024000
6	19.718953000	2.007964000	0.679923000	6	21.567690000	1.988146000	-6.511559000
6	19.769529000	3.467052000	0.356145000	6	22.933451000	2.581908000	-6.384803000
9	21.077867000	7.271175000	-1.304886000	6	22.160172000	7.635665000	-5.761493000
9	20.356926000	7.841063000	0.644667000	6	20.808202000	7.941809000	-6.323962000
9	22.249222000	6.805784000	0.453481000	6	20.224224000	9.170388000	-6.576217000
9	15.418845000	9.403331000	-4.462765000	1	20.640655000	10.151897000	-6.428704000
9	20.525804000	1.237630000	-2.974428000	6	18.974962000	8.829755000	-7.071657000
6	18.167717000	7.203817000	-3.700023000	6	17.911400000	9.748808000	-7.584362000
1	19.210228000	7.300031000	-3.427245000	6	13.593658000	6.534626000	-7.885306000
6	17.454019000	8.370378000	-3.921451000	6	14.108273000	5.213120000	-7.410052000
1	17.919808000	9.340904000	-3.811344000	9	22.881450000	6.853682000	-6.578339000
6	16.120189000	8.282164000	-4.265145000	9	22.851840000	8,754670000	-5.542768000
6	15.492753000	7.061416000	-4.407681000	9	22.068691000	6.979972000	-4.585913000
1	14.446831000	7.023205000	-4.681126000	2		2.07.007.2000	
6	17 578140000	5 941450000	-3 839336000				
6	19 732325000	4 726398000	-3 374734000				
1	20 262520000	5 667400000	-3 347161000				
- 6	20.202333000	3 57206/1000	-3 148318000				
0	20.707070000	0.01000	2.140210000				

24-2	. F 20247 0704			c	10 0001 0000	7 525120000	0.001000000
	; E=-38347.9781	98833756 Ha	6 72000000	0	19.980168000	7.535130000	-9.801988000
47	17.48/106000	2.851932000	-6.720998000	1	19.050563000	8.073906000	-9.930265000
47	20.228468000	4.868062000	-6.633463000	6	21.123411000	8.263716000	-9.522335000
47	17.116314000	6.264254000	-7.303143000	1	21.100778000	9.343525000	-9.465295000
9	14.990992000	0.904350000	-8.152826000	6	22.308490000	7.589654000	-9.306311000
9	14.690613000	1.195065000	-6.040128000	6	22.380189000	6.213428000	-9.362608000
9	12.992338000	1.226632000	-7.386546000	1	23.320659000	5.711599000	-9.173606000
9	17.897280000	-0.369748000	-7.267278000	6	21.226326000	5.499140000	-9.651992000
9	19.466085000	-1.578965000	-6.392064000	1	21.299343000	4.420653000	-9.708624000
9	18.230937000	-0.320559000	-5.137212000	47	20.904146000	6.853781000	-12.953792000
9	23.839688000	1.604126000	-7.189025000	47	20.305421000	3.459961000	-12.476618000
9	22.936087000	3.270559000	-8.234077000	47	23.526817000	4.737907000	-12.235006000
9	23.308536000	3.408595000	-6.118563000	9	23.175697000	11.176883000	-13.083979000
9	17.409032000	9.546720000	-8.383025000	9	21.785104000	9.975872000	-14.229003000
9	16.618979000	9.442754000	-6.377774000	9	21.557778000	10.133889000	-12.093265000
9	18.035314000	10.994965000	-6.899798000	9	18.843718000	8.381614000	-15.447568000
9	14.216950000	6.932935000	-9.455981000	9	16.732266000	8.259533000	-14.999517000
9	12.415084000	6.612291000	-8.305391000	9	18.166334000	8.637997000	-13.417542000
9	14.172537000	7,469504000	-7.369125000	9	18.046819000	2.292989000	-15.412983000
7	15.600330000	3.661563000	-7.218766000	9	17,707890000	2.162292000	-13.288943000
7	19.417375000	1.991920000	-6.540093000	9	16.104124000	2.788934000	-14.607380000
7	20 488230000	2 773378000	-6 738928000	9	19 778847000	0 383607000	-11 693734000
7	19 905426000	6 946552000	-6 396802000	9	20 790851000	-0.815407000	-10 199252000
7	18 757896000	7 496002000	-6 81015/000	a	19 81015/000	1 024665000	-9 636085000
7	15 /68110000	1 963723000	-7.496644000	0	25 957556000	2 220515000	-11 862836000
6	12 496009000	2 006120000	7 961922000	0	25.557550000	2.320313000	0.0505280000
1	13.460906000	2 925/27000	9 111115000	9	25.303818000	1 11601000	10 064441000
L L	12.432030000	2.053437000	-0.111113000	9	25.903040000	6 112655000	12 929246000
6	14.422124000	5.008200000	-7.457520000	9	20.010364000	0.112055000	-13.828540000
6	14.269377000	1.592563000	-7.252770000	9	27.346247000	7.001025000	-12.509074000
6	18.852979000	-0.394423000	-6.323544000	9	26.410953000	5.8828/1000	-11.696631000
6	19.831789000	0.721875000	-6.506860000	/	22.869596000	7.627603000	-12.768554000
6	21.203874000	0.656992000	-6.681901000	/	19.113495000	5.963996000	-13.661482000
1	21.831/03000	-0.216513000	-6.708042000	/	18.970516000	4.635510000	-13.613/96000
6	21.566180000	1.985116000	-6.826336000	/	21.829344000	2.356597000	-11.4/314/000
6	22.919011000	2.565608000	-7.082271000	/	23.093550000	2.802964000	-11.496978000
6	22.068097000	7.641839000	-5.427569000	7	23.894693000	6.770644000	-12.678009000
6	20.724018000	7.932746000	-6.015863000	6	24.755867000	8.820722000	-12.889643000
6	20.105251000	9.162028000	-6.177625000	1	25.448760000	9.640018000	-12.969968000
1	20.497429000	10.141329000	-5.964763000	6	23.371487000	8.860084000	-12.900385000
6	18.863196000	8.823017000	-6.684178000	6	22.471528000	10.041621000	-13.076687000
6	17.728460000	9.709050000	-7.082790000	6	17.949695000	7.941719000	-14.550531000
6	13.747703000	6.551994000	-8.253036000	6	18.062131000	6.469921000	-14.315244000
6	14.205305000	5.179715000	-7.878774000	6	17.203007000	5.456372000	-14.705309000
9	22.682309000	6.625099000	-6.057746000	1	16.272333000	5.535727000	-15.239949000
9	22.862315000	8.712118000	-5.500646000	6	17.829064000	4.315059000	-14.230583000
9	21.974991000	7.294096000	-4.133907000	6	17.416903000	2.885435000	-14.385867000
9	15.379854000	3.168462000	-11.004638000	6	20.550491000	0.434179000	-10.600302000
9	23.415058000	8.291836000	-9.029165000	6	21.823352000	1.176941000	-10.839672000
6	17.661056000	5.946309000	-10.770430000	6	23.102481000	0.838626000	-10.433287000
1	17.695684000	6.983669000	-11.077263000	1	23.427194000	-0.037312000	-9.899420000
6	16.518855000	5.217823000	-11.056557000	6	23.864781000	1.906813000	-10.872669000
1	15.669161000	5.674959000	-11.545416000	6	25.330962000	2.147156000	-10.689710000
6	16.477722000	3.880343000	-10.717752000	6	26.357905000	6.782681000	-12.693454000
6	17.540080000	3.256819000	-10.096893000	6	25.031460000	7.472187000	-12.742803000
1	17.481862000	2.202860000	-9.856751000				
6	18.672364000	4.004251000	-9.806654000				
1	19.493838000	3.506997000	-9.305563000				
6	18.761997000	5.360358000	-10.140110000				
6	20.002259000	6.139243000	-9.871885000				

2Ag	³ ; E=-38347.9811 ⁻	71924846 Ha		6	20.307543000	4.577335000	-16.335544000
47	20.904146000	6.853781000	-12.953792000	1	20.024940000	3.538183000	-16.418606000
47	20.305421000	3.459961000	-12.476618000	6	19.367958000	5.529307000	-16.687051000
47	23.526817000	4.737907000	-12.235006000	1	18.383638000	5.242905000	-17.031502000
9	23.198325000	11.164416000	-13.177097000	6	19.713865000	6.863208000	-16.609777000
9	21.854433000	10.006099000	-14.411111000	6	20.963132000	7.263996000	-16.184655000
9	21.541744000	10.096803000	-12.278641000	1	21.203143000	8.317086000	-16.127727000
9	18.809881000	8.732624000	-13.995314000	6	21.889502000	6.293950000	-15.825904000
9	16.735015000	8.465446000	-14.561962000	1	22.859302000	6.624877000	-15.473414000
9	17.284171000	8.580770000	-12.477439000	47	24.790828000	3.747706000	-18.319773000
9	17.783958000	2.463417000	-14.912306000	47	21.660273000	4.730038000	-19.334968000
9	17.356472000	2.300808000	-12.804866000	47	24.018640000	7.149182000	-18.462107000
9	15.822900000	2.995498000	-14.170175000	9	24.834604000	-0.652894000	-19.093684000
9	20.296360000	-0.012708000	-12.846772000	9	24.177657000	-0.656781000	-17.042075000
9	20.923986000	-1.135207000	-11.105086000	9	25.494078000	0.907009000	-17.755614000
9	19.661208000	0.609322000	-10.881774000	9	19.596029000	2.492589000	-20.436878000
9	25.976929000	2.664407000	-11.880273000	9	19.115901000	2.337220000	-18.340608000
9	25.451482000	2.870310000	-9.799710000	9	19.250004000	0.549055000	-19.546707000
9	25.994554000	0.929398000	-10.584285000	9	19.400978000	5.781596000	-21.567851000
9	26.451870000	5.927708000	-14.063599000	9	18.109427000	7.475373000	-21.161811000
9	27.353463000	7.641146000	-13.102157000	9	18.387598000	5.933622000	-19.672759000
9	26.576577000	6.008334000	-11.911281000	9	23.349585000	10.404350000	-19.700738000
7	22.880098000	7.627288000	-12.800381000	9	22.788669000	9.993407000	-17.659920000
7	18.956898000	6.055413000	-13.194568000	9	21.496337000	11.197920000	-18.916316000
7	18.797706000	4.727133000	-13.223576000	9	26.279227000	9.311108000	-18.144017000
7	21.872320000	2.247647000	-11.765241000	9	28.083260000	9.209019000	-16.947734000
7	23.098829000	2.760114000	-11.607824000	9	26.144866000	8.939470000	-16.026448000
7	23.902819000	6.762598000	-12.745693000	7	26.257509000	5.224630000	-17.906628000
6	24.758049000	8.785986000	-13.160889000	7	23.290568000	2.274521000	-18.657467000
1	25.447927000	9.587351000	-13.358966000	7	22.061235000	2.683689000	-18.998995000
6	23.379494000	8.843663000	-13.050217000	7	21.279374000	6.783927000	-19.670637000
6	22.489827000	10.033502000	-13.223110000	7	22.139450000	7.704278000	-19.221504000
6	17.663901000	8.105387000	-13.673868000	7	25.900682000	6.508232000	-17.774007000
6	17.831316000	6.617958000	-13.646570000	6	28.063698000	6.360218000	-17.236304000
6	16.905487000	5.642134000	-13.980421000	1	29.066219000	6.608365000	-16.934094000
1	15.910287000	5.769609000	-14.369799000	6	27.551261000	5.121378000	-17.586096000
6	17.573564000	4.464597000	-13.694136000	6	28.241563000	3.794926000	-17.610567000
6	17.126685000	3.052831000	-13.892964000	6	24.445926000	0.140968000	-18.086494000
6	20.697035000	0.097286000	-11.564376000	6	23.244582000	0.953396000	-18.457793000
6	21.919620000	0.949395000	-11.447963000	6	21.960437000	0.477188000	-18.674429000
6	23.202160000	0.593287000	-11.067128000	1	21.601241000	-0.535141000	-18.603278000
1	23.564507000	-0.369073000	-10.750408000	6	21.254421000	1.615767000	-19.014696000
6	23.906334000	1.779567000	-11.188855000	6	19.801122000	1.746929000	-19.341759000
6	25.339919000	2.057833000	-10.863901000	6	19.012119000	6.652223000	-20.623657000
6	26.359298000	6.756715000	-13.001310000	6	20.172640000	7.418062000	-20.075129000
6	25.034281000	7.445394000	-12.961194000	6	20.302526000	8.783955000	-19.890312000
9	25.294003000	0.990160000	-14.410703000	1	19.589091000	9.558663000	-20.110407000
9	18.808555000	7.791263000	-16.949001000	6	21.567749000	8.906437000	-19.343283000
6	22.171587000	2.569977000	-15.256618000	6	22.300408000	10.134226000	-18.909298000
1	21.129620000	2.286515000	-15.336356000	6	26.875905000	8.670698000	-17.124977000
6	23.080598000	1.588582000	-14.900447000	6	26.974141000	7.200822000	-17.376481000
1	22.762934000	0.572020000	-14.709174000	9	27.937375000	3.098967000	-18.717071000
6	24.411983000	1.928245000	-14.772023000	9	27.888718000	3.029872000	-16.562281000
6	24.854717000	3.216653000	-14.997221000	9	29.567221000	3.948315000	-17.569405000
1	25.904081000	3.452807000	-14.885273000				
6	23.930590000	4.184339000	-15.363794000				
1	24.296728000	5.187235000	-15.546245000				
6	22.570368000	3.886785000	-15.500350000				
6	21.585322000	4.930890000	-15.893251000				

3Ag	^{axial} ; E=-39072.93	1567094573 Ha		47	4.777681000	-8.146895000	6.464247000
47	6.366500000	-2.025788000	5.975201000	9	3.665164000	-7.531351000	0.776799000
47	8.661979000	-2.544564000	8.455404000	9	2.106700000	-6.233757000	7.187527000
47	9.584260000	-2.897967000	5.078021000	7	7.471495000	-9.530156000	2.625315000
9	10.696398000	-3.513791000	10.765475000	9	10.107173000	-9.959727000	8.084259000
9	12.255208000	-4.811470000	4.354915000	9	0.345842000	-6.108761000	5.936675000
7	6.890563000	-1.514502000	8.916917000	9	1.091892000	-8.035012000	6.583681000
9	4.254917000	-1.085074000	3.457854000	7	8.380977000	-9.715240000	3.590093000
9	14.016113000	-4.936022000	5.605734000	9	10.275552000	-7.809888000	8.020295000
9	13.269736000	-3.009964000	4.958496000	9	3.896814000	-7.788879000	9.230849000
7	5.981020000	-1.329471000	7.952185000	7	3.461550000	-7.537789000	4.905449000
9	4.086280000	-3.234886000	3.522013000	7	6.209741000	-8.596112000	7.950006000
9	10.466083000	-3.253951000	2.311721000	7	3.956253000	-7.450377000	3.662122000
7	10.900361000	-3.507076000	6.636882000	7	7.499940000	-8.713736000	7.612552000
7	8.152246000	-2.449078000	3.592118000	9	10.331061000	-11.326004000	4.978758000
7	10.405596000	-3.594535000	7.880175000	9	10.225218000	-8.832180000	9.927156000
7	6.862070000	-2.331204000	3.929640000	9	4.527803000	-5.654842000	1.393255000
9	4.030878000	0.281085000	6.563450000	9	11.293324000	-9.537491000	4.250997000
9	4.136742000	-2.212779000	1.615062000	9	2.419157000	-5.766031000	0.909512000
9	9.833765000	-5.390252000	10.148878000	9	11.503675000	-11.396009000	3.160475000
9	3.068513000	-1.507194000	7.291637000	9	4.307262000	-9.653972000	10.234052000
9	11.942373000	-5.279135000	10.632810000	9	4.921130000	-7.792478000	11.140534000
9	2.858467000	0.351541000	8.381847000	6	2.295969000	-6.877943000	4.927694000
9	10.052816000	-1.391497000	1.304713000	6	2.017887000	-6.340992000	3.681716000
9	9.440803000	-3.255706000	0.402616000	6	3.105240000	-6.732897000	2.920946000
6	12.065891000	-4.167011000	6.614656000	6	9.437132000	-10.327955000	3.044362000
6	12.343865000	-4.704079000	7.860611000	6	7.964450000	-10.020225000	1.483666000
6	11.256494000	-4.312159000	8.621348000	6	6.131413000	-8.519894000	9.281715000
6	4.924920000	-0.716685000	8.497937000	9	7.893667000	-10.379627000	-0.819482000
6	6.397712000	-1.024290000	10.058555000	6	9.224787000	-10.550337000	1.694452000
6	8.230487000	-2.525593000	2.260413000	6	7.396061000	-8.593905000	9.843019000
9	6.468858000	-0.664198000	12.361595000	6	8.222269000	-8.715354000	8.739171000
6	5.137377000	-0.494162000	9.847808000	9	6.795153000	-8.679218000	-0.051342000
6	6.965795000	-2.451535000	1.699192000	9	6.051460000	-10.675730000	0.276721000
6	6.139679000	-2.329731000	2.803056000	6	9.711044000	-8.836185000	8.696842000
9	7.566879000	-2.365095000	11.593856000	6	10.644617000	-10.651774000	3.861046000
9	8.310990000	-0.368865000	11.265061000	6	7.174802000	-9.941114000	0.216821000
6	4.650919000	-2.208715000	2.845377000	6	1.456337000	-6.816278000	6.164448000
6	3.717379000	-0.392904000	7.681319000	6	3.420993000	-6.423285000	1.492682000
6	7.187486000	-1.103207000	11.325336000	6	4.809247000	-8.436899000	9.976117000
6	12.905510000	-4.228703000	5.377900000	1	4.477337000	-0.032633000	10.561077000
6	10.940607000	-4.621839000	10.049570000	1	13.198226000	-5.284559000	8.162140000
6	9.552471000	-2.608619000	1.565597000	1	6.690797000	-2.482294000	0.659060000
17	4.435737000	-4.243760000	10.105364000	1	7.670978000	-8.563321000	10.883176000
6	6.792298000	-5.347634000	6.383593000	1	9.884909000	-11.011741000	0.981177000
6	7.357798000	-5.441932000	7.657968000	1	1.163467000	-5.760600000	3.380190000
6	5.464093000	-4.911702000	6.304784000	1	10.644116000	-6.808127000	4.193235000
6	4.737467000	-4.580367000	7.438084000	1	9.399808000	-6.209361000	6.193931000
6	6.639469000	-5.125238000	8.799769000	1	7.261116000	-5.830478000	1.768000000
6	5.333016000	-4.682404000	8.682555000	1	5.986731000	-5.257464000	3.754391000
17	9.925070000	-6.800682000	1.438525000	1	4.961053000	-4.834136000	5.349826000
6	7.568411000	-5.696500000	5.160147000	1	3.716792000	-4.235583000	7.350636000
6	7.002819000	-5.602663000	3.885782000	1	7.099516000	-5.214404000	9.775769000
6	8.896709000	-6.132131000	5.238978000	1	8.373774000	-5.787466000	7.789344000
6	9.623370000	-6.463563000	4.105731000				
6	7.721197000	-5.919369000	2.744007000				
6	9.027757000	-6.361890000	2.861257000				
47	7.995441000	-9.019073000	5.567067000				

47 5.699961000 -8.500297000 3.086864000

3Ag	^{nonaxial} ; E=-39072.	930155365495 H	la	47	9.584260000	-2.897967000	5.078021000
47	11.567529000	3.158635000	5.567067000	9	10.701852000	-2.750173000	10.677603000
47	9.272050000	3.677412000	3.086864000	9	12.385911000	-4.028177000	4.317797000
47	8.349769000	4.030814000	6.464247000	7	6.751198000	-1.788347000	8.944989000
9	7.234191000	3.884132000	0.865189000	9	4.220355000	-1.345348000	3.796343000
9	5.548270000	5.164215000	7.223911000	9	14.255942000	-3.876073000	5.403597000
7	11.182915000	2.921158000	2.597237000	9	13.170040000	-2.090834000	4.844596000
9	13,713288000	2,477161000	7,745899000	7	5.878687000	-1.504436000	7,969596000
9	3 678336000	5 011082000	6 138037000	9	4 022081000	-3 480726000	3 622330000
g	4 764639000	3 226421000	6 698280000	9	10 130513000	-3 956712000	2 004850000
7	12 055551000	2 63790/000	3 572693000	7	10.130313000	-3 200005000	6 624702000
, 0	12.033331000	A 61248000	7 920799000	, 7	8 08018/000	-2 716131000	2 50/728000
9	7 802460000	4.012469000 5.097214000	0 527527000	7	10 596290000	2 220107000	7 002795000
9	7.802409000 6.057520000	3.067314000	9.557557000	7	10.360269000	-5.259107000	2.096127000
/	6.957520000	4.333802000	4.917468000	/	6.821//3000	-2.545685000	3.986137000
/	9.844642000	3.848217000	7.947604000	9	3.982592000	0.175492000	6.608278000
/	7.347942000	4.3/2541000	3.638367000	9	3.981/19000	-2.252890000	1.842458000
7	11.112129000	3.678181000	7.556223000	9	11.059306000	-4.864247000	10.449784000
9	13.952303000	0.961930000	4.935947000	9	2.928502000	-1.574150000	7.302454000
9	13.951819000	3.383894000	9.700149000	9	12.726929000	-3.520887000	10.736662000
9	6.875418000	5.998029000	1.092020000	9	2.811362000	0.269663000	8.427109000
9	15.007133000	2.709505000	4.237738000	9	10.140509000	-1.836691000	1.602881000
9	5.208761000	4.653794000	0.804585000	9	9.167756000	-3.188744000	0.222869000
9	15.122760000	0.863456000	3.116766000	6	12.296634000	-3.409417000	6.584692000
9	7.793878000	2.967275000	9.939524000	6	12.794284000	-3.591257000	7.863583000
9	8.765795000	4.319984000	11.319477000	6	11.666026000	-3.473022000	8.657935000
6	5.637823000	4.544041000	4.957418000	6	4.818995000	-0.905037000	8.526569000
6	5.140298000	4.726114000	3.678416000	6	6.234030000	-1.367225000	10.103403000
6	6.268526000	4.607059000	2.884143000	6	8.099630000	-2.804121000	2,260084000
6	13 115595000	2 038970000	3 015901000	9	6 239876000	-1 164414000	12 425707000
6	11 700345000	2.00063000	1 438924000	6	4 992648000	-0 791933000	9 895371000
6	0 82/085000	2.300003000	0 282270000	6	6 812701000	-2 690840000	1 757960000
0	11 604221000	2 205066000	0 002261000	6	6.045107000	2.030840000	2 202/12000
9	12.042024000	2.293900000	-0.883201000	0	7 240847000	-2.323702000	2.090413000
0	12.942034000	1.925482000	1.04/113000	9	7.349847000	-2.81/963000	11.576113000
0	11.119850000	3.822360000	9.784486000	9	8.113705000	-0.808059000	11.403040000
6	11.888556000	3.001502000	8.644071000	6	4.560966000	-2.400563000	3.034040000
9	10.585210000	3.950554000	-0.034516000	6	3.629521000	-0.507783000	/./1300/000
9	9.8201/5000	1.941202000	0.139/26000	6	6.984547000	-1.542037000	11.384245000
6	13.372776000	3.532178000	8.508547000	6	13.032516000	-3.358205000	5.285337000
6	14.305288000	1.642728000	3.829647000	6	11.541501000	-3.650289000	10.137620000
6	10.949820000	2.674536000	0.158038000	6	9.386478000	-2.952899000	1.517910000
6	4.901855000	4.493521000	6.256749000	1	11.443214000	3.848065000	10.810452000
6	6.393696000	4.783940000	1.404404000	1	4.125653000	4.917943000	3.375459000
6	8.547165000	4.083995000	10.024455000	1	13.613130000	1.499639000	0.921799000
17	5.542481000	1.080988000	1.772022000	1	4.321777000	-0.365903000	10.620781000
6	8.486310000	0.653825000	5.205734000	1	13.809055000	-3.782554000	8.166452000
6	8.890811000	0.510069000	3.875768000	1	6.490305000	-2.716959000	0.732042000
6	7.140115000	0.960080000	5.431178000	1	8.339453000	0.519448000	1.803417000
6	6.238316000	1.102861000	4.389606000	1	9.917925000	0.275814000	3.629247000
6	6.672713000	0.934050000	3.087491000	1	6.760262000	1.103261000	6.434421000
6	8.000763000	0.646743000	2.822992000	1	5.203081000	1.336851000	4.596354000
17	12 390911000	0.053741000	9 768296000	- 1	8 014953000	0.857030000	7 911339000
6	9 446642000	0.479554000	6 334779000	1	9 593602000	0.613762000	9 737121000
6	9.440042000	0.473034000	7 664775000	1	12 72002000	-0.202256000	6 9/2979000
6	10 7070/7000	0.023003000	6 100 2000	1 1	11 1776/0000	0.203230000	5 106024000
C C	11 604706000	0.173304000	0.109200000	T	11.1/2048000	0.030213000	3.100024000
0 C	11,094/06000		7.130823000				
b C	11.200393000	0.199012000	8.452941000				
0	9.932256000	0.480516000	o./1/521000				
47	6.366500000	-2.025/88000	5.975201000				
47	8.661979000	-2.544564000	8.455404000				

4Ag	^{axial} : E=-43396.90 [°]	7474603431 Ha		6	8.045857000	0.718155000	8.853427000
47	11.092861000	3.085206000	5.197100000	1	8.427976000	0.651842000	9.864439000
47	10.073737000	3.303799000	8.586437000	6	8.875666000	0.436864000	7.778838000
47	7.828223000	3.910675000	6.084918000	1	9.892397000	0.141160000	7.999163000
9	13.913442000	1.506363000	4.498053000	6	8.416820000	0.499150000	6.460176000
9	15.686284000	1.621570000	5.733264000	6	7.082888000	0.874186000	6.265993000
9	14.661342000	3.428795000	5.121695000	1	6.662726000	0.929470000	5.271330000
9	13.566080000	0.799757000	10.732647000	6	6.245152000	1.168481000	7.330658000
9	11.454131000	0.656513000	10.269304000	1	5.219458000	1.458546000	7.147375000
9	12.285145000	2.534648000	10.922248000	47	6.631853000	-2.400971000	6.571429000
9	8.771410000	3.129414000	11.659285000	47	7.650977000	-2.619564000	3.182093000
9	9.629865000	5.101696000	11.518875000	47	9.896491000	-3.226440000	5.683611000
9	7.737173000	4.820362000	12.532683000	9	3.811029000	-0.822010000	7.270432000
9	4.452610000	4.415616000	7.375661000	9	2.038284000	-0.937555000	6.035110000
9	5.484582000	6.186381000	6.702451000	9	3.063524000	-2.744583000	6.646771000
9	4.292354000	6.253049000	8.508672000	9	4.158927000	-0.115219000	1.035920000
9	5.573599000	3.586730000	1.812141000	9	6.270787000	0.028350000	1.499553000
9	5.644582000	2.279123000	3.532269000	9	5.440185000	-1.849884000	0.846393000
9	5.639635000	4.415365000	3.811759000	9	8.952305000	-2.446210000	0.109130000
9	10.889829000	2.502142000	0.548323000	9	8.095111000	-4.419049000	0.249658000
9	11.980035000	2.782932000	2.401044000	9	9.987676000	-4.136589000	-0.764060000
9	11.389590000	4.489419000	1.220842000	9	13.272127000	-3.733181000	4.392857000
7	12.412493000	2.605958000	6.785495000	9	12.238997000	-5.503126000	5.066454000
7	11.914651000	2.431627000	8.016662000	9	13.431206000	-5.570962000	3.260242000
7	8.254117000	4.244609000	9.047226000	9	12.151209000	-2.901623000	9.956267000
7	7.384241000	4.522403000	8.068983000	9	12.079995000	-1.593926000	8.236227000
7	8.349927000	3.530999000	4.060018000	9	12.085297000	-3.730169000	7.956617000
7	9.639135000	3.463731000	3.700243000	9	6.835161000	-1.816923000	11.220177000
6	13.647722000	2.091298000	6.764383000	9	5.744875000	-2.097619000	9.367489000
6	13.972879000	1.560814000	8.002007000	9	6.335025000	-3.804142000	10.547786000
1	14.886076000	1.079487000	8.305769000	7	5.312220000	-1.921667000	4.983067000
6	12.836328000	1.803321000	8.754252000	7	5.810149000	-1.747242000	3.751950000
6	7.728077000	4.650977000	10.205996000	7	9.470421000	-3.560719000	2.721352000
6	6.484843000	5.219936000	9.994469000	7	10.340305000	-3.838539000	3.699589000
1	5.804260000	5.631194000	10.719107000	7	9.374808000	-2.846362000	7.708470000
6	6.317923000	5.109059000	8.624325000	7	8.085606000	-2.779168000	8.068313000
6	7.605564000	3.446826000	2.950583000	6	4.077017000	-1.406942000	5.004143000
6	8.414612000	3.319938000	1.835316000	6	3.751975000	-0.876308000	3.766551000
1	8.121411000	3.230739000	0.803444000	1	2.838818000	-0.394914000	3.462774000
6	9.692746000	3.335255000	2.370620000	6	4.888564000	-1.118801000	3.014358000
6	14.483290000	2.162374000	5.525359000	6	9.996500000	-3.967071000	1.562592000
6	12.543449000	1.449163000	10.176770000	6	11.239539000	-4.536416000	1.774179000
6	8.466882000	4.429202000	11.485771000	1	11.919987000	-4.947982000	1.049590000
6	5.134093000	5.495794000	7.799485000	6	11.406380000	-4.425711000	3.144340000
6	6.112707000	3.441894000	3.022273000	6	10.119217000	-2.761947000	8.817861000
6	10.994425000	3.276707000	1.633868000	6	9.310216000	-2.634925000	9.933147000
35	12.123670000	-0.828546000	1.692638000	1	9.603460000	-2.545499000	10.964987000
6	10.991273000	-0.411908000	3.144063000	6	8.032062000	-2.650337000	9.397899000
6	9.678255000	-0.034680000	2.914869000	6	3.241368000	-1.478132000	6.243103000
1	9.296039000	0.031293000	1.903868000	6	5.181584000	-0.764488000	1.591902000
6	8.848460000	0.246735000	3.989443000	6	9.257644000	-3.745778000	0.282772000
1	7.831679000	0.542252000	3.769112000	6	12.589951000	-4.813015000	3.969271000
6	9.307414000	0.184943000	5.308086000	6	11.612072000	-2.756808000	8.746146000
6	10.641392000	-0.189896000	5.502279000	6	6.730404000	-2.591534000	10.134677000
1	11.061611000	-0.244854000	6.496934000				
6	11.479084000	-0.484429000	4.437653000				
1	12.504807000	-0.774363000	4.620969000				
35	5.600515000	1.512022000	10.075738000				

6 6.732913000 1.095646000 8.624248000

4Ag	^{nonaxial} ; E=-43396.9	904035228559 H	ła	6	13.118861000	6.008637000	7.198619000
47	11.092861000	3.085206000	5.197100000	1	14.157036000	5.817607000	6.964359000
47	10.073737000	3.303799000	8.586437000	6	12.196029000	6.169075000	6.176380000
47	7.828223000	3.910675000	6.084918000	1	12.563830000	6.082962000	5.161953000
9	13.888077000	1.899668000	4.481658000	6	10.844733000	6.423798000	6.435716000
9	15.735607000	2.065160000	5.602849000	6	10.456360000	6.486686000	7.776272000
9	14.638841000	3.842040000	5.037780000	1	9.426857000	6.678127000	8.048187000
9	14.133019000	2.231828000	10.888287000	6	11.366616000	6.328599000	8.808691000
9	12.425120000	0.949366000	10.560000000	1	11.035139000	6.397953000	9.836299000
9	12.132835000	3.066669000	10.845224000	47	9.614413000	9.974700000	6.571429000
9	8.766538000	3.004961000	11.700114000	47	10.633537000	9.756107000	3.182093000
9	9.466309000	5.038719000	11.536999000	47	12.879052000	9.149231000	5.683611000
9	7.601886000	4.619478000	12.553270000	9	6.819173000	11.158777000	7.287288000
9	4.302400000	4.142318000	7.453632000	9	4.971537000	10.993047000	6.166349000
9	5.346636000	5.872067000	6.697522000	9	6.068869000	9.216311000	6.730764000
9	4.176160000	6.021648000	8.514217000	9	6.572262000	10.823533000	0.880931000
9	5.543161000	3.553826000	1.858864000	9	8.278987000	12.108200000	1.206935000
9	5.659915000	2.216210000	3.552666000	9	8.573545000	9.991106000	0.923390000
9	5.622251000	4.345982000	3.874287000	9	11.940808000	10.055243000	0.068515000
9	10.854085000	2.825670000	0.420141000	9	11.240925000	8.021484000	0.231400000
9	11.922625000	2.638671000	2.296843000	9	13.105321000	8.440747000	-0.784868000
9	11.458162000	4.590825000	1.509925000	9	16.404800000	8.917648000	4.314824000
7	12.429916000	2.711330000	6.775716000	9	15.360861000	7.187640000	5.070780000
7	12.016796000	2.635650000	8.046796000	9	16.531263000	7.038461000	3.254019000
7	8.155810000	4.050291000	9.069460000	9	15.164178000	9.506187000	9.909473000
7	7.282563000	4.319321000	8.090885000	9	15.047009000	10.844262000	8.216037000
7	8.341341000	3.431250000	4.079378000	9	15.085086000	8.714543000	7.893899000
7	9.626680000	3.368007000	3.709503000	9	9.852624000	10.233869000	11.348217000
6	13.749471000	2.496225000	6.751497000	9	8.784369000	10.420453000	9.471309000
6	14.224219000	2.270780000	8.031561000	9	9.249395000	8.468453000	10.258415000
1	15.232707000	2.065843000	8.345890000	7	8.277158000	10.347907000	4.992825000
6	13.083707000	2.371293000	8.809921000	7	8.690165000	10.423718000	3.721644000
6	7.610744000	4.428221000	10.229973000	7	12.551452000	9.009605000	2.699040000
6	6.349427000	4.957664000	10.020032000	7	13.424702000	8.740493000	3.677601000
1	5.656621000	5.345356000	10.746367000	7	12.365837000	9.628683000	7.689183000
6	6.194093000	4.864339000	8.647358000	7	11.080507000	9.691840000	8.059081000
6	7.590634000	3.417345000	2.971962000	6	6.957589000	10.562729000	5.017261000
6	8.393321000	3.351010000	1.845908000	6	6.482444000	10.787447000	3.737312000
1	8.092639000	3.328852000	0.812822000	1	5.473772000	10.991730000	3.423162000
6	9.673317000	3.321575000	2.373539000	6	7.622817000	10.687236000	2.958675000
6	14.508272000	2.569672000	5.466416000	6	13.096526000	8.631739000	1.538481000
6	12.945158000	2.156133000	10.282679000	6	14.357775000	8.102144000	1.748432000
6	8.361236000	4.269771000	11.512698000	1	15.050555000	7.714416000	1.022088000
6	4.998576000	5.225729000	7.826158000	6	14.513167000	8.195511000	3.121084000
6	6.097638000	3.387229000	3.060844000	6	13.116570000	9.642513000	8.796584000
6	10.978748000	3.336381000	1.646779000	6	12.313905000	9.708412000	9.922674000
35	6.751412000	7.121460000	1.851293000	1	12.614600000	9.730348000	10.955761000
6	8.006465000	6.955445000	3.254202000	6	11.033898000	9./381//000	9.395034000
6	7.588520000	7.051061000	4.569340000	6	6.199030000	10.488833000	6.302454000
1	6.550337000	7.241974000	4.803659000	6	7.760448000	10.901121000	1.485658000
6	8.511344000	6.890505000	5.591541000	6	12.346038000	8.790371000	0.255768000
L C	0.143491000	0.9/0280000		D C	14 600550000	7.834171000	3.942215000
о С	9.802004000	0.035930000	5.332148000	b	14.009559000	9.0/2999000	8.707597000
0 1	11 2805 78000	0.5/3322000	3.99156/000	б	9.728363000	9.723076000	10.121289000
т Т	11.2003/8000	0.302041000	2.1 13032000				
0 1	3.340/02000 0 677761000	0.131483000	2.939183000				
2 E	J.U/2204000	5 0201 <i>61</i> 000	1.3313//000				
55	12 700011000	6 104565000	8 512720000				
0	TT: 1 000 TT000	0.104000000	0.010/020000				

5Ag ^o	^{lisp} ; E=-38710.45	6606188767 Ha		9	1.164229000	-6.240469000	4.323181000
47	-1.116141000	-8.587579000	-4.227673000	9	1.386257000	-7.194837000	6.244477000
47	1.201109000	-7.034052000	-2.237232000	9	3.139392000	-6.530511000	5.166327000
47	-2.106348000	-5.922106000	-2.273799000	6	-5.183210000	-7.352317000	4.950448000
7	1.827842000	-8.459105000	-3.668018000	1	-5.969037000	-6.788574000	5.422014000
7	-3.545982000	-7.054965000	-3.331656000	6	3.158599000	-9.187867000	4.078484000
7	-3.172127000	-8.170318000	-3.969337000	1	4.188102000	-8.971946000	4.305784000
7	-0.599839000	-4.849169000	-1.198164000	6	-3.834022000	-7.373126000	5.260419000
7	0.943261000	-8.955821000	-4.541659000	6	-1.560520000	-13.304153000	0.228315000
7	0.593694000	-5.428576000	-1.011415000	6	-6.484846000	-8.656504000	3.118079000
6	-4.270134000	-8.772102000	-4.436374000	9	-6.306520000	-8.486220000	1.793605000
6	3.034911000	-8.942360000	-3.980072000	9	-7.552801000	-7.940175000	3.477188000
6	-4.878333000	-6.962227000	-3.408241000	9	-6.777329000	-9.953147000	3.301699000
9	-5.364315000	-10.515793000	-5.535932000	9	-0.358361000	-15.007423000	-0.817116000
6	-4.159589000	-10.056642000	-5.193630000	6	-0.420956000	-14.270164000	0.295023000
9	-3.436413000	-9.913962000	-6.314562000	9	0.758060000	-13.648402000	0.451938000
9	-3.548740000	-11.009059000	-4.461767000	9	-0.554185000	-15.111704000	1.332496000
6	2.950872000	-9.772132000	-5.084545000	6	-3.449889000	-12.298002000	-0.124566000
1	3.740935000	-10.310948000	-5.577629000	6	-3.106587000	-6.608644000	6.318509000
6	-5.398118000	-8.039906000	-4.105928000	9	-2.377992000	-5.604733000	5.801452000
1	-6.426922000	-8.254835000	-4.336794000	9	-2.255517000	-7.395707000	6.997319000
6	1.602650000	-9.744252000	-5.396558000	9	-3.963805000	-6.078184000	7.195059000
6	-0.646355000	-3.753374000	-0.431570000	6	-2.700177000	-13.377605000	-0.557249000
6	4.239533000	-8.558592000	-3.183649000	1	-2.942507000	-14.101049000	-1.316295000
9	4.556810000	-7.263840000	-3.345478000	9	3.398625000	-11.453124000	1.544781000
9	5.300712000	-9.286104000	-3.539937000	6	3.339825000	-11.495935000	2.889993000
9	4.039511000	-8.744437000	-1.865202000	9	2.720640000	-12.640487000	3.210966000
9	-2.980407000	-3.498055000	-0.578795000	9	4.592994000	-11.560433000	3.344466000
6	-1.824061000	-2.832419000	-0.432675000	6	-4.779673000	-11.814612000	-0.607623000
9	-1.757024000	-1.938892000	-1.430877000	9	-5.280646000	-12.632448000	-1.533285000
9	-1.885306000	-2.147112000	0.714212000	9	-5.673566000	-11.713592000	0.387307000
6	1.285843000	-4.691225000	-0.135449000	9	-4.687038000	-10.584117000	-1.160796000
9	1.738174000	-10.988323000	-7.364686000	6	-0.917597000	-8.656256000	-0.082264000
6	0.877451000	-10.474123000	-6.480735000	6	0.428244000	-8.951006000	0.165533000
9	0.036926000	-9.664285000	-7.144965000	1	0.984714000	-8.403822000	0.915371000
9	0.137834000	-11.485402000	-5.996213000	6	1.098287000	-9.948057000	-0.530425000
6	0.537903000	-3.601482000	0.270943000	1	2.141918000	-10.148025000	-0.328550000
1	0.806273000	-2.826628000	0.968069000	17	1.254226000	-11.911059000	-2.392429000
6	-5.595653000	-5.813651000	-2.775920000	6	0.422993000	-10.677387000	-1.494518000
9	-6.861302000	-5.752028000	-3.192900000	6	-0.910515000	-10.418156000	-1.759248000
9	-5.004661000	-4.644845000	-3.064866000	1	-1.445353000	-11.008152000	-2.494060000
9	-5.616431000	-5.915596000	-1.432862000	6	-1.561575000	-9.410299000	-1.065481000
6	2.640174000	-5.119188000	0.329778000	1	-2.601172000	-9.235815000	-1.302915000
9	3.428155000	-5.505008000	-0.684263000	6	-1.636254000	-7.588632000	0.670523000
9	3.256671000	-4.132810000	0.982050000	6	-3.010149000	-7.376270000	0.506981000
9	2.561288000	-6.171992000	1.174000000	1	-3.596323000	-7.997402000	-0.159282000
47	-3.433392000	-10.141104000	2.161667000	6	-3.678606000	-6.373484000	1.191077000
47	-1.116142000	-8.587579000	4.152107000	1	-4.739985000	-6.218192000	1.055746000
47	-0.125935000	-11.253052000	2.198233000	6	-2.967876000	-5.572045000	2.059148000
7	-4.072173000	-8.744160000	3.602789000	9	-3.606651000	-4.601383000	2.722792000
7	1.300538000	-10.198950000	3.355398000	6	-1.611780000	-5.744164000	2.254842000
7	0.935439000	-9.036480000	3.909009000	1	-1.076593000	-5.098995000	2.939247000
7	-1.631155000	-12.258276000	1.059586000	6	-0.959354000	-6.750333000	1.561901000
7	-3.181017000	-8.207395000	4.444056000	1	0.106970000	-6.848833000	1.710679000
7	-2.798400000	-11.639821000	0.840530000				
6	2.038792000	-8.418219000	4.344126000				
6	-5.276245000	-8.239628000	3.892355000				
6	2.629743000	-10.304455000	3.450614000				

6 1.938076000 -7.092322000 5.026443000

<b>5Ag^{h2t};</b> E=-38710.457750595509 Ha					0.557044000	-10.023157000	-3.058497000
47	2.706228000	-7.023796000	-6.614844000	6	2.218480000	-9.594268000	-1.827464000
47	0.442521000	-9.483895000	-7.516387000	1	2.285224000	-10.600579000	-1.437973000
47	2.953941000	-10.176720000	-5.239844000	6	3.108130000	-8.630308000	-1.405278000
7	0.539256000	-7.668428000	-8.606944000	9	4.050335000	-8.955810000	-0.512296000
7	1.263551000	-6.656600000	-8.110642000	6	3.052228000	-7.336115000	-1.883507000
7	4.224037000	-7.447931000	-5.221199000	1	3.766327000	-6.600020000	-1.538288000
7	4.443178000	-8.710854000	-4.830928000	6	2.078641000	-7.010061000	-2.813507000
7	0.454756000	-11.343048000	-6.481666000	1	2.069216000	-5.995691000	-3.188005000
7	1.444544000	-11.607131000	-5.619869000	47	0.686565000	-5.912400000	-0.193009000
1	-0.399164000	-14.304892000	-5.364806000	47	-1.824856000	-5.219575000	-2.469552000
6	0.051154000	-13.353996000	-5.590439000	47	-1.577142000	-8.372499000	-1.094552000
6	0.909835000	-5.538168000	-8.753675000	7	-3.311466000	-6.682123000	-2.862615000
6	1.216880000	-12.810490000	-5.080705000	7	-0.125171000	-8.758683000	0.385389000
1	6.826011000	-7.094443000	-3.262217000	7	0.657000000	-7.766283000	0.826663000
6	5.992245000	-7.423272000	-3.857842000	7	-3.090612000	-7.952987000	-2.500091000
6	-0.258284000	-7.177195000	-9.562167000	7	0.704440000	-4.078377000	-1.257675000
6	-0.387793000	-12.381561000	-6.472836000	7	-0.275039000	-3.812964000	-2.131967000
6	5.143456000	-6.665724000	-4.644328000	1	1.690358000	-1.218610000	-2.521192000
9	6.785440000	-10.662507000	-4.295519000	6	1.197295000	-2.134739000	-2.246591000
6	6.043037000	-9.972262000	-3.417253000	6	0.260970000	-9.889281000	0.987536000
9	6.816157000	-9.698666000	-2.362678000	6	0.008031000	-2.649712000	-2.730395000
9	5.063056000	-10.795324000	-3.007690000	6	-4.836093000	-7.949372000	-3.895176000
6	-0.061025000	-5.813630000	-9.700602000	1	-5.658322000	-8.266442000	-4.512780000
1	-0.551968000	-5.132557000	-10.373615000	6	1.524916000	-8.280614000	1.705078000
6	5.500896000	-8.709711000	-4.011002000	6	1.593746000	-3.080774000	-1.317234000
9	-1.342157000	-12.068571000	-8.595922000	6	-3.996428000	-8.723797000	-3.113625000
6	-1.616968000	-12.379699000	-7.321962000	9	-5.706407000	-5.603799000	-5.277031000
9	-2.517994000	-11.476857000	-6.886604000	6	-4.891058000	-5.379043000	-4.244887000
9	-2.206581000	-13.577327000	-7.305021000	9	-3.905908000	-4.565441000	-4.663685000
9	2.836487000	-4.184633000	-8.730231000	9	-5.584452000	-4.697604000	-3.319679000
6	1.535464000	-4.226239000	-8.407397000	6	1.315826000	-9.641127000	1.848709000
9	0.921997000	-3.224397000	-9.041949000	1	1.848900000	-10.335823000	2.473879000
9	1.460284000	-3.978720000	-7.083670000	6	-4.355570000	-6.665493000	-3.699022000
6	-1.143450000	-8.071003000	-10.372735000	6	2.830209000	-3.093885000	-0.478132000
9	-0.450898000	-8.720467000	-11.322237000	9	3.712867000	-4.016200000	-0.910939000
9	-2.100964000	-7.368218000	-10.984046000	9	2.562876000	-3.384059000	0.802559000
9	-1.739814000	-9.011165000	-9.620296000	9	3.439994000	-1.907014000	-0.515873000
6	2.145929000	-13.379998000	-4.058559000	6	-0.405467000	-11.190353000	0.680271000
9	3.428812000	-13.269605000	-4.432494000	9	-0.384925000	-11.454255000	-0.642703000
9	1.886179000	-14.671127000	-3.844312000	9	-1.692496000	-11.201173000	1.052618000
9	2.031758000	-12.742816000	-2.876537000	9	0.212489000	-12.197625000	1.302387000
6	5.115078000	-5.183588000	-4.835895000	6	2.529273000	-7.410575000	2.391246000
9	5.151920000	-4.838227000	-6.130588000	9	3.327926000	-8.139300000	3.173993000
9	6.145833000	-4.601287000	-4.220899000	9	1.939598000	-6.477920000	3.155366000
9	3.986083000	-4.643965000	-4.328720000	9	3.303843000	-6.749809000	1.512241000
6	0.004168000	-6.298722000	-4.803928000	6	-0.899082000	-2.078869000	-3.771588000
6	0.122195000	-7.596138000	-4.293018000	9	-0.930723000	-2.848151000	-4.877426000
1	0.677796000	-5.512102000	-4.487516000	9	-2.162230000	-1.980101000	-3.334776000
6	-0.964075000	-5.966743000	-5.739686000	9	-0.490644000	-0.864130000	-4.141898000
1	-1.028826000	-4.957398000	-6.120334000	6	-3.967393000	-10.211512000	-2.969273000
6	-1.845581000	-6.935640000	-6.180930000	9	-2.868932000	-10.744586000	-3.545181000
17	-3.068644000	-6.533932000	-7.351951000	9	-5.028562000	-10.768924000	-3.554693000
6	-1.757589000	-8.231508000	-5.701557000	9	-3.947299000	-10.596295000	-1.685371000
1	-2.454146000	-8.987937000	-6.039654000				
6	-0.782983000	-8.548264000	-4.769682000				
1	-0.757263000	-9.567695000	-4.411937000				
6	1.153179000	-7.952124000	-3.274330000				
6	1.249218000	-9.248350000	-2.755280000				

<b>5Ag^{h2h};</b> E=-38710.456836038276					-1.598626000	2.447879000	-3.443689000
47	-0.709686000	0.000000000	-6.603906000	1	-2.624174000	2.568221000	-3.120848000
47	-2.367008000	-2.872988000	-5.609690000	6	-1.825872000	-2.361358000	-2.373776000
47	-3.904164000	0.197502000	-5.290059000	1	-1.463119000	-3.369741000	-2.525061000
7	0.334692000	-1.827782000	-6.415794000	6	-3.412858000	-0.872858000	-1.335212000
7	-0.349369000	-2.967487000	-6.242083000	1	-4.271533000	-0.730853000	-0.692576000
7	-4.281230000	-2.722121000	-4.713915000	9	-3.525680000	-3.185531000	-0.979239000
7	-4.837105000	-1.521573000	-4.507841000	6	-2.924079000	-2.140973000	-1.565285000
7	-1.862184000	1.751511000	-6.873150000	17	1.161269000	4.822063000	-5.080918000
7	-3.058171000	1.849165000	-6.283864000	47	1.046030000	-1.256925000	-0.653996000
1	-2.716384000	4.830821000	-7.599359000	47	2.667451000	1.608968000	-1.604049000
6	-2.632975000	3.813612000	-7.258177000	47	-0.395092000	1.795757000	0.058172000
6	0.517482000	-3.983362000	-6.295515000	7	3.381116000	-0.275216000	-2.272700000
6	-3.532450000	3.079463000	-6.504063000	7	-1.103194000	0.053921000	1.007095000
6	-6.081850000	-3.031271000	-3.428344000	7	-0.518775000	-1.127548000	0.772958000
1	-6.847106000	-3.490560000	-2.827601000	7	0.524992000	3.532318000	-0.706758000
6	1.625615000	-2.141338000	-6.578088000	7	2.604190000	-1.349433000	-2.077461000
6	-1.592562000	2.921334000	-7.461288000	7	1.788703000	3.474941000	-1.144255000
6	-5.013564000	-3.635675000	-4.067418000	6	-1.201499000	-2.065263000	1.440500000
9	-7.706542000	-0.929468000	-2.460354000	6	4.378219000	-0.628269000	-3.089280000
6	-6.776665000	-0.535655000	-3.336085000	6	-2.143160000	-0.150002000	1.822022000
9	-7.404366000	0.020811000	-4.381761000	9	-1.752835000	-4.277157000	1.916940000
9	-6.059831000	0.444578000	-2.753485000	6	-0.796057000	-3.503736000	1.400392000
6	1.801234000	-3.512332000	-6.512046000	9	-0.562973000	-3.918286000	0.142061000
1	2.713405000	-4.076451000	-6.596164000	9	0.329821000	-3.729133000	2.095410000
6	-5.919169000	-1.692169000	-3.740039000	6	4.263414000	-1.963217000	-3.442573000
6	-0.348923000	3.101866000	-8.271357000	1	4.903759000	-2.541366000	-4.085552000
9	-0.467060000	2.541158000	-9.486441000	6	-2.254582000	-1.493460000	2.133423000
9	0.714056000	2.526543000	-7.683280000	1	-2.984444000	-1.979046000	2.757256000
9	-0.076381000	4.395615000	-8.450333000	6	3.120920000	-2.368068000	-2.774875000
6	0.055044000	-5.393943000	-6.112035000	6	0.120590000	4.805411000	-0.778572000
9	-0.869362000	-5.735723000	-7.022899000	6	5.406106000	0.369996000	-3.520709000
9	-0.503466000	-5.577957000	-4.904808000	9	4.881413000	1.311256000	-4.322744000
9	1.077829000	-6.244652000	-6.224734000	9	6.394835000	-0.230763000	-4.188414000
6	2.647738000	-1.074211000	-6.796165000	9	5.943713000	1.010647000	-2.471808000
9	3.880179000	-1.589272000	-6.818227000	9	-1.455771000	4.956575000	0.961073000
9	2.609151000	-0.151084000	-5.814470000	6	-1.255024000	5.194603000	-0.343895000
9	2.455616000	-0.414909000	-7.945191000	9	-2.203773000	4.504548000	-1.007664000
6	-4.870140000	3.478580000	-5.970642000	9	-1.473513000	6.493186000	-0.564047000
9	-5.870593000	2.827127000	-6.582897000	6	2.166646000	4.709216000	-1.492114000
9	-5.077437000	4.787436000	-6.129949000	9	3.028801000	-4.542925000	-3.624105000
9	-4.977440000	3.201413000	-4.655855000	6	2.473272000	-3.713886000	-2.736452000
6	-4.623665000	-5.079127000	-4.086111000	9	1.157968000	-3.631521000	-3.024361000
9	-4.664045000	-5.590282000	-5.326748000	9	2.566697000	-4.282889000	-1.527288000
9	-5.437872000	-5.804316000	-3.316679000	6	1.134416000	5.606632000	-1.275302000
9	-3.367950000	-5.256903000	-3.636320000	1	1.121451000	6.667125000	-1.456486000
1	-0.350462000	-1.457176000	-3.603771000	6	-3.027140000	0.980851000	2.235633000
6	-1.204244000	-1.271238000	-2.963213000	9	-3.941421000	0.566110000	3.115929000
1	-3.149587000	1.195990000	-1.703562000	9	-3.685021000	1.506168000	1.181857000
6	-2.772201000	0.204987000	-1.921165000	9	-2.337032000	1.985486000	2.793994000
6	-1.659612000	0.035320000	-2.748517000	6	3.554769000	4.968352000	-1.987097000
6	-0.963584000	1.209705000	-3.343618000	9	3.922525000	4.081941000	-2.930451000
6	0.347095000	1.115835000	-3.821548000	9	3.656236000	6.191708000	-2.510038000
1	0.886540000	0.177799000	-3.768024000	9	4.459113000	4.869805000	-0.998890000
6	1.003301000	2.213063000	-4.360558000				
1	2.015119000	2.120757000	-4.733998000				
6	0.348414000	3.431182000	-4.419813000				
6	-0.952894000	3.553426000	-3.965632000				
1	-1.463487000	4.505623000	-4.026770000				

#### References.

S1. CrysAlisPro, Version 1.171.41.94a; Rigaku Oxford Diffraction, 2021.

S2. Sheldrick, G. M. SHELXT-Integrated space-group and crystal structure determination. *Acta Crystallogr*. **2015**, *A71*, 3–8.

S3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8.

S4. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. *J. Appl. Cryst.* **2009**, *42*, 339–341.

S5. APEX II software package; Bruker AXS Inc.: 5465, East Cheryl Parkway, Madison, WI 5317, 2005.

S6. DIFFRAC.EVA. Karlsruhe (Germany): Bruker AXS GmbH, 2011.

S7. Coelho A.A. TOPAS 5.0, Karlsruhe (Germany): Bruker AXS GmbH, 2012.

S8. Antelo Miguez, J. M., Adrio, L. A., Sousa-Pedrares, A., Vila, J. M., Hii, K. K. *J. Org. Chem.*, 2007, **72**, 7771-7774.

S9. H. V. Rasika Dias, S. A. Polach and Z. Wang, J. Fluor. Chem., 2000, 103, 163-169.

S10. Neese, F., The ORCA program system. WIREs Comput. Mol. Sci., 2011, 2, 73-78.

S11. Neese, F., Software update: The ORCA program system—Version 5.0. *WIREs Comput. Mol. Sci.*, 2022, 1, e1606.

S12. Lin, Y. S.; Li, G. D.; Mao, S. P.; Chai, J. D., Long-Range Corrected Hybrid Density Functionals with Improved Dispersion Corrections. *J. Chem. Theory Comput.* 2013, 9, 263-72.

S13. Rolfes, J. D.; Neese, F.; Pantazis, D. A., All-electron scalar relativistic basis sets for the elements Rb-Xe. *J. Comput. Chem.* 2020, 41, 1842-1849.

S14. Lu, T.; Chen, F., Multiwfn: a multifunctional wavefunction analyzer. *J. Comput. Chem.* 2012, 33, 580-592.