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8 EXPERIMENT SECTION

9 1. Reagents and raw materials
10 All reagents used in this work were analytical reagents. The reagents used include 
11 NiCl2·6H2O, CoCl2·6H2O, AlCl3·6H2O, FeCl3·6H2O, CuCl2·2H2O, CH4N2O, KOH, 
12 H2SO4, HNO3 that were purchased from Sinopharm Chemical Reagent Co., Ltd, China. 
13 Carbon cloth (CC) was purchased from CeTech Co., Ltd. And the deionized water was 
14 obtained by SCSJ-Ⅱ-20L in our lab. All reagents were directly used as received.
15 2. Samples preparation
16 The substrate used for the self-grown samples was 1 cm×1 cm carbon cloth, which 
17 was activated before use as follows: the carbon cloth was immersed in 10 wt.% nitric 
18 acid and 10 wt.% sulfuric acid in a volume ratio of 3:1 for 6 h, followed by sonication 
19 in water and anhydrous ethanol alternately for 10 min each to wash off the nitric acid 
20 and sulfuric acid, and vacuum dried for use. The effectively exposed area of each 
21 electrode is 1 cm2 (2×1 cm×0.5 cm) in the electrochemical test, due to half of the raw 
22 area being sealed by the electrode holder.
23 The samples in this work are all self-grown and respectively named M2 (NiCo), M3 
24 (NiCoAl), M4 (NiCoAlFe), and M5 (NiCoAlFeCu) according to the kinds of metal 
25 elements contained in samples. The preparation process was as follows: the 
26 corresponding hydrates and the corresponding amount of urea were weighed and added 
27 into 60 mL of deionized water. Activated carbon cloth was immersed in the solution 
28 with magnetic stirring for 6 h. Subsequently, the solution and carbon cloth were 
29 transferred to a stainless steel autoclave with a Teflon liner for a hydrothermal reaction 
30 at 100 °C for 12 h. After the reaction was finished, the reaction vessel was cooled to 
31 room temperature in air and washed with deionized water and anhydrous ethanol 4 
32 times alternatively. Finally, the samples were dried in a vacuum at 60 ℃ for 24 h. The 
33 amounts of each hydrate (0.002 mol) were as follows, 0.4752 g for NiCl2·6H2O, 0.4756 
34 g for CoCl2·6H2O, 0.4826 g for AlCl3·6H2O, 0.5404 g for FeCl3·6H2O, and 0.3409 g 
35 for CuCl2·2H2O. The weight of various hydrates was the same for different samples 
36 with only different types of hydrates added. To match the metal dosages, the urea 
37 dosages for different samples were as follows, 0.6 g for M2, 0.9 g for M3, 1.2 g for M4, 
38 and 1.5 g for M5. Details of the characterizations and tests were listed in the 
39 supplementary information too.
40 3. Characterization
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41 The XRD data were measured using Rigaku Ultimate IV Powder X-ray from Japan, 
42 whose X-ray source was Cu Ka, with a wavelength of 1.5418 Å, a voltage of 40 KV, 
43 and a current of 40 mA. Transmission electron microscope (TEM) images were 
44 obtained through Hitachi HT-7800, and selected area electron diffraction (SEAD) and 
45 high-resolution TEM (HR-TEM) images were taken through FEI TF-G20. Scanning 
46 electron microscopy (SEM) observations were performed with the aid of Hitachi 
47 Regulus 8100 and FEI QUANTA 250 FEG. Fourier Transform infrared spectroscopy 
48 (FT-IR) was obtained by Thermo Scientific Nicolet iS20, and the test was performed 
49 by acquiring the background and then the IR spectrum of the sample, with a resolution 
50 is 4 cm−1, 32 scans, and a test wavenumber range of 400-4000 cm−1. The XPS data were 
51 obtained by Thermo Scientific K-Alpha with an excitation source of Al Kα rays 
52 (hv=1486.6 eV), and the sample was fed into the analysis chamber when the pressure 
53 in the chamber was less than 2.0×10−7 mbar. The testing spot size is 400 μm, with an 
54 operating voltage of 12 kV, and a filament current of 6 mA. The full-spectrum scan 
55 fluence energy was 150 eV in steps of 1 eV; the narrow-spectrum scan fluence energy 
56 was 50 eV in steps of 0.1 eV, and the narrow-spectrum signal was accumulated for at 
57 least 5 cycles. The data were rectified based on C1s = 284.80 eV binding energy as 
58 standard. The UV-vis DRS test was conducted using Shimadzu UV-3600i Plus, with a 
59 starting wavelength of 800 nm and an ending wavelength of 200 nm, a data interval of 
60 1.0 nm, a scanning speed of medium speed, and a slit width of 20. The Tauc plot is 
61 obtained by modifying Tauc’s method according to Equation S1. The Mott-Schottky 
62 plots were obtained through the impedance potential (IMPE) test with the aid of CHI 
63 760E in a three-electrode system, including prepared samples loaded on FTO 
64 conductive glass (20 mm×10 mm×1.1 mm, ρ is about 15 Ω) as work electrode, Pt plate 
65 as the counter electrode, Ag/AgCl as the reference electrode, and 0.5 M Na2SO4 as 
66 electrolyte. The IMPE testing parameters are as follows, the amplitude is 0.01 V, the 
67 frequency is 1000 Hz, and the testing voltage range is set with a stable open circuit 
68 voltage as the center and a width of 1 V. The data processing is based on Equation S2.
69 4. Electrochemical test
70 All electrochemical performances were tested via the CHI 760E. All three electrode 
71 systems run in the PTFE electrolytic cell. Due to all prepared samples being self-grown 
72 samples, the performances of naked carbon cloth (CC) which experienced activating 
73 treatment was also tested, to eliminate the influence of the substrate.
74 4.1 OER Electrocatalysis:
75 The electrocatalytic oxygen evolution reaction (OER) performances of samples 
76 were tested in a three-electrode system, containing a working electrode with a total 
77 exposed area of 1 cm2, a graphite rod (Ф6 mm×60 mm, immersed length 20 mm) as the 
78 counter electrode, and a Hg/HgO as a counter electrode with an electrolyte of 1 M KOH. 
79 Oxygen was continuously introduced into the electrolyte for 30 min before the test to 
80 fix the reversible potential of oxygen. Before the OER performance tests, we apply CV 
81 method cycled (20 times) the test system at a small scan rate of 5 mV/s to activate it. 
82 The voltage range for this CV cycle (activated process) was 0-0.7V (vs Hg/HgO 
83 reference electrode potential), which totally covers the pseudocapacitive reaction rang. 
84 All tests were performed without automatically IR compensation. Linear sweep 
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85 voltammetry (LSV) tests were performed at a scan rate of 5 mV s−1. The calculation of 
86 potential is based on Eqs. S3-S5. A linear fit was performed to obtain the Tafel slope 
87 according to Eq. S6 and LSV data. The cyclic voltammetry (CV) tests were carried out 
88 at a scan rate of 10 mV, 20 mV, 40 mV, 60 mV, 80 mV, and 100 mV, taking the 
89 potential of 0.1 V (vs Hg/HgO) in the non-Faraday reaction interval as the center and 
90 taking the potential window of 0.1 V. The average currents of the CV curves obtained 
91 at 0.1 V for each scan rate were taken and linearly fitted according to Eq. S7-S8 to get 
92 the corresponding Cdl values for each sample. Before EIS tests, the stable open circuit 
93 potential is tested through the open circuit potential-time (OCPT) function, which is 
94 used as the bias voltage for EIS testing. OER catalysis stability of samples was tested 
95 by the multi-current steps (ISTEP) function, but each test was set for only one step of 
96 current, allowing the sample to run at a constant current for an extended period to 
97 observe the overpotential changes. Data of 10 mA and 100 mA constant current tests 
98 are saved by least-squares smoothing skipped 21 and 49 points, respectively. For an in-
99 depth analysis of the material evolutions before and after the long-time constant current 

100 test, CV with a potential window of 0-0.7 V (vs Hg/HgO) and EIS were performed after 
101 every constant current test, and the EIS curves after each constant current test were not 
102 fitted for a realistic and intuitive comparison. After a total duration of 32 h in the 10 
103 mA constant current test, two 500 cycles of CV scans with a scanning rate of 100 mV 
104 were performed on the tested sample in the range of 0-0.7V (vs Hg/HgO). The 
105 corresponding EIS was also tested after both 500 cycles of CV tests.
106 4.2 Pseudocapacitive energy storage:
107 The pseudocapacitive energy storage tests were implemented in a three-electrode 
108 system with a Pt plate (10 mm×15 mm×0.1 mm) as the counter electrode, Hg/HgO as 
109 the reference electrode, and 1 M KOH as the electrolyte. The galvanostatic 
110 charge/discharge (GCD) curve obtained by chronopotentiometry test, sets the 
111 corresponding current according to the actual load and current density value of the 
112 sample. Specific capacitances were calculated by Eqs. S9-S10. According to Eq. S11, 
113 all coulombic efficiencies are calculated from the charge/discharge energy values 
114 counted in the CHI 760 exported data. The capacitance retention of cyclic charging and 
115 discharging is calculated by taking the discharge capacity of an integer multiple of 500 
116 cycles. The fact total charge and discharge cycles are 10000 cycles. The EIS test bias 
117 voltage uses a stable open circuit potential.
118 5. Equation used: 

119                                            (S1)(αhv)n = K(hv - Eg)

120 where α is absorption value; h is Planck constant; v is frequency; Eg is the band gap; 
121 and n takes 2. The Eg was obtained from the x-intercept by corresponding linear fitting 
122 1, 2.

123                                       (S2)

1

C2
=

2
εε0eNd

(V - VFB -
KBT

e
)

124 where C is interfacial capacitance (F cm−2); Nd is the carrier density (cm−3); V is the 
125 applied potential; e is an elementary charge; K is the Boltzmann’s constant (1.38×10−23 
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126 F m−1); T is the absolute temperature (K); and VFB is flat band potential. The VFB could 
127 be obtained by linear fitting based on Equation S2 3, 4.
128 The potentials obtained by Hg/HgO as reference electrode were converted to a 
129 reversible hydrogen electrode (RHE) by the following Equation S3 5: 

130                                (S3)ERHE = EHg/HgO + 0.0592 × PH + 0.098

131 The potentials obtained by Ag/AgCl as reference electrode were converted to a 
132 reversible hydrogen electrode (RHE) by the following Equation S4 6:

133                             (S4)ERHE = EAg/AgCl + 0.0592 × PH + 0.197

134 The overpotential (η) of OER is calculated by the following Equation S5 5:

135                                             (S5)η = ERHE - 1.23

136 The Tafel value is calculated by linear fitting slope value according to the following 
137 Equation S6:

138                                            (S6)η = a + blog10 |i|

139 where the η is overpotential and i is current density 6.
140 The electrochemical active area (ECSA) is proportional to double-layer capacitance 
141 (Cdl) as seen in the following Equation S7:

142                                           (S7)ECSA = Cdl/Cs

143 where the Cs is the specific capacitance of the corresponding surface smooth sample 
144 under the same conditions 7.
145 The double layer capacitance (Cdl) is measured from the CV curves at different scan 
146 rates based on the following Equation S8. The range of applied potentials taking no 
147 significant Faraday process occurs is determined from the static CV curve, which is 
148 operated through a potential window of 0.1 V at the center of the open circuit potential 
149 (OCP). 

150                                                (S8)ic = v Cdl

151 where the ic is the current (A) of the double-layer capacitor and v is the applied potential 
152 (V) 7.
153 The specific capacitances based on GCD curves are calculated according to the 
154 following Equation S9:

155                                      (S9)
Cm = 2I∫vdt/mΔV

156 where Cm is specific capacitance (F g−1); I is current (A); V is applied potential (V); m 
157 is loading mass of active material; V is working potential window 8.
158 The specific capacitances based on CV curves are calculated according to the 
159 following Equation S10:

160                                           (S10)
C =

A
2mk(ΔV)
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161 where C is specific capacitance (F g−1); A is the area of CV curve covered; k is scan 
162 rate; m is loading mass of active material; V is working potential window 9.
163 The coulombic efficiency is calculated according to Equation S11 8:

164                              (S11)
EFc =

Energy density(discharge)
Energy density(charge)

165 where the EFc is coulombic efficiency; the energy densities (charge/discharge) were 
166 obtained from statistical results of the chronopotentiometry test by CHI760.
167
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208 RESULTS

209
210 Figure S1 BF-TEM image and corresponding SAED of M5.
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238
239 Figure S2 SEM image and corresponding area elements mappings.
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256
257 Figure S3 (a) XPS survey spectra, and (b)-(h) high-resolution XPS of different elements of M5.
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258

259 Figure S4 Tauc plot based on UV-vis results of M2, M3, M4, and M5.
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272
273 Figure S5 SEM images of (a)-(b) M2, (c)-(d) M3, (e)-(f) M4.
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301

302 Figure S6 Different magnification SEM images: of (a)-(d) M5 powder sample, and (e)-(f) M5 
303 electrode sample.
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332

333 Figure S7 Mott-Schottky plot of M2, M3, M4, and M5.
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358

359 Figure S8 (a) LSV curve at 5 mV s−1 and (b) Cdl of activated carbon cloth.
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391
392 Figure S9 (a) GCD curves at 1 mA and (b) CV curves at different scan rates of activated carbon 
393 cloth.
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425

426 Figure S10 (a) CV curves at different scan rates and (b) specific capacitance and rate capacity of 
427 M5 calculated by CV curves.
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458

459 Figure S11 CV curves at different scan rates and different potential windows of M5 (Activated by 
460 CV 20-cycles among 0-0.6 V).
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484

485 Figure S12 The LSV curves of M5 at different scan rate.
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510
511 Figure S13 The EIS for OER of (a) M2, M3, M4, and M5, and (b) activated carbon cloth.
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544

545 Figure S14 The charge curve of M5 via chronopotentiometry at 1 A g−1.
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570

571

572 Figure S15 The polarization curves obtained by LSV at 0.1 mV s−1 (Quasi steady state).
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596
597 Figure S16 The XRD results of NiCoAlFeMn sample and comparison with the previously 
598 prepared samples.
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622
623 Figure S17 The XPS results of NiCoAlFeMn sample and it compares with the prepared M5 sample.
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634
635 Figure S18 The SEM images and elements mapping of NiCoAlFeMn sample.
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660
661 Figure S19 (a) LSV curves at 5 mV s-1 and (b) GCD curves at 1 A g-1 of NiCoAlFeMn sample and 
662 comparison with the previously prepared samples.
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692

693 Figure S20 Different magnification SEM images of M5 after 20 h constant current test at 
694 100 mA cm−2.
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698
699 Figure S21 XRD of M5 sample before and after 20 h constant current test at 100 mA cm−2.
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727
728 Figure S22 The schematic diagram for the formation KHCO3.
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756 Table S1 Proportion of different elements at corresponding STEM area.
Element Weight % Atomic % Correction

C(K) 49.94 72.33 0.28
O(K) 14.98 16.28 0.51
Al(K) 3.31 2.14 0.92
Fe(K) 9.72 3.03 0.99
Co(K) 3.83 1.13 0.99
Ni(K) 4.46 1.33 0.99
Cu(K) 13.76 3.76 0.99
Total 100.00 100.00
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792 Table S2 Proportion of different elements corresponding to the elements mapping area by SEM.
Element Wt. % At. %

C(K) 48.53 64.78
O(K) 27.74 27.80
Al(K) 3.11 1.85
Co(K) 7.84 2.13
Ni(K) 7.86 2.15
Fe(K) 1.14 0.33
Cu(L) 3.72 0.94
Si(K) 0.06 0.02
Total 100.00 100.00
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827 Table S3 ICP-OES results of different metallic elements in M5

Elements Molar ratio (at. %) Approximate configuration 
entropy

Al 23.7
Fe 18.9
Co 17.8
Ni 18.9
Cu 20.7

1.6 R
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865 Table S4 Comparing the OER overpotentials and specific capacitance of this work with diverse 
866 LDH and High entropy materials.

Material

OER 
overpotential 
(mV, at 10 
mA cm−2)

Specific 
capacitanc
e (F g−1 at 
1 A g−1)

Electrolyte Reference

NiCo-LDH 388 1M KOH 10

NiFe-LDH 348 0.1 M KOH 11

NiFe-LDH 360 1M KOH 12

NiFe-LDH 345 1M KOH 10

CoFe-LDH 404 0.1 M KOH 11

Co1.8Ni-LDH 290 1 M KOH 13

CoFe-LDH@NiFe-LDH 360 1 M KOH 14

CoAl-LDH 340 1 M KOH 15

La0.6Sr0.4Co0.8Fe0.2O3 353 1 M KOH 16

La0.6Sr0.4Co0.8Fe0.1Mn0.1O3-δ 343 1 M KOH 17

LiFe0.8Co0.1Ni0.1O2 400 0.1 M KOH 18

Fe-Cr-Co-Ni-Cu-LDH 330 1 M KOH 19

Fe-Cr-Co-Ni-Cu-LDH 430 1 M KOH 19

NiCo-LDH 1962 6 M KOH 20

NiCo-LDH/NF 2103 2 M KOH 21

MnOOH/NiAl-LDH 1331.11 6 M KOH 22

MgCoAl-LDH 381.3 1 M KOH 23

(FeCoCrMnZn)3O4 340.3 1 M KOH 24

(CoCrFeMnNi)3O4 228 2 M KOH 25

FeOOH/NiCoAlFeCu-LDH 288 215.4 1 M KOH This work
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