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EXPERIMENT SECTION

1. Reagents and raw materials

All reagents used in this work were analytical reagents. The reagents used include
NiCl,-6H,0, CoCl,-6H,0, AICl;-6H,0, FeCl;-6H,0, CuCl,-2H,0, CH4N,O, KOH,
H,S0,4, HNOj; that were purchased from Sinopharm Chemical Reagent Co., Ltd, China.
Carbon cloth (CC) was purchased from CeTech Co., Ltd. And the deionized water was
obtained by SCSJ-1I-20L in our lab. All reagents were directly used as received.

2. Samples preparation

The substrate used for the self-grown samples was 1 cmx1 cm carbon cloth, which
was activated before use as follows: the carbon cloth was immersed in 10 wt.% nitric
acid and 10 wt.% sulfuric acid in a volume ratio of 3:1 for 6 h, followed by sonication
in water and anhydrous ethanol alternately for 10 min each to wash off the nitric acid
and sulfuric acid, and vacuum dried for use. The effectively exposed area of each
electrode is 1 em? (2x1 ¢cmx0.5 c¢cm) in the electrochemical test, due to half of the raw
area being sealed by the electrode holder.

The samples in this work are all self-grown and respectively named M? (NiCo), M?
(NiCoAl), M* (NiCoAlFe), and M> (NiCoAlFeCu) according to the kinds of metal
elements contained in samples. The preparation process was as follows: the
corresponding hydrates and the corresponding amount of urea were weighed and added
into 60 mL of deionized water. Activated carbon cloth was immersed in the solution
with magnetic stirring for 6 h. Subsequently, the solution and carbon cloth were
transferred to a stainless steel autoclave with a Teflon liner for a hydrothermal reaction
at 100 °C for 12 h. After the reaction was finished, the reaction vessel was cooled to
room temperature in air and washed with deionized water and anhydrous ethanol 4
times alternatively. Finally, the samples were dried in a vacuum at 60 °C for 24 h. The
amounts of each hydrate (0.002 mol) were as follows, 0.4752 g for NiCl,-6H,0, 0.4756
g for CoCl,-6H,0, 0.4826 g for AlICl;-6H,0, 0.5404 g for FeCl;-6H,0, and 0.3409 g
for CuCl,-2H,0. The weight of various hydrates was the same for different samples
with only different types of hydrates added. To match the metal dosages, the urea
dosages for different samples were as follows, 0.6 g for M2, 0.9 g for M3, 1.2 g for M*
and 1.5 g for M>. Details of the characterizations and tests were listed in the
supplementary information too.

3. Characterization
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The XRD data were measured using Rigaku Ultimate IV Powder X-ray from Japan,
whose X-ray source was Cu Ka, with a wavelength of 1.5418 A, a voltage of 40 KV,
and a current of 40 mA. Transmission electron microscope (TEM) images were
obtained through Hitachi HT-7800, and selected area electron diffraction (SEAD) and
high-resolution TEM (HR-TEM) images were taken through FEI TF-G20. Scanning
electron microscopy (SEM) observations were performed with the aid of Hitachi
Regulus 8100 and FEI QUANTA 250 FEG. Fourier Transform infrared spectroscopy
(FT-IR) was obtained by Thermo Scientific Nicolet 1S20, and the test was performed
by acquiring the background and then the IR spectrum of the sample, with a resolution
is4 cm™!, 32 scans, and a test wavenumber range of 400-4000 cm™!. The XPS data were
obtained by Thermo Scientific K-Alpha with an excitation source of Al Ka rays
(hv=1486.6 ¢V), and the sample was fed into the analysis chamber when the pressure
in the chamber was less than 2.0x1077 mbar. The testing spot size is 400 um, with an
operating voltage of 12 kV, and a filament current of 6 mA. The full-spectrum scan
fluence energy was 150 eV in steps of 1 eV; the narrow-spectrum scan fluence energy
was 50 eV in steps of 0.1 eV, and the narrow-spectrum signal was accumulated for at
least 5 cycles. The data were rectified based on Cls = 284.80 eV binding energy as
standard. The UV-vis DRS test was conducted using Shimadzu UV-3600i Plus, with a
starting wavelength of 800 nm and an ending wavelength of 200 nm, a data interval of
1.0 nm, a scanning speed of medium speed, and a slit width of 20. The Tauc plot is
obtained by modifying Tauc’s method according to Equation S1. The Mott-Schottky
plots were obtained through the impedance potential (IMPE) test with the aid of CHI
760E in a three-electrode system, including prepared samples loaded on FTO
conductive glass (20 mmx10 mmx1.1 mm, p is about 15 Q) as work electrode, Pt plate
as the counter electrode, Ag/AgCl as the reference electrode, and 0.5 M Na,SO, as
electrolyte. The IMPE testing parameters are as follows, the amplitude is 0.01 V, the
frequency 1s 1000 Hz, and the testing voltage range is set with a stable open circuit
voltage as the center and a width of 1 V. The data processing is based on Equation S2.
4. Electrochemical test

All electrochemical performances were tested via the CHI 760E. All three electrode
systems run in the PTFE electrolytic cell. Due to all prepared samples being self-grown
samples, the performances of naked carbon cloth (CC) which experienced activating
treatment was also tested, to eliminate the influence of the substrate.

4.1 OER Electrocatalysis:

The electrocatalytic oxygen evolution reaction (OER) performances of samples
were tested in a three-electrode system, containing a working electrode with a total
exposed area of 1 cm?, a graphite rod (06 mmx>60 mm, immersed length 20 mm) as the
counter electrode, and a Hg/HgO as a counter electrode with an electrolyte of 1 M KOH.
Oxygen was continuously introduced into the electrolyte for 30 min before the test to
fix the reversible potential of oxygen. Before the OER performance tests, we apply CV
method cycled (20 times) the test system at a small scan rate of 5 mV/s to activate it.
The voltage range for this CV cycle (activated process) was 0-0.7V (vs Hg/HgO
reference electrode potential), which totally covers the pseudocapacitive reaction rang.
All tests were performed without automatically IR compensation. Linear sweep
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voltammetry (LSV) tests were performed at a scan rate of 5 mV s™!. The calculation of
potential is based on Eqgs. S3-S5. A linear fit was performed to obtain the Tafel slope
according to Eq. S6 and LSV data. The cyclic voltammetry (CV) tests were carried out
at a scan rate of 10 mV, 20 mV, 40 mV, 60 mV, 80 mV, and 100 mV, taking the
potential of 0.1 V (vs Hg/HgO) in the non-Faraday reaction interval as the center and
taking the potential window of 0.1 V. The average currents of the CV curves obtained
at 0.1 V for each scan rate were taken and linearly fitted according to Eq. S7-S8 to get
the corresponding Cgy, values for each sample. Before EIS tests, the stable open circuit
potential is tested through the open circuit potential-time (OCPT) function, which is
used as the bias voltage for EIS testing. OER catalysis stability of samples was tested
by the multi-current steps (ISTEP) function, but each test was set for only one step of
current, allowing the sample to run at a constant current for an extended period to
observe the overpotential changes. Data of 10 mA and 100 mA constant current tests
are saved by least-squares smoothing skipped 21 and 49 points, respectively. For an in-
depth analysis of the material evolutions before and after the long-time constant current
test, CV with a potential window of 0-0.7 V (vs Hg/HgO) and EIS were performed after
every constant current test, and the EIS curves after each constant current test were not
fitted for a realistic and intuitive comparison. After a total duration of 32 h in the 10
mA constant current test, two 500 cycles of CV scans with a scanning rate of 100 mV
were performed on the tested sample in the range of 0-0.7V (vs Hg/HgO). The
corresponding EIS was also tested after both 500 cycles of CV tests.

4.2 Pseudocapacitive energy storage:

The pseudocapacitive energy storage tests were implemented in a three-electrode
system with a Pt plate (10 mmx15 mmx0.1 mm) as the counter electrode, Hg/HgO as
the reference electrode, and 1 M KOH as the electrolyte. The galvanostatic
charge/discharge (GCD) curve obtained by chronopotentiometry test, sets the
corresponding current according to the actual load and current density value of the
sample. Specific capacitances were calculated by Egs. S9-S10. According to Eq. S11,
all coulombic efficiencies are calculated from the charge/discharge energy values
counted in the CHI 760 exported data. The capacitance retention of cyclic charging and
discharging is calculated by taking the discharge capacity of an integer multiple of 500
cycles. The fact total charge and discharge cycles are 10000 cycles. The EIS test bias
voltage uses a stable open circuit potential.

5. Equation used:

(ahv)" =K(hv - E) 1)

where a is absorption value; h is Planck constant; v is frequency; E, is the band gap;
and n takes 2. The E, was obtained from the x-intercept by corresponding linear fitting
1,2
1 2 V-V KBT)
TYFBT
C? egeNy e (S2)
where C is interfacial capacitance (F cm™2); Ny is the carrier density (cm™3); V is the
applied potential; e is an elementary charge; K is the Boltzmann’s constant (1.38x10723
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F m™); T is the absolute temperature (K); and Vg is flat band potential. The Vg could
be obtained by linear fitting based on Equation S2 34,

The potentials obtained by Hg/HgO as reference electrode were converted to a
reversible hydrogen electrode (RHE) by the following Equation S3 3:

Epug = Engngo + 0:0592 x PH +0.098 S3)

The potentials obtained by Ag/AgCl as reference electrode were converted to a
reversible hydrogen electrode (RHE) by the following Equation S4 ©:

Epne = Eagagar +0-0592 x PH +0.197 s

The overpotential () of OER is calculated by the following Equation S5 :
N=Egyp-123 (S5)

The Tafel value is calculated by linear fitting slope value according to the following
Equation S6:

1 =a+ blog,, |i| (S6)

where the 1) is overpotential and i is current density .
The electrochemical active area (ECSA) is proportional to double-layer capacitance
(Cq) as seen in the following Equation S7:

ECSA = C,/C, s7)

where the Cs is the specific capacitance of the corresponding surface smooth sample
under the same conditions 7.

The double layer capacitance (Cq) is measured from the CV curves at different scan
rates based on the following Equation S8. The range of applied potentials taking no
significant Faraday process occurs is determined from the static CV curve, which is
operated through a potential window of 0.1 V at the center of the open circuit potential
(OCP).

i,=vCy (S8)
where the i is the current (A) of the double-layer capacitor and v is the applied potential
V).
The specific capacitances based on GCD curves are calculated according to the
following Equation S9:

= A
C, =21 f vdt/mAV 9)

where C,, is specific capacitance (F g!); I is current (A); V is applied potential (V); m
is loading mass of active material; AV is working potential window 8.

The specific capacitances based on CV curves are calculated according to the
following Equation S10:

A
C=——
2mk(AV) (S10)

4
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where C is specific capacitance (F g!); A is the area of CV curve covered; k is scan
rate; m is loading mass of active material; AV is working potential window °.
The coulombic efficiency is calculated according to Equation S11 8:

Energy density(discharge)
EFc=

Energy density(charge) (S11)

where the EFc is coulombic efficiency; the energy densities (charge/discharge) were
obtained from statistical results of the chronopotentiometry test by CHI760.
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Figure S2 SEM image and corresponding area elements mappings.
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Figure S6 Different magnification SEM images: of (a)-(d) M powder sample, and (e)-(f) M?
electrode sample.
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Figure S22 The schematic diagram for the formation KHCOs;.
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Table S1 Proportion of different elements at corresponding STEM area.

Element Weight % Atomic % Correction
C(K) 49.94 72.33 0.28
O(K) 14.98 16.28 0.51
Al(K) 3.31 2.14 0.92
Fe(K) 9.72 3.03 0.99
Co(K) 3.83 1.13 0.99
Ni(K) 4.46 1.33 0.99
Cu(K) 13.76 3.76 0.99
Total 100.00 100.00
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792 Table S2 Proportion of different elements corresponding to the elements mapping area by SEM.

Element Wt. % At. %

C(K) 48.53 64.78
O(K) 27.74 27.80
Al(K) 3.11 1.85
Co(K) 7.84 2.13
Ni(K) 7.86 2.15
Fe(K) 1.14 0.33
Cu(L) 3.72 0.94
Si(K) 0.06 0.02
Total 100.00 100.00
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Table S3 ICP-OES results of different metallic elements in M?

Approximate configuration

Elements Molar ratio (at. %)
entropy
Al 23.7
Fe 18.9
Co 17.8 1.6 R
Ni 18.9
Cu 20.7
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Table S4 Comparing the OER overpotentials and specific capacitance of this work with diverse

OER Specific
Material Ozrir\l;?t;nlt Bal Za(p; (iglt?r:t: Electrolyte  Reference
mA cm?) 1Agh
NiCo-LDH 388 IM KOH 10
NiFe-LDH 348 0.1 M KOH 1
NiFe-LDH 360 IM KOH 12
NiFe-LDH 345 IM KOH 10
CoFe-LDH 404 0.1 M KOH 1
Co; gNi-LDH 290 1 M KOH 13
CoFe-LDH@NiFe-LDH 360 1 M KOH 14
CoAl-LDH 340 1 M KOH 15
La().6SI'0.4C00.8F60.203 353 1 M KOH 16
La().6sr0.4C00.8Fe()_1Mn04103_5 343 1 M KOH 17
LiFCOBCOO.]NiOJOz 400 0.1 M KOH 18
Fe-Cr-Co-Ni-Cu-LDH 330 1 M KOH 19
Fe-Cr-Co-Ni-Cu-LDH 430 1 M KOH 19
NiCo-LDH 1962 6 M KOH 20
NiCo-LDH/NF 2103 2 M KOH 21
MnOOH/NiAl-LDH 1331.11 6 M KOH 22
MgCoAl-LDH 381.3 1 M KOH 23
(FeCoCrMnZn);0,4 340.3 1 M KOH 2
(CoCrFeMnNi);04 228 2 M KOH 2
FeOOH/NiCoAlFeCu-LDH 288 215.4 1 M KOH  This work
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