

1 Simultaneous pseudocapacitive oxidation and oxygen 2 evolution reaction: reciprocity or incompatibility?

3 Xinpeng Huang^a, Yingnan Yan^a, Xuehua Yan^{a,b,*}, Qianzuo Liu^a, Feng Zhang^a, Jili Wu^a, Jianmei
4 Pan^a, Zohreh Shahnavaz^b, Jamile Mohammadi Moradian^b

5 ^aSchool of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China

6 ^bInstitute for Advanced Materials, Jiangsu University, Zhenjiang 212013, Jiangsu, China

7 *Corresponding author: Xuehua Yan: xhyan@ujs.edu.cn

8 EXPERIMENT SECTION

9 1. Reagents and raw materials

10 All reagents used in this work were analytical reagents. The reagents used include
11 $\text{NiCl}_2 \cdot 6\text{H}_2\text{O}$, $\text{CoCl}_2 \cdot 6\text{H}_2\text{O}$, $\text{AlCl}_3 \cdot 6\text{H}_2\text{O}$, $\text{FeCl}_3 \cdot 6\text{H}_2\text{O}$, $\text{CuCl}_2 \cdot 2\text{H}_2\text{O}$, $\text{CH}_4\text{N}_2\text{O}$, KOH,
12 H_2SO_4 , HNO_3 that were purchased from Sinopharm Chemical Reagent Co., Ltd, China.
13 Carbon cloth (CC) was purchased from CeTech Co., Ltd. And the deionized water was
14 obtained by SCSJ-II-20L in our lab. All reagents were directly used as received.

15 2. Samples preparation

16 The substrate used for the self-grown samples was 1 cm×1 cm carbon cloth, which
17 was activated before use as follows: the carbon cloth was immersed in 10 wt.% nitric
18 acid and 10 wt.% sulfuric acid in a volume ratio of 3:1 for 6 h, followed by sonication
19 in water and anhydrous ethanol alternately for 10 min each to wash off the nitric acid
20 and sulfuric acid, and vacuum dried for use. The effectively exposed area of each
21 electrode is 1 cm² (2×1 cm×0.5 cm) in the electrochemical test, due to half of the raw
22 area being sealed by the electrode holder.

23 The samples in this work are all self-grown and respectively named M² (NiCo), M³
24 (NiCoAl), M⁴ (NiCoAlFe), and M⁵ (NiCoAlFeCu) according to the kinds of metal
25 elements contained in samples. The preparation process was as follows: the
26 corresponding hydrates and the corresponding amount of urea were weighed and added
27 into 60 mL of deionized water. Activated carbon cloth was immersed in the solution
28 with magnetic stirring for 6 h. Subsequently, the solution and carbon cloth were
29 transferred to a stainless steel autoclave with a Teflon liner for a hydrothermal reaction
30 at 100 °C for 12 h. After the reaction was finished, the reaction vessel was cooled to
31 room temperature in air and washed with deionized water and anhydrous ethanol 4
32 times alternatively. Finally, the samples were dried in a vacuum at 60 °C for 24 h. The
33 amounts of each hydrate (0.002 mol) were as follows, 0.4752 g for $\text{NiCl}_2 \cdot 6\text{H}_2\text{O}$, 0.4756
34 g for $\text{CoCl}_2 \cdot 6\text{H}_2\text{O}$, 0.4826 g for $\text{AlCl}_3 \cdot 6\text{H}_2\text{O}$, 0.5404 g for $\text{FeCl}_3 \cdot 6\text{H}_2\text{O}$, and 0.3409 g
35 for $\text{CuCl}_2 \cdot 2\text{H}_2\text{O}$. The weight of various hydrates was the same for different samples
36 with only different types of hydrates added. To match the metal dosages, the urea
37 dosages for different samples were as follows, 0.6 g for M², 0.9 g for M³, 1.2 g for M⁴,
38 and 1.5 g for M⁵. Details of the characterizations and tests were listed in the
39 supplementary information too.

40 3. Characterization

41 The XRD data were measured using Rigaku Ultimate IV Powder X-ray from Japan,
42 whose X-ray source was Cu Ka, with a wavelength of 1.5418 Å, a voltage of 40 KV,
43 and a current of 40 mA. Transmission electron microscope (TEM) images were
44 obtained through Hitachi HT-7800, and selected area electron diffraction (SEAD) and
45 high-resolution TEM (HR-TEM) images were taken through FEI TF-G20. Scanning
46 electron microscopy (SEM) observations were performed with the aid of Hitachi
47 Regulus 8100 and FEI QUANTA 250 FEG. Fourier Transform infrared spectroscopy
48 (FT-IR) was obtained by Thermo Scientific Nicolet iS20, and the test was performed
49 by acquiring the background and then the IR spectrum of the sample, with a resolution
50 is 4 cm⁻¹, 32 scans, and a test wavenumber range of 400-4000 cm⁻¹. The XPS data were
51 obtained by Thermo Scientific K-Alpha with an excitation source of Al K α rays
52 (hv=1486.6 eV), and the sample was fed into the analysis chamber when the pressure
53 in the chamber was less than 2.0×10⁻⁷ mbar. The testing spot size is 400 μ m, with an
54 operating voltage of 12 kV, and a filament current of 6 mA. The full-spectrum scan
55 fluence energy was 150 eV in steps of 1 eV; the narrow-spectrum scan fluence energy
56 was 50 eV in steps of 0.1 eV, and the narrow-spectrum signal was accumulated for at
57 least 5 cycles. The data were rectified based on C1s = 284.80 eV binding energy as
58 standard. The UV-vis DRS test was conducted using Shimadzu UV-3600i Plus, with a
59 starting wavelength of 800 nm and an ending wavelength of 200 nm, a data interval of
60 1.0 nm, a scanning speed of medium speed, and a slit width of 20. The Tauc plot is
61 obtained by modifying Tauc's method according to Equation S1. The Mott-Schottky
62 plots were obtained through the impedance potential (IMPE) test with the aid of CHI
63 760E in a three-electrode system, including prepared samples loaded on FTO
64 conductive glass (20 mm×10 mm×1.1 mm, ρ is about 15 Ω) as work electrode, Pt plate
65 as the counter electrode, Ag/AgCl as the reference electrode, and 0.5 M Na₂SO₄ as
66 electrolyte. The IMPE testing parameters are as follows, the amplitude is 0.01 V, the
67 frequency is 1000 Hz, and the testing voltage range is set with a stable open circuit
68 voltage as the center and a width of 1 V. The data processing is based on Equation S2.

69 **4. Electrochemical test**

70 All electrochemical performances were tested via the CHI 760E. All three electrode
71 systems run in the PTFE electrolytic cell. Due to all prepared samples being self-grown
72 samples, the performances of naked carbon cloth (CC) which experienced activating
73 treatment was also tested, to eliminate the influence of the substrate.

74 **4.1 OER Electrocatalysis:**

75 The electrocatalytic oxygen evolution reaction (OER) performances of samples
76 were tested in a three-electrode system, containing a working electrode with a total
77 exposed area of 1 cm², a graphite rod (Φ6 mm×60 mm, immersed length 20 mm) as the
78 counter electrode, and a Hg/HgO as a counter electrode with an electrolyte of 1 M KOH.
79 Oxygen was continuously introduced into the electrolyte for 30 min before the test to
80 fix the reversible potential of oxygen. Before the OER performance tests, we apply CV
81 method cycled (20 times) the test system at a small scan rate of 5 mV/s to activate it.
82 The voltage range for this CV cycle (activated process) was 0-0.7V (vs Hg/HgO
83 reference electrode potential), which totally covers the pseudocapacitive reaction rang.
84 All tests were performed without automatically IR compensation. Linear sweep

85 voltammetry (LSV) tests were performed at a scan rate of 5 mV s⁻¹. The calculation of
 86 potential is based on Eqs. S3-S5. A linear fit was performed to obtain the Tafel slope
 87 according to Eq. S6 and LSV data. The cyclic voltammetry (CV) tests were carried out
 88 at a scan rate of 10 mV, 20 mV, 40 mV, 60 mV, 80 mV, and 100 mV, taking the
 89 potential of 0.1 V (vs Hg/HgO) in the non-Faraday reaction interval as the center and
 90 taking the potential window of 0.1 V. The average currents of the CV curves obtained
 91 at 0.1 V for each scan rate were taken and linearly fitted according to Eq. S7-S8 to get
 92 the corresponding C_{dl} values for each sample. Before EIS tests, the stable open circuit
 93 potential is tested through the open circuit potential-time (OCPT) function, which is
 94 used as the bias voltage for EIS testing. OER catalysis stability of samples was tested
 95 by the multi-current steps (ISTEP) function, but each test was set for only one step of
 96 current, allowing the sample to run at a constant current for an extended period to
 97 observe the overpotential changes. Data of 10 mA and 100 mA constant current tests
 98 are saved by least-squares smoothing skipped 21 and 49 points, respectively. For an in-
 99 depth analysis of the material evolutions before and after the long-time constant current
 100 test, CV with a potential window of 0-0.7 V (vs Hg/HgO) and EIS were performed after
 101 every constant current test, and the EIS curves after each constant current test were not
 102 fitted for a realistic and intuitive comparison. After a total duration of 32 h in the 10
 103 mA constant current test, two 500 cycles of CV scans with a scanning rate of 100 mV
 104 were performed on the tested sample in the range of 0-0.7V (vs Hg/HgO). The
 105 corresponding EIS was also tested after both 500 cycles of CV tests.

106 **4.2 Pseudocapacitive energy storage:**

107 The pseudocapacitive energy storage tests were implemented in a three-electrode
 108 system with a Pt plate (10 mm×15 mm×0.1 mm) as the counter electrode, Hg/HgO as
 109 the reference electrode, and 1 M KOH as the electrolyte. The galvanostatic
 110 charge/discharge (GCD) curve obtained by chronopotentiometry test, sets the
 111 corresponding current according to the actual load and current density value of the
 112 sample. Specific capacitances were calculated by Eqs. S9-S10. According to Eq. S11,
 113 all coulombic efficiencies are calculated from the charge/discharge energy values
 114 counted in the CHI 760 exported data. The capacitance retention of cyclic charging and
 115 discharging is calculated by taking the discharge capacity of an integer multiple of 500
 116 cycles. The fact total charge and discharge cycles are 10000 cycles. The EIS test bias
 117 voltage uses a stable open circuit potential.

118 **5. Equation used:**

$$119 \quad (\alpha h v)^n = K(h v - E_g) \quad (S1)$$

120 where α is absorption value; h is Planck constant; v is frequency; E_g is the band gap;
 121 and n takes 2. The E_g was obtained from the x-intercept by corresponding linear fitting
 122 ^{1,2}.

$$123 \quad \frac{1}{C^2} = \frac{2}{\epsilon \epsilon_0 e N_d} (V - V_{FB} - \frac{K_B T}{e}) \quad (S2)$$

124 where C is interfacial capacitance (F cm⁻²); N_d is the carrier density (cm⁻³); V is the
 125 applied potential; e is an elementary charge; K is the Boltzmann's constant (1.38×10⁻²³

126 $F\ m^{-1}$); T is the absolute temperature (K); and V_{FB} is flat band potential. The V_{FB} could
127 be obtained by linear fitting based on Equation S2 ^{3,4}.

128 The potentials obtained by Hg/HgO as reference electrode were converted to a
129 reversible hydrogen electrode (RHE) by the following Equation S3 ⁵:

130
$$E_{RHE} = E_{Hg/HgO} + 0.0592 \times PH + 0.098 \quad (S3)$$

131 The potentials obtained by Ag/AgCl as reference electrode were converted to a
132 reversible hydrogen electrode (RHE) by the following Equation S4 ⁶:

133
$$E_{RHE} = E_{Ag/AgCl} + 0.0592 \times PH + 0.197 \quad (S4)$$

134 The overpotential (η) of OER is calculated by the following Equation S5 ⁵:

135
$$\eta = E_{RHE} - 1.23 \quad (S5)$$

136 The Tafel value is calculated by linear fitting slope value according to the following
137 Equation S6:

138
$$\eta = a + b \log_{10} |i| \quad (S6)$$

139 where the η is overpotential and i is current density ⁶.

140 The electrochemical active area (ECSA) is proportional to double-layer capacitance
141 (C_{dl}) as seen in the following Equation S7:

142
$$ECSA = C_{dl}/C_s \quad (S7)$$

143 where the C_s is the specific capacitance of the corresponding surface smooth sample
144 under the same conditions ⁷.

145 The double layer capacitance (C_{dl}) is measured from the CV curves at different scan
146 rates based on the following Equation S8. The range of applied potentials taking no
147 significant Faraday process occurs is determined from the static CV curve, which is
148 operated through a potential window of 0.1 V at the center of the open circuit potential
149 (OCP).

150
$$i_c = v C_{dl} \quad (S8)$$

151 where the i_c is the current (A) of the double-layer capacitor and v is the applied potential
152 (V) ⁷.

153 The specific capacitances based on GCD curves are calculated according to the
154 following Equation S9:

155
$$C_m = 2I \int v dt / m \Delta V \quad (S9)$$

156 where C_m is specific capacitance ($F\ g^{-1}$); I is current (A); V is applied potential (V); m
157 is loading mass of active material; ΔV is working potential window ⁸.

158 The specific capacitances based on CV curves are calculated according to the
159 following Equation S10:

160
$$C = \frac{A}{2mk(\Delta V)} \quad (S10)$$

161 where C is specific capacitance (F g^{-1}); A is the area of CV curve covered; k is scan
162 rate; m is loading mass of active material; ΔV is working potential window ⁹.

163 The coulombic efficiency is calculated according to Equation S11 ⁸:

$$164 \quad \text{EFc} = \frac{\text{Energy density(discharge)}}{\text{Energy density(charge)}} \quad (\text{S11})$$

165 where the EFc is coulombic efficiency; the energy densities (charge/discharge) were
166 obtained from statistical results of the chronopotentiometry test by CHI760.

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

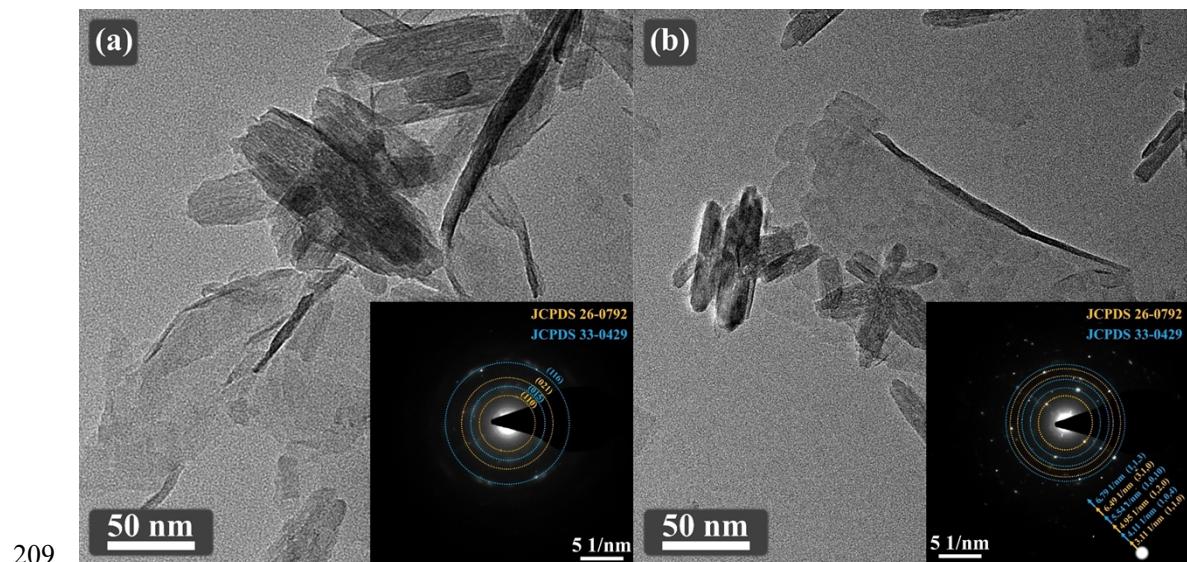
199

200

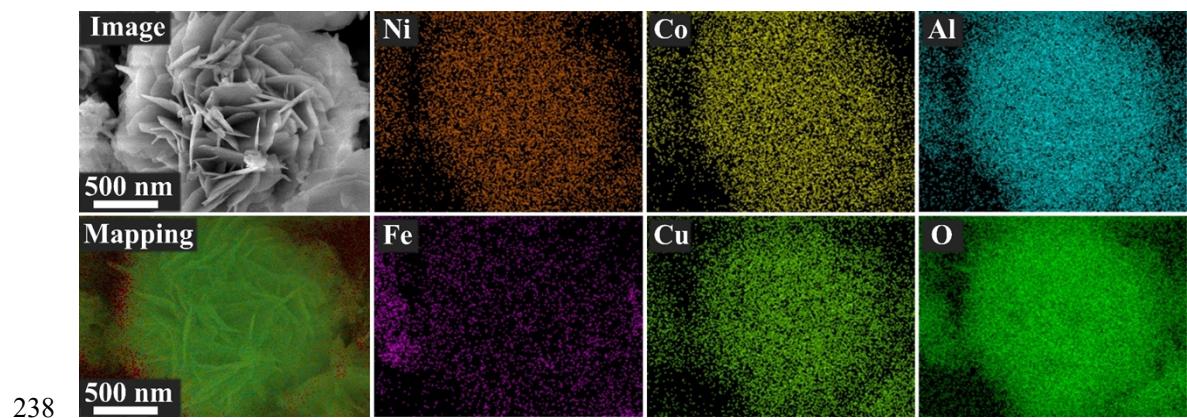
201

202

203


204

205


206

207

208 **RESULTS**

209
210 Figure S1 BF-TEM image and corresponding SAED of M⁵.
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237

238 Figure S2 SEM image and corresponding area elements mappings.

239

240

241

242

243

244

245

246

247

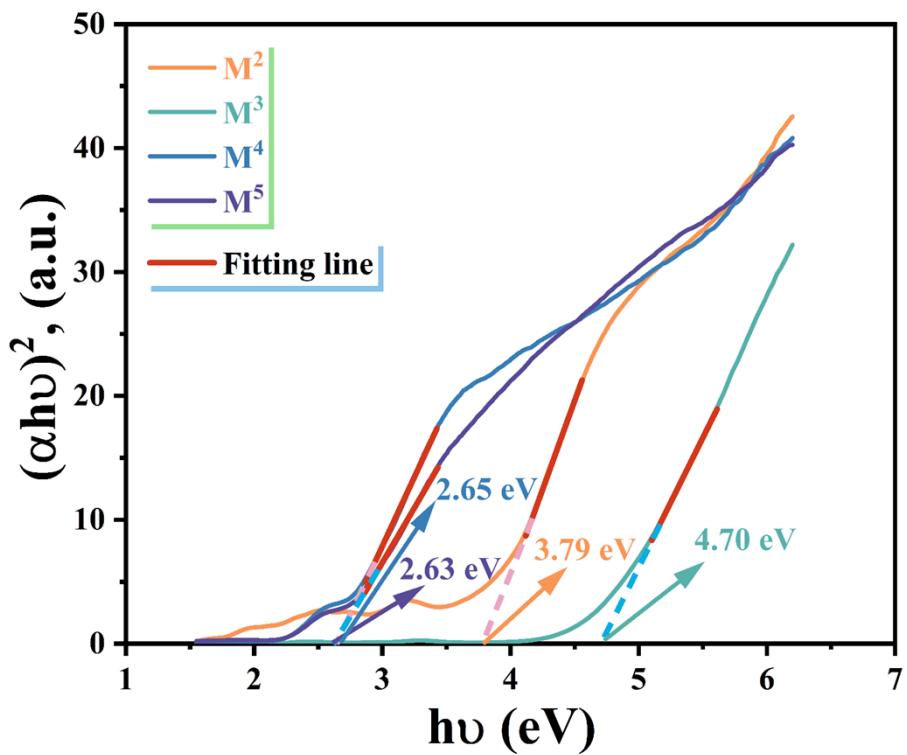
248

249

250

251

252


253

254

255

256 Figure S3 (a) XPS survey spectra, and (b)-(h) high-resolution XPS of different elements of M^5 .

258

259

260

261

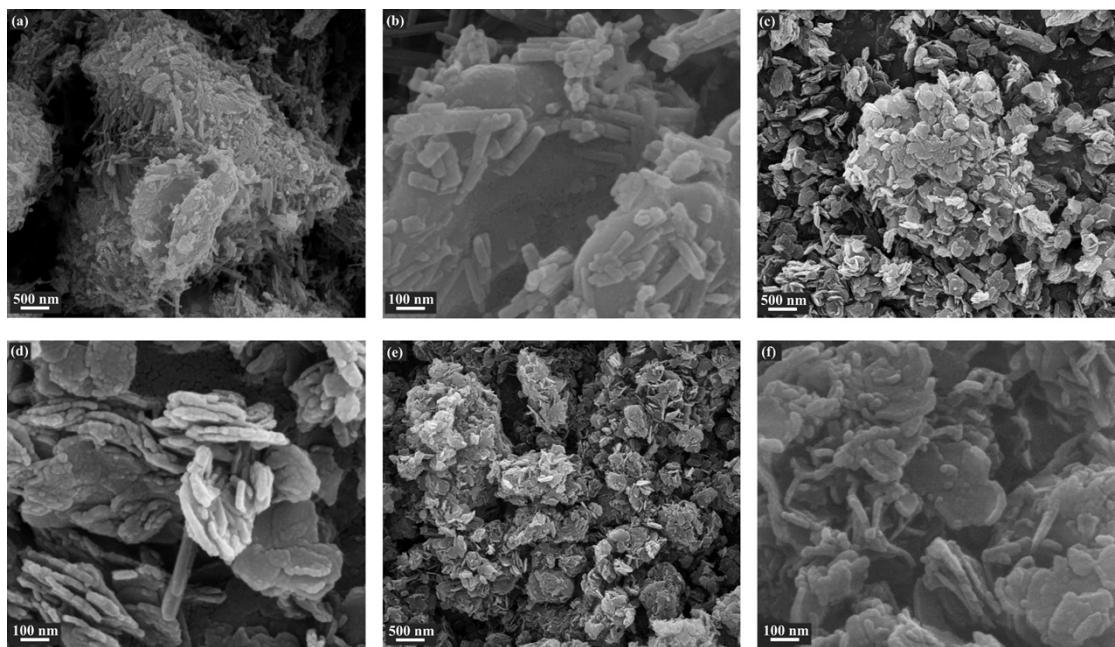
262

263

264

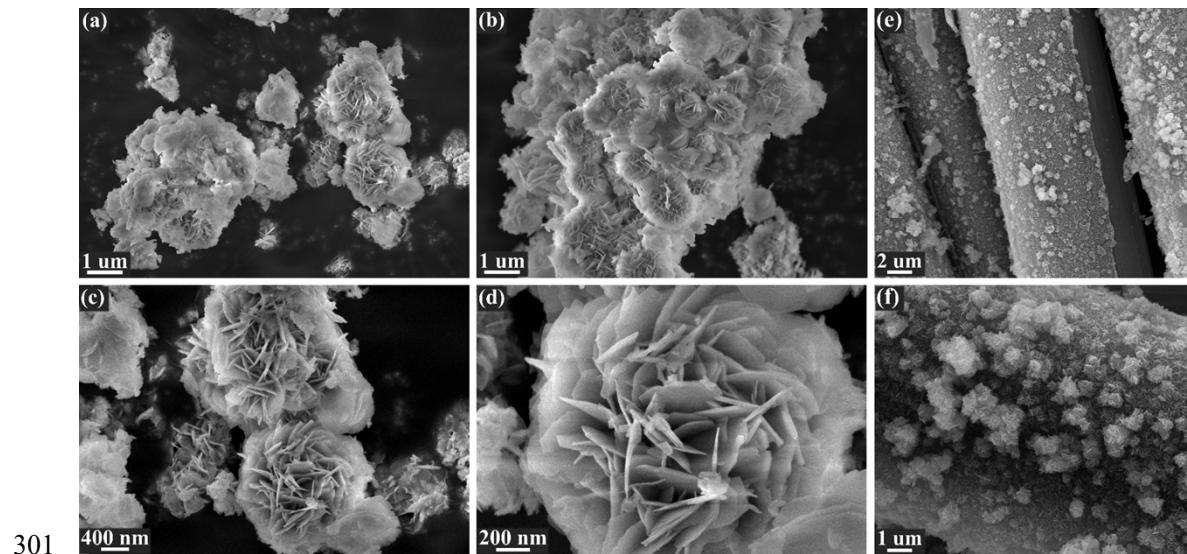
265

266

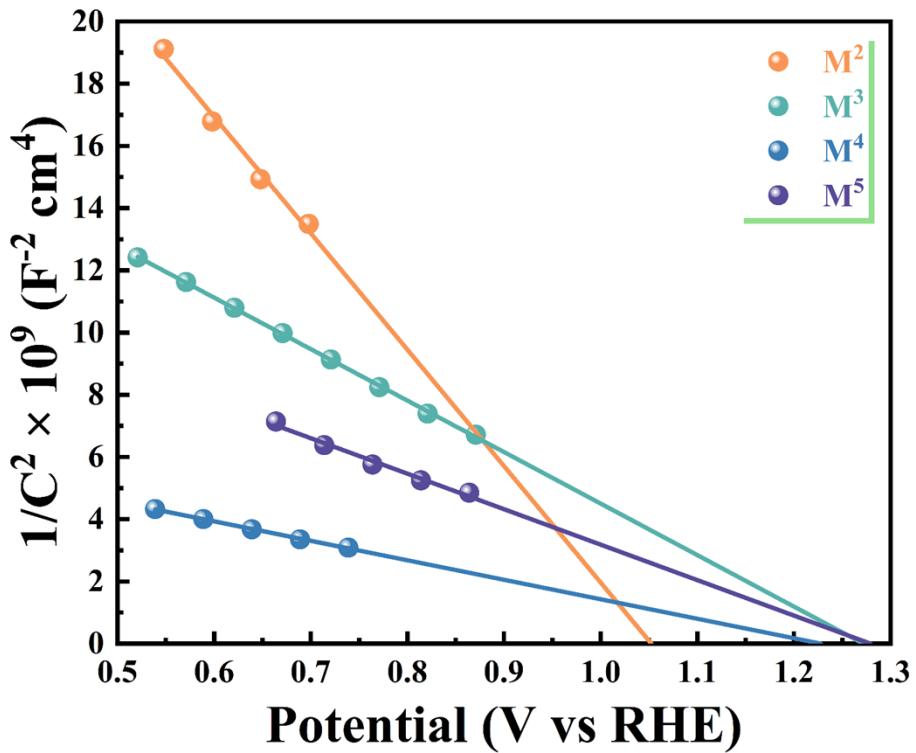

267

268

269


270

271



272 Figure S5 SEM images of (a)-(b) M^2 , (c)-(d) M^3 , (e)-(f) M^4 .

273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300

302 Figure S6 Different magnification SEM images: of (a)-(d) M^5 powder sample, and (e)-(f) M^5
 303 electrode sample.

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

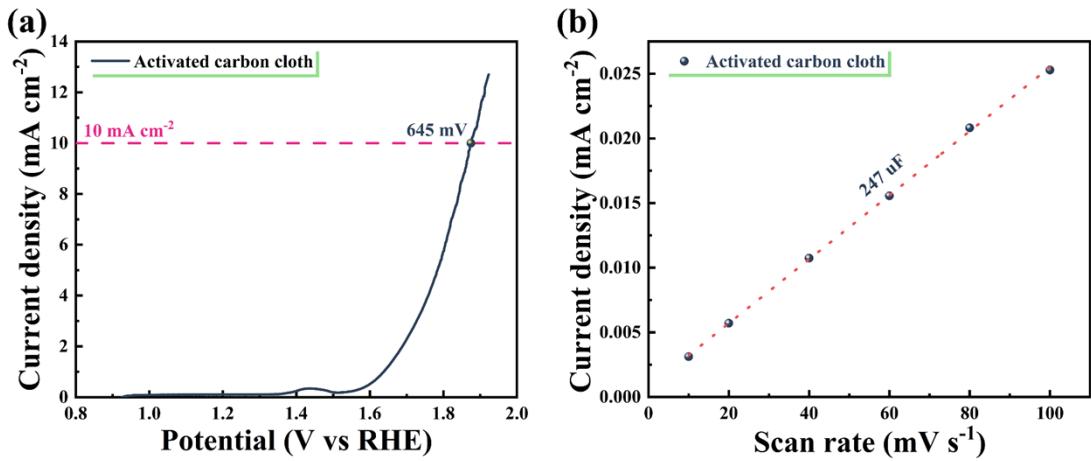
349

350

351

352

353


354

355

356

357

Figure S7 Mott-Schottky plot of M^2 , M^3 , M^4 , and M^5 .

358

Figure S8 (a) LSV curve at 5 mV s^{-1} and (b) C_{dl} of activated carbon cloth.

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392 Figure S9 (a) GCD curves at 1 mA and (b) CV curves at different scan rates of activated carbon
393 cloth.

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

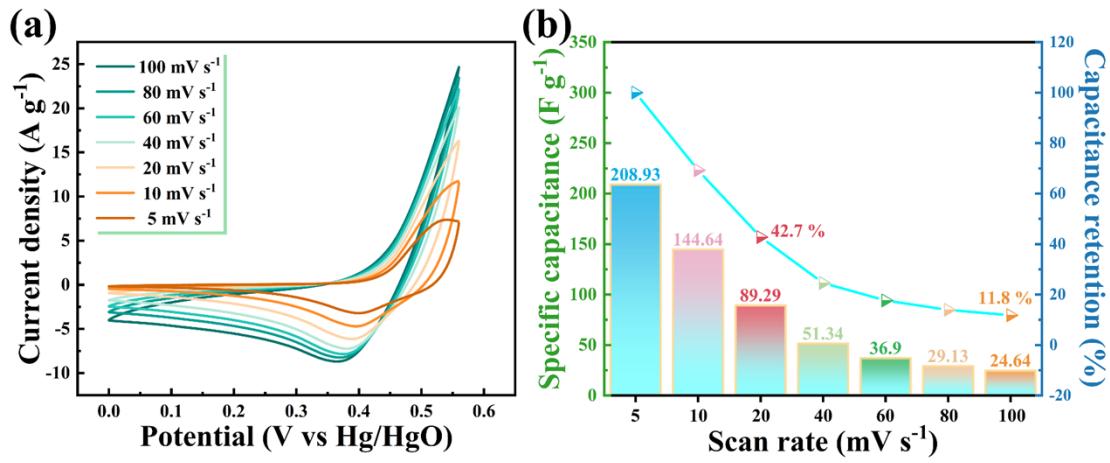
415

416

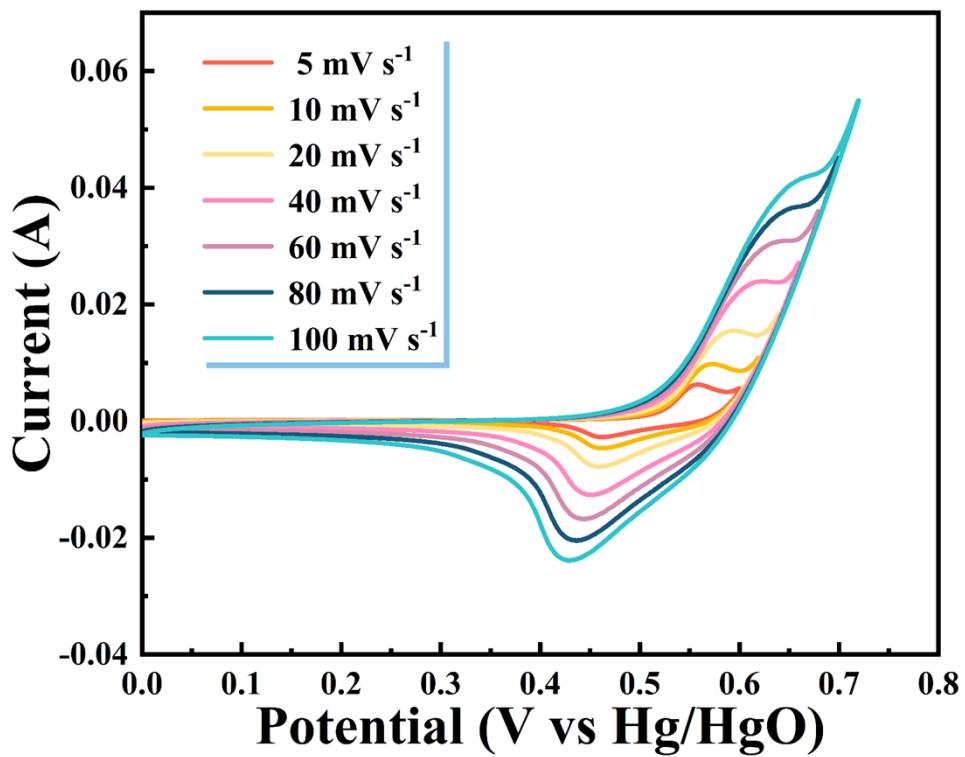
417

418

419


420

421


422

423

424

425
426 Figure S10 (a) CV curves at different scan rates and (b) specific capacitance and rate capacity of
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457

458

459 Figure S11 CV curves at different scan rates and different potential windows of M⁵ (Activated by
 460 CV 20-cycles among 0-0.6 V).

461

462

463

464

465

466

467

468

469

470

471

472

473

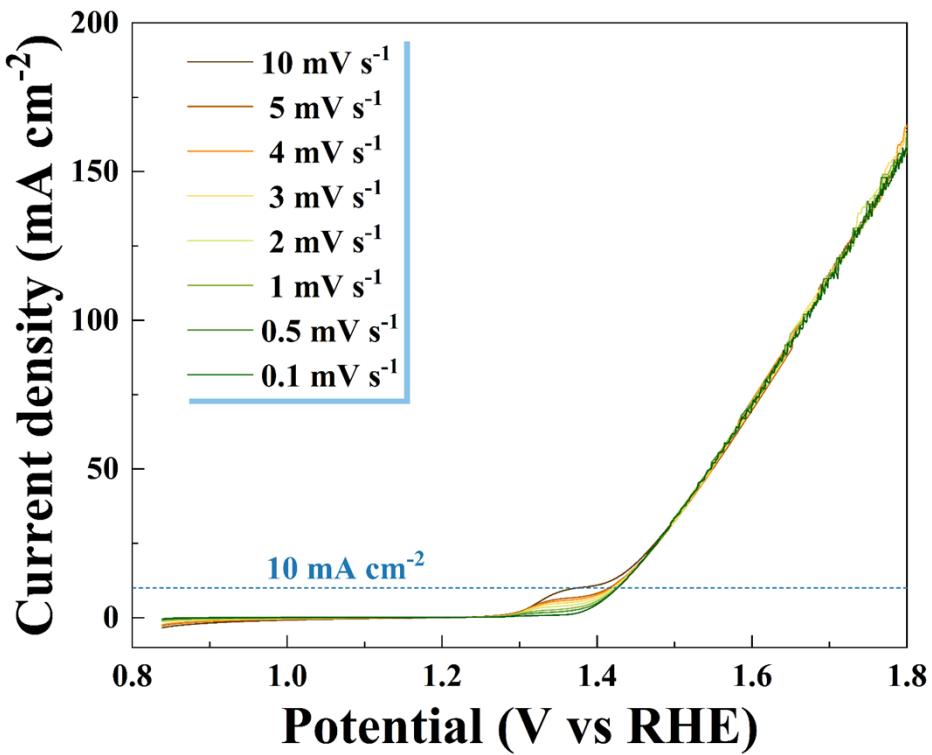
474

475

476

477

478


479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

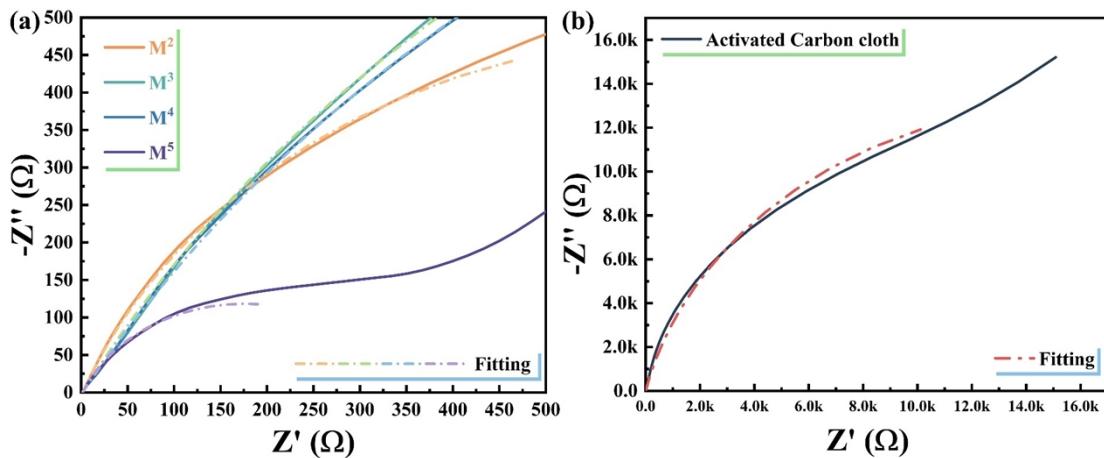
501

502

503

504

505


506

507

508

509

Figure S12 The LSV curves of M^5 at different scan rate.

510

511

Figure S13 The EIS for OER of (a) M^2 , M^3 , M^4 , and M^5 , and (b) activated carbon cloth.

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

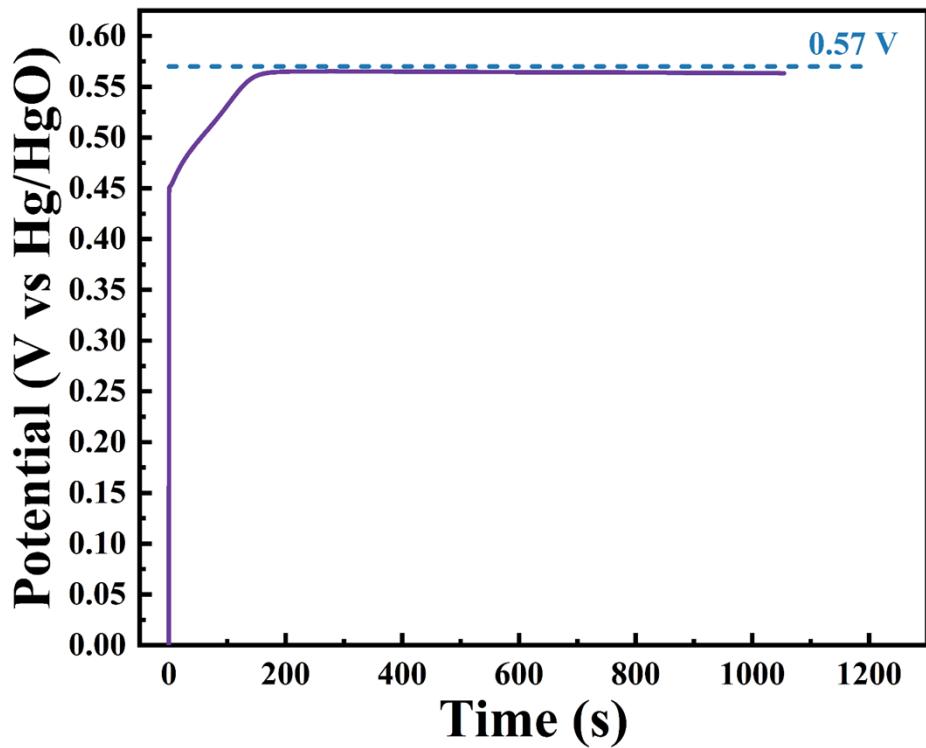
534

535

536

537

538


539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

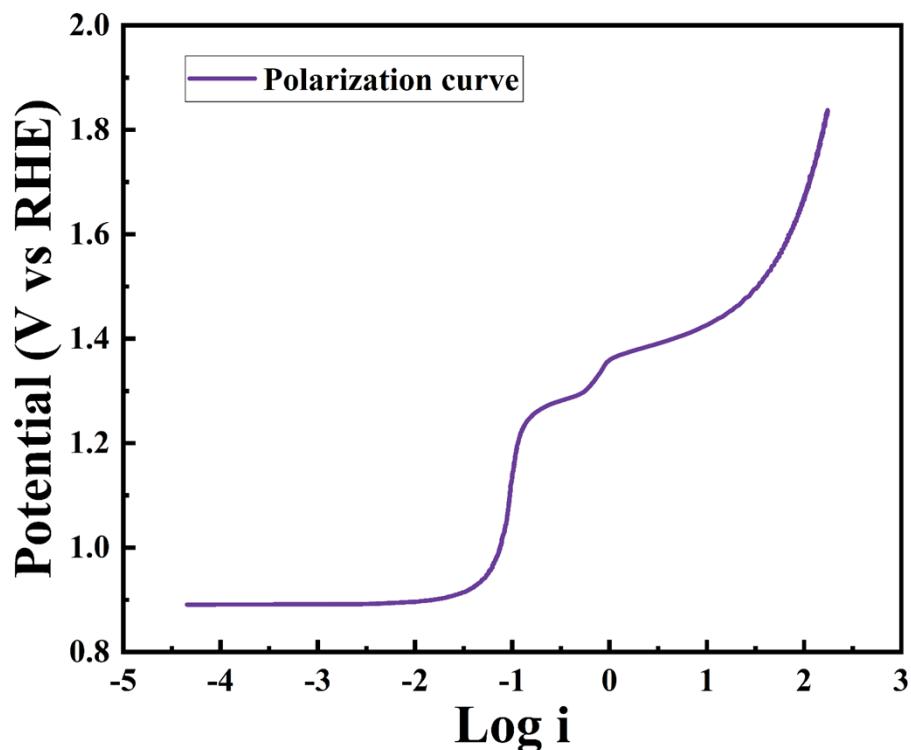
562

563

564

565

566


567

568

569

Figure S14 The charge curve of M^5 via chronopotentiometry at 1 A g^{-1} .

570

571

572 Figure S15 The polarization curves obtained by LSV at 0.1 mV s^{-1} (Quasi steady state).

573

574

575

576

577

578

579

580

581

582

583

584

585

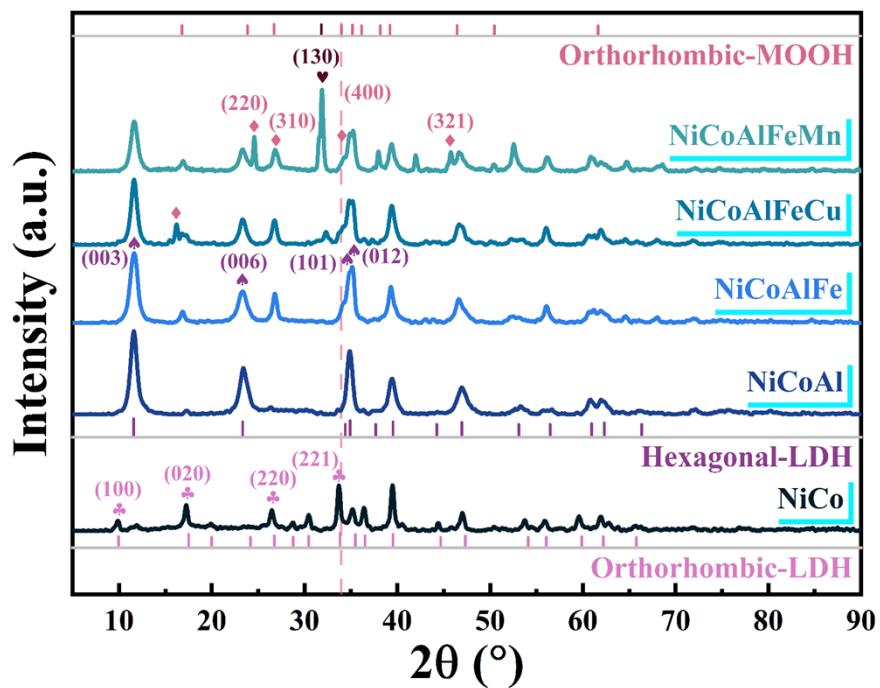
586

587

588

589

590


591

592

593

594

595

596

597

Figure S16 The XRD results of NiCoAlFeMn sample and comparison with the previously prepared samples.

598

599

600

601

602

603

604

605

606

607

608

609

610

611

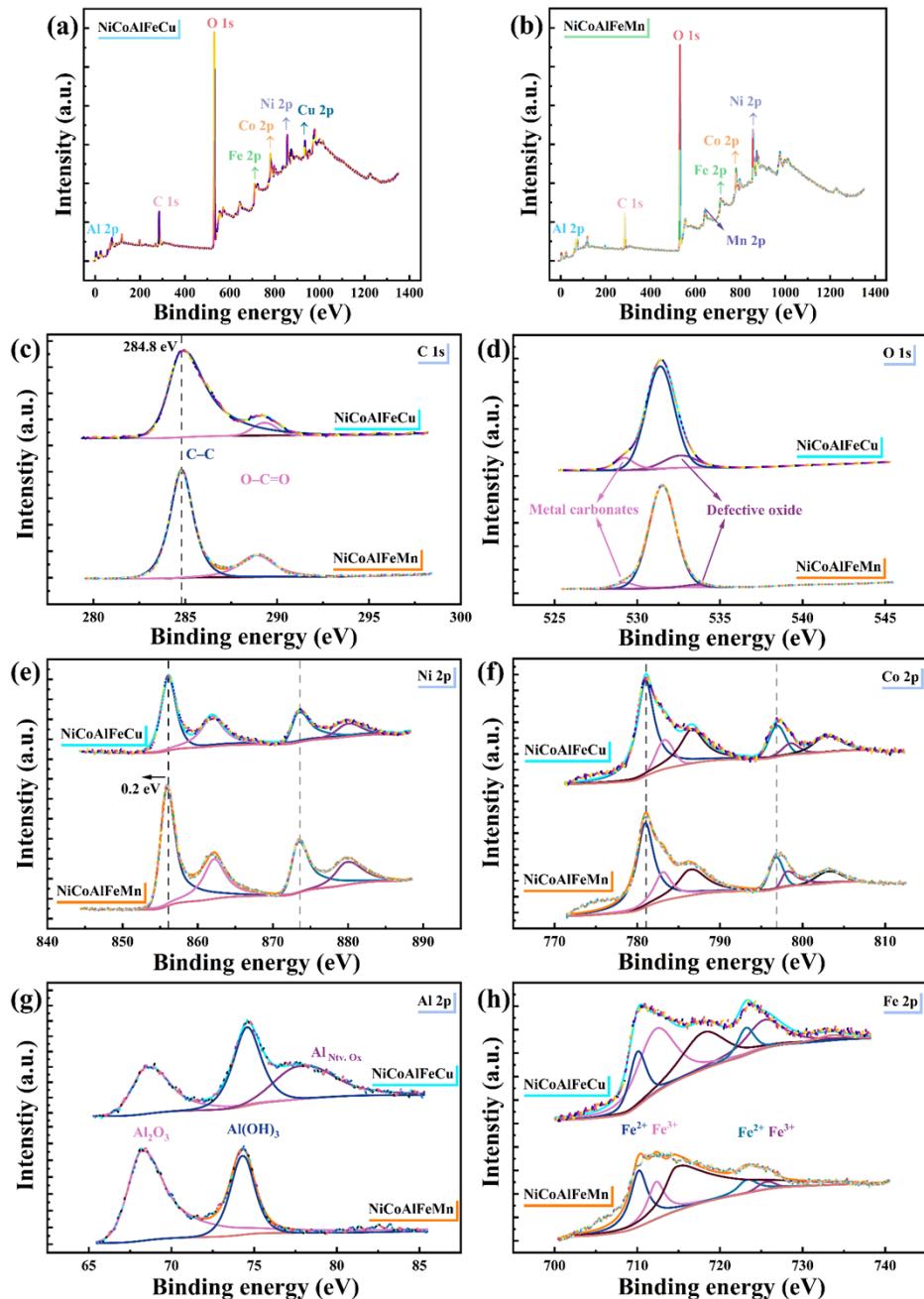
612

613

614

615

616


617

618

619

620

621

622

623 Figure S17 The XPS results of NiCoAlFeMn sample and it compares with the prepared M⁵ sample.

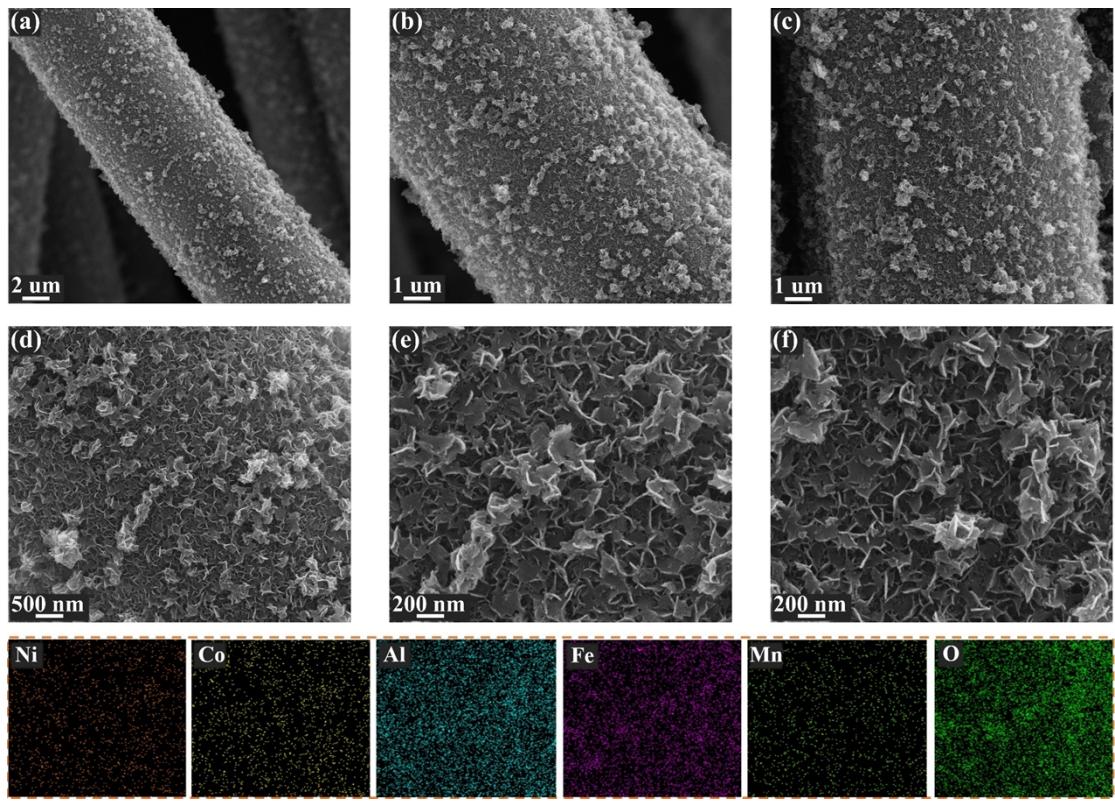
624

625

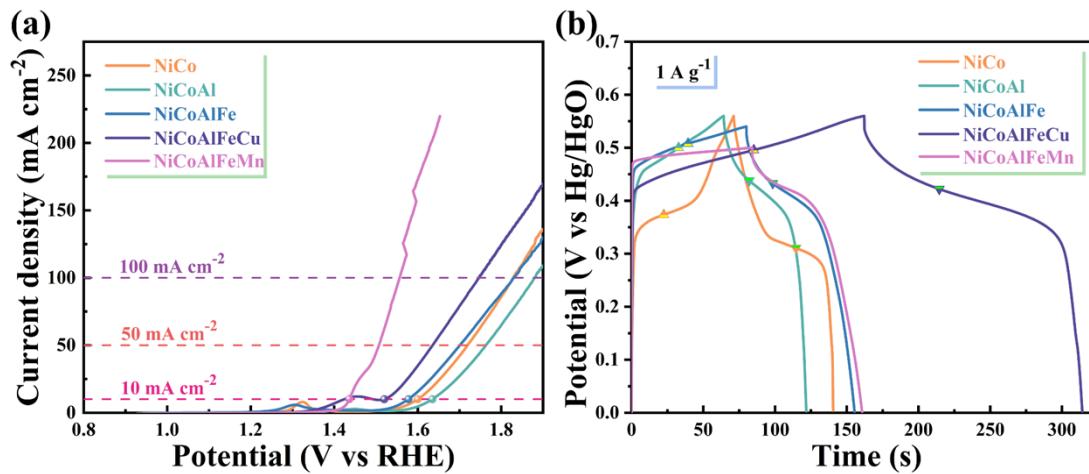
626

627

628

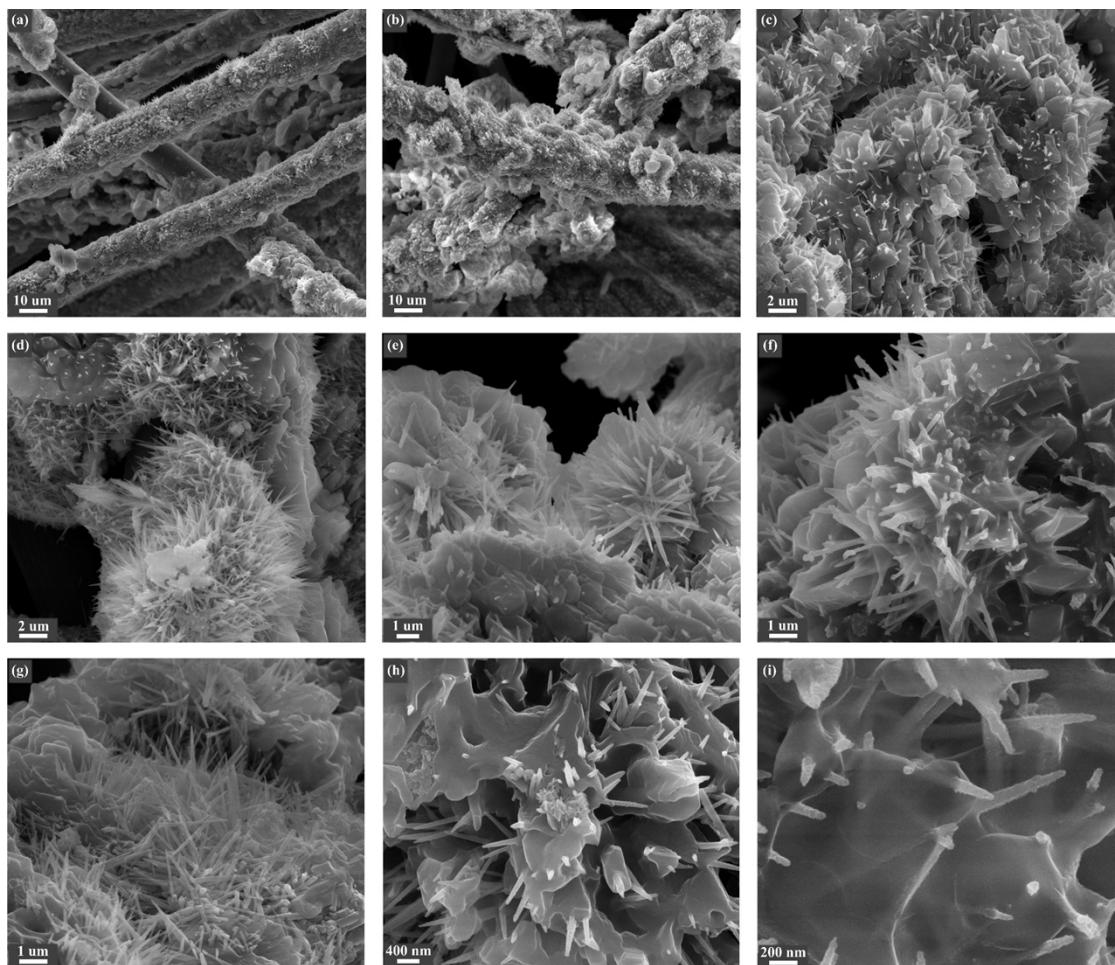

629

630


631

632

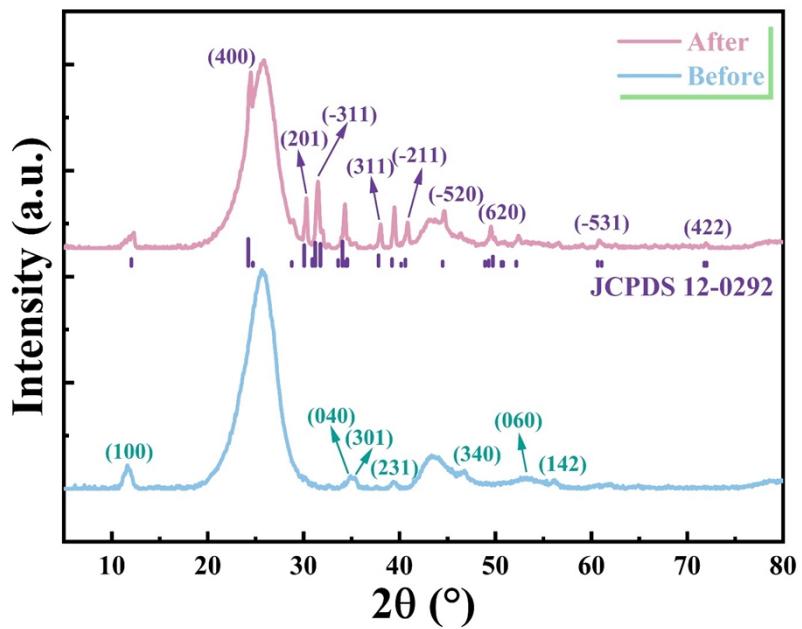
633



634
635 Figure S18 The SEM images and elements mapping of NiCoAlFeMn sample.
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

660
661 Figure S19 (a) LSV curves at 5 mV s^{-1} and (b) GCD curves at 1 A g^{-1} of NiCoAlFeMn sample and
662 comparison with the previously prepared samples.

663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691


692

693 Figure S20 Different magnification SEM images of M^5 after 20 h constant current test at
694 100 mA cm^{-2} .

695

696

697

698

699

Figure S21 XRD of M⁵ sample before and after 20 h constant current test at 100 mA cm⁻².

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

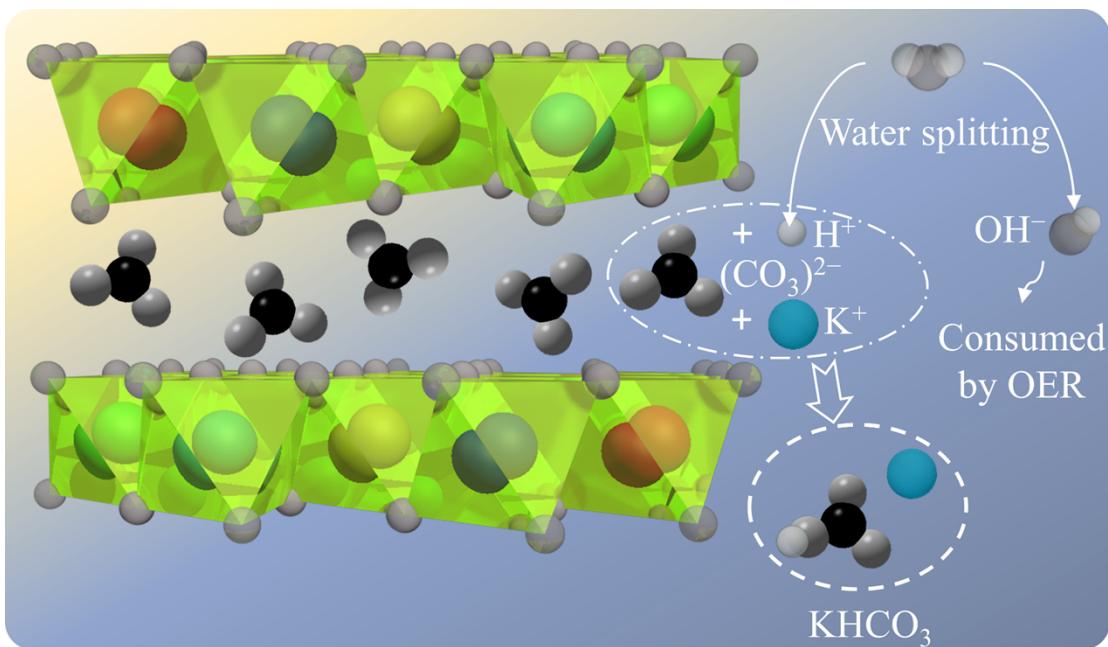
717

718

719

720

721


722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

Figure S22 The schematic diagram for the formation KHCO_3 .

756

Table S1 Proportion of different elements at corresponding STEM area.

Element	Weight %	Atomic %	Correction
C(K)	49.94	72.33	0.28
O(K)	14.98	16.28	0.51
Al(K)	3.31	2.14	0.92
Fe(K)	9.72	3.03	0.99
Co(K)	3.83	1.13	0.99
Ni(K)	4.46	1.33	0.99
Cu(K)	13.76	3.76	0.99
Total	100.00	100.00	

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792 Table S2 Proportion of different elements corresponding to the elements mapping area by SEM.

Element	Wt. %	At. %
C(K)	48.53	64.78
O(K)	27.74	27.80
Al(K)	3.11	1.85
Co(K)	7.84	2.13
Ni(K)	7.86	2.15
Fe(K)	1.14	0.33
Cu(L)	3.72	0.94
Si(K)	0.06	0.02
Total	100.00	100.00

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

Table S3 ICP-OES results of different metallic elements in M⁵

Elements	Molar ratio (at. %)	Approximate configuration entropy
Al	23.7	
Fe	18.9	
Co	17.8	
Ni	18.9	1.6 R
Cu	20.7	

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865 Table S4 Comparing the OER overpotentials and specific capacitance of this work with diverse
 866 LDH and High entropy materials.

Material	OER overpotential (mV, at 10 mA cm ⁻²)	Specific capacitance (F g ⁻¹ at 1 A g ⁻¹)	Electrolyte	Reference
NiCo-LDH	388		1M KOH	¹⁰
NiFe-LDH	348		0.1 M KOH	¹¹
NiFe-LDH	360		1M KOH	¹²
NiFe-LDH	345		1M KOH	¹⁰
CoFe-LDH	404		0.1 M KOH	¹¹
Co _{1.8} Ni-LDH	290		1 M KOH	¹³
CoFe-LDH@NiFe-LDH	360		1 M KOH	¹⁴
CoAl-LDH	340		1 M KOH	¹⁵
La _{0.6} Sr _{0.4} Co _{0.8} Fe _{0.2} O ₃	353		1 M KOH	¹⁶
La _{0.6} Sr _{0.4} Co _{0.8} Fe _{0.1} Mn _{0.1} O _{3-δ}	343		1 M KOH	¹⁷
LiFe _{0.8} Co _{0.1} Ni _{0.1} O ₂	400		0.1 M KOH	¹⁸
Fe-Cr-Co-Ni-Cu-LDH	330		1 M KOH	¹⁹
Fe-Cr-Co-Ni-Cu-LDH	430		1 M KOH	¹⁹
NiCo-LDH		1962	6 M KOH	²⁰
NiCo-LDH/NF		2103	2 M KOH	²¹
MnOOH/NiAl-LDH		1331.11	6 M KOH	²²
MgCoAl-LDH		381.3	1 M KOH	²³
(FeCoCrMnZn) ₃ O ₄		340.3	1 M KOH	²⁴
(CoCrFeMnNi) ₃ O ₄		228	2 M KOH	²⁵
FeOOH/NiCoAlFeCu-LDH	288	215.4	1 M KOH	This work

867

868

869

870

871

872

873

874

875

876

877 **References**

878 1. N. F. Mott, E. A. Davis and K. Weiser, Electronic processes in non-crystalline
879 materials, *Physics Today*, 1972, **25**, 55.

880 2. P. Makula, M. Pacia and W. Macyk, How to correctly determine the band gap
881 energy of modified semiconductor photocatalysts based on UV-Vis spectra,
882 *Journal of Physical Chemistry Letters*, 2018, **9**, 6814-6817.

883 3. Z. Yang, X. Xie, J. Wei, Z. Zhang, C. Yu, S. Dong, B. Chen, Y. Wang, M. Xiang
884 and H. Qin, Interface engineering $\text{Ni}/\text{Ni}_{12}\text{P}_5@\text{CN}_x$ Mott-Schottky
885 heterojunction tailoring electrocatalytic pathways for zinc-air battery, *Journal
886 of Colloid Interface Science*, 2023, **642**, 439-446.

887 4. Y. Xiao, C. Feng, J. Fu, F. Wang, C. Li, V. F. Kunzelmann, C.-M. Jiang, M.
888 Nakabayashi, N. Shibata, I. D. Sharp, K. Domen and Y. Li, Band structure
889 engineering and defect control of Ta_3N_5 for efficient photoelectrochemical
890 water oxidation, *Nature Catalysis*, 2020, **3**, 932-940.

891 5. M. K. Adak, A. Rajput, D. Ghosh and B. Chakraborty, Role of Fe–O–M bond in
892 controlling the electroactive species generation from the FeMO_4 (M: Mo and W)
893 electro(pre)catalyst during OER, *ACS Applied Energy Materials*, 2022, **5**,
894 13645-13660.

895 6. H. Jin, X. Liu, P. An, C. Tang, H. Yu, Q. Zhang, H. J. Peng, L. Gu, Y. Zheng, T.
896 Song, K. Davey, U. Paik, J. Dong and S. Z. Qiao, Dynamic rhenium dopant
897 boosts ruthenium oxide for durable oxygen evolution, *Nature Communications*,
898 2023, **14**, 354.

899 7. Zeenat, Z. Ahmad, A. Maqbool, M. Asif Hussain, R. Adel Pashameah, A.
900 Shahzadi, N. Nazar, S. Iqbal, A. K. Alanazi, M. Naeem Ashiq and H. M. Abo-
901 Dief, One-pot solvothermal synthesis of highly catalytic Janus transition metal
902 phosphides (TMPs) for high performance OER, *Fuel*, 2023, **331**, 125913-
903 125921.

904 8. W. Zhang, Z. Shahnavaz, X. Yan, X. Huang, S. Wu, H. Chen, J. Pan, T. Li and
905 J. Wang, One-step solvothermal synthesis of raspberry-like NiCo-MOF for
906 high-performance flexible supercapacitors for a wide operation temperature
907 range, *Inorganic Chemistry*, 2022, **61**, 15287-15301.

908 9. F. Bahmani, S. H. Kazemi, H. Kazemi, M. A. Kiani and S. Yoones Feizabadi,
909 Nanocomposite of copper–molybdenum–oxide nanosheets with graphene as
910 high-performance materials for supercapacitors, *Journal of Alloys and
911 Compounds*, 2019, **784**, 500-512.

912 10. F. Song and X. Hu, Exfoliation of layered double hydroxides for enhanced
913 oxygen evolution catalysis, *Nature Communications*, 2014, **5**, 4477.

914 11. F. Dionigi, Z. Zeng, I. Sinev, T. Merzdorf, S. Deshpande, M. B. Lopez, S.
915 Kunze, I. Zegkinoglou, H. Sarodnik, D. Fan, A. Bergmann, J. Drnec, J. F.
916 Araujo, M. Gleich, D. Teschner, J. Zhu, W. X. Li, J. Greeley, B. R. Cuenya and
917 P. Strasser, In-situ structure and catalytic mechanism of NiFe and CoFe layered
918 double hydroxides during oxygen evolution, *Nature Communications*, 2020, **11**,
919 2522.

920 12. S. Jaskaniec, C. Hobbs, A. Seral-Ascaso, J. Coelho, M. P. Browne, D. Tyndall,
921 T. Sasaki and V. Nicolosi, Low-temperature synthesis and investigation into the
922 formation mechanism of high quality Ni-Fe layered double hydroxides
923 hexagonal platelets, *Science Report*, 2018, **8**, 4179.

924 13. W. Hu, Q. Liu, T. Lv, F. Zhou and Y. Zhong, Impact of interfacial CoOOH on
925 OER catalytic activities and electrochemical behaviors of bimetallic Co_xNi -
926 LDH nanosheet catalysts, *Electrochimica Acta*, 2021, **381**, 138276.

927 14. R. Yang, Y. Zhou, Y. Xing, D. Li, D. Jiang, M. Chen, W. Shi and S. Yuan,
928 Synergistic coupling of CoFe-LDH arrays with NiFe-LDH nanosheet for highly
929 efficient overall water splitting in alkaline media, *Applied Catalysis B: Environmental*, 2019, **253**, 131-139.

930 15. Y. Song, Z. Li, K. Fan, Z. Ren, W. Xie, Y. Yang, M. Shao and M. Wei, Ultrathin
931 layered double hydroxides nanosheets array towards efficient electrooxidation
932 of 5-hydroxymethylfurfural coupled with hydrogen generation, *Applied
933 Catalysis B: Environmental*, 2021, **299**, 120669.

934 16. L. Zhang, H. Zhu, J. Hao, C. Wang, Y. Wen, H. Li, S. Lu, F. Duan and M. Du,
935 Integrating the cationic engineering and hollow structure engineering into
936 perovskites oxides for efficient and stable electrocatalytic oxygen evolution,
937 *Electrochimica Acta*, 2019, **327**, 135033.

938 17. L. Tang, T. Fan, Z. Chen, J. Tian, H. Guo, M. Peng, F. Zuo, X. Fu, M. Li, Y. Bu,
939 Y. Luo, J. Li and Y. Sun, Binary-dopant promoted lattice oxygen participation
940 in OER on cobaltate electrocatalyst, *Chemical Engineering Journal*, 2021, **417**,
941 129324.

942 18. L. Gui, G. Pan, X. Ma, M. You, B. He, Z. Yang, J. Sun, W. Zhou, J. Xu and L.
943 Zhao, In-situ exsolution of CoNi alloy nanoparticles on $\text{LiFe}_{0.8}\text{Co}_{0.1}\text{Ni}_{0.1}\text{O}_2$
944 parent: New opportunity for boosting oxygen evolution and reduction reaction,
945 *Applied Surface Science*, 2021, **543**, 148817.

946 19. K. Gu, X. Zhu, D. Wang, N. Zhang, G. Huang, W. Li, P. Long, J. Tian, Y. Zou,
947 Y. Wang, R. Chen and S. Wang, Ultrathin defective high-entropy layered
948 double hydroxides for electrochemical water oxidation, *Journal of Energy
949 Chemistry*, 2021, **60**, 121-126.

950 20. X. Zhang, W. Lu, Y. Tian, S. Yang, Q. Zhang, D. Lei and Y. Zhao, Nanosheet-
951 assembled NiCo-LDH hollow spheres as high-performance electrodes for
952 supercapacitors, *Journal of Colloid and Interface Science*, 2022, **606**, 1120-
953 1127.

954 21. A. Tang, P. Chen and C. Mi, Ni-Co layered double hydroxide nanosheet array
955 on nickel foam coated graphene for high-performance asymmetric
956 supercapacitors, *Ionics*, 2020, **26**, 6277-6287.

957 22. X. Hua, C.-J. Mao, J.-S. Chen, P.-P. Chen and C.-F. Zhang, Facile synthesis of
958 new-type MnOOH/NiAl -layered double hydroxide nanocomposite for high-
959 performance supercapacitor, *Journal of Alloys and Compounds*, 2019, **777**, 749-
960 758.

961 23. Y. Zhang and S. Wei, Mg-Co-Al-LDH nanoparticles with attractive
962 electrochemical performance for supercapacitor, *Journal of Nanoparticle*

964 *Research*, 2019, **21**, 14.

965 24. B. Liang, Y. Ai, Y. Wang, C. Liu, S. Ouyang and M. Liu, Spinel-type
 966 (FeCoCrMnZn)₃O₄ high-entropy oxide: Facile preparation and supercapacitor
 967 performance, *Materials*, 2020, **13**, 5798.

968 25. B. Talluri, M. L. Aparna, N. Sreenivasulu, S. S. Bhattacharya and T. Thomas,
 969 High entropy spinel metal oxide (CoCrFeMnNi)₃O₄ nanoparticles as a high-
 970 performance supercapacitor electrode material, *Journal of Energy Storage*,
 971 2021, **42**, 103004.

972