Supporting Information

Highly Sensitive Terbium-Based Metal-Organic Framework Scintillators Applied in Flexible X-ray Imaging

Peng-Kun Wang,^{a,b,c} Wen-Fei Wang,^{a,b} Bao-Yi Li,^{a,b,c} Rui-Xuan Qian,^{a,b} Zhao-Xing Gao,^{a,b} Shuai-Hua Wang,^{*a,b,c} Fa-Kun Zheng^{*a,b,c} and Guo-Cong Guo^{*a,b,c}

^a State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
 ^b Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China

^c University of Chinese Academy of Sciences, Beijing 100049, P. R. China

* Corresponding author to E-mail: shwang@fjirsm.ac.cn; zfk@fjirsm.ac.cn; gcguo@ fjirsm.ac.cn

Supplementary figures

Figure S1 The coordination environment of Tb³⁺. For clarity, all hydrogen atoms are omitted. Symmetry codes: #1 1 + x, y, z; #2 1 - x, -y, 1 - z; #3 1 - x, -1/2 + y, 1/2 - z; #4 x, 1/2 - y, 1/2 + z.

Figure S2 (a) The coordination environment of HDOBPDC^{3–}. (b) The coordination mode of HDOBPDC^{3–}.

Figure S3 (a) The 1D chain structure of **Tb-MOF-1** along the *a*-axis. (b) The 2D layer of **Tb-MOF-1** aggregation along the *b*-axis. All hydrogen atoms, water molecule and DMF molecules are omitted for clarity.

Figure S4 (a) The channel structure of Tb-**MOF-1** aggregation along the *a*-axis. (b) The 3D schematic of the channel structure in **Tb-MOF-1**. All hydrogen atoms, coordinated DMF molecules and free water molecules are omitted for clarity.

Figure S5 The powdered X-ray diffraction (PXRD) patterns of Tb-MOF-1.

Figure S6 The FT-IR spectra of H₄DOBPDC and Tb-MOF-1.

Notes: Compared to the FT-IR spectra of **Tb-MOF-1**, the intensity of the C=O stretching vibration band H₄DOBPDC ($v = 1620 \text{ cm}^{-1}$) was substantially decreased. The O-H stretching vibrations ($v = 3489 \text{ cm}^{-1}$) and the bending vibration ($v = 1301 \text{ cm}^{-1}$) of the phenolic hydroxyl groups were both weakened.¹ Two new bands appear at the 1579 cm⁻¹ and 1365 cm⁻¹ in **Tb-MOF-1**, which can be assigned to the characteristic asymmetric and

symmetric stretching vibration bands of carboxylate coordination structure, respectively.² These IR results further confirmed the formation of coordination bonds between the Tb ions and O atoms of the carboxy and hydroxyl groups from ligand.³

Figure S7 The photoluminescent CIE profile of Tb-MOF-1.

Figure S8 The solid-state PL excitation spectra and PL emission spectra of Tb-MOF-1.

Figure S9 The solid-state PL emission spectra of Tb-MOF-1 under different excitation wavelengths.

Figure S10 The solid-state PL emission spectra of ligand H₄DOBPDC and Tb-MOF-1.

Figure S11 The PL decay time graph of solid-state Tb-MOF-1 tested at room temperature.

Figure S12 The PLQY spectra of Tb-MOF-1.

Figure S13 The X-ray attenuation efficiencies as a function of the material thickness of **Tb-MOF-1** and other references toward 50 keV X-ray photons.

Figure S14 The RL spectra of the **Tb-MOF-1** under a dose rate of 42.29 mGy/s. The inset are the photos of **Tb-MOF-1** with X-ray off/on.

Figure S15 The X-ray dose rate dependent RL of **Tb-MOF-1** in the range from 42.29 to 4.02 mGy/s.

Figure S16 The partial electronic density of states of Tb³⁺ ions in Tb-MOF-1.

Figure S18 The PXRD result of **Tb-MOF-1** after continuous X-ray irradiation for 3 h under a dose rate of 42.29 mGy/s.

Figure S19 The PXRD result of the **Tb-MOF-1** crystals after being immersed in water for 30 d.

Figure S20 The photographs of the flat Tb-MOF-screen with UV off (a) /on (b).

Figure S21 The SEM photo of the Tb-MOF-screen.

Figure S22 The X-ray dose rate dependent RL spectra of **Tb-MOF-screen** in the range of 4.02–42.29 mGy/s.

Figure S23 The linear relationship between RL intensity and X-ray dose rates of **Tb-MOF**-screen.

Figure S24 (a) Radiation stability of **Tb-MOF-screen** under continuous X-ray irradiation at a dose rate of 42.29 mGy/s for 3 h. (b) The RL intensities recorded for the **Tb-MOF-screen** over continuous 230 on/off cycles with the dose rate of 42.29 mGy/s.

Figure S25 Schematic diagram of X-ray imaging system.

Figure S26 Schematic diagram of the spring assembled into the capsule (The physical photo of the spring(top) and individual capsule(bottom)).

Figure S27 The photographs of the Tb-MOF-screen and the curved wires with different curved angles.

Figure S28 Schematic diagram of the different shooting angles during the X-ray imaging.

Note: The process of bending the scintillation screen and the curved wires involves initially bending the wires to a fixed angle. Subsequently, the flexible scintillation screen is secured

and tightly adhered to the wires using double-sided adhesive. The flexible scintillation screen and the bent wire are mounted on a rotatable stage, allowing the internal structure to be captured at various angles by rotating the stage.

Figure S29 The X-ray imaging photos of **Tb-MOF-screen** in different directions for curved wires under different curvature radii (30°(a), 60°(b), 90°(c)).

Supplementary tables

	$[Tb(HDOBPDC)(DMF)(H_2O)]_n$		
CCDC	2346454		
Formula	$C_{17}H_{16}N_1O_8Tb_1$		
M_r	521.23		
Crystal system	monoclinic		
Space group	$P2_l/c$		
a/Å	6.3736(2)		
$b/{ m \AA}$	<i>b</i> /Å 15.8213(5)		
$c/{ m \AA}$	24.4175(6)		
$lpha/^{\circ}$	90		
$eta /^{\circ}$	92.222(2)		
$\gamma^{/\circ}$	90		
<i>V</i> [Å ³]	2460.38(13)		
Ζ	4		
Calcd. density (g cm ^{-3})	1.407		
μ/mm^{-1}	2.908		
<i>F</i> (000)	<i>F</i> (000) 1016		
$2 heta/^{\circ}$	5.632 to 50.054		
Reflections collected	17403		
Goodness-of-fit on F^2	1.101		
Final Dindiana [1 > 2-(D]	$R_1 = 0.0358$		
Final K indices $[1 \ge 2\sigma(1)]$	$wR_2 = 0.1126$		

 Table S1 Crystal data and structure refinement for Tb-MOF-1.

 ${}^{a}R_{1} = \sum (F_{o} - F_{c}) / \sum F_{o} \cdot {}^{b}wR_{2} = \left[\sum w (F_{o}^{2} - F_{c}^{2})^{2} / \sum w (F_{o}^{2})^{2} \right]^{1/2}.$

Selected bond lengths (Å)						
Tb1–Tb1#1	3.8594(5)	Tb1O4#1	2.722(4)			
Tb1-O4#2	2.358(3)	Tb1–O2	2.213(4)			
Tb1–O6#3	2.376(4)	Tb1O1#1	2.407(3)			
Tb1–O1	2.325(4)	Tb1–O7#4	2.358(4)			
Tb1–O3	2.324(4)					
Selected bond angles (°)						
O4#1–Tb1–Tb1#2	129.47(10)	O4#2–Tb1–Tb1#2	83.09(8)			
O4#1-Tb1-O4#2	73.20(13)	O4#1-Tb1-O6#3	70.48(13)			
O4#1-Tb1-O1#2	102.97(13)	Tb1-O1-Tb1#2	109.29(14)			
O4#1-Tb1-O7#4	138.77(13)	O2–Tb1–Tb1#2	107.10(9)			
O2–Tb1–O4#1	97.62(14)	O2–Tb1–O4#2	169.45(12)			
O2–Tb1–O6#3	83.89(16)	O2–Tb1–O1	72.55(13)			
O2–Tb1–O1#2	139.55(13)	O2-Tb1-O7#4	110.24(15)			
O2–Tb1–O3	84.42(16)	O6#3-Tb1-Tb1#2	69.28(9)			
O6#3-Tb1-O4#2	97.53(13)	O6#3-Tb1-O1#2	71.08(13)			
O1–Tb1–Tb1#2	36.06(8)	O1#2-Tb1-Tb1#2	34.65(8)			
O1–Tb1–O4#1	145.38(13)	O1–Tb1–O4#2	117.96(11)			
O1#2-Tb1-O4#2	49.77(12)	O1–Tb1–O6#3	75.43(13)			
O1–Tb1–O1#2	70.71(14)	O1–Tb1–O7#4	74.05(13)			
O1–Tb1–O3	133.64(15)	O7#4Tb1Tb1#2	70.95(10)			
O7#4-Tb1-O4#2	75.28(13)	O7#4–Tb1–O6#3	140.15(13)			
O7#4-Tb1-O1#2	75.05(14)	O3-Tb1-Tb1#2	148.26(10)			
O3-Tb1-O4#2	88.19(15)	O3-Tb1-O4#1	75.81(15)			
O3–Tb1–O6#3	142.34(14)	O3–Tb1–O1#2	134.19(15)			
O3–Tb1–O7#4	77.33(14)	Tb1#5-O4-Tb1#2	106.80(13)			

Table S2 Selected bond lengths (Å) and bond angles (°) in Tb-MOF-1.

Symmetry codes: #1 1 + *x*, *y*, *z*; #2 1 - *x*, -*y*, 1 - *z*; #3 1 - *x*, -1/2 + *y*, 1/2 - *z*; #4 *x*, 1/2 - *y*, 1/2 + *z*; #5 -1 + *x*, *y*, *z*.

Compound	Detection limit (µGy/s)	Decay time (µs)	Spatial resolution (lp/mm)	Reference
Tb-MOF-1	1.71	78.81	7.7	This work
CsI:Tl	0.116	0.608	5.0	[4]
Gd ₂ O ₂ S:Tb	NA	621.87	3.0-6.0	[4, 5]
BaF_2	>5.5	0.0006	NA	[6]

 Table S3 Comparison of the performances for some commercially used scintillators.

NA: Not available

Supplementary references

- [1] Y. Ou, W. Zhou, Z. Zhu, F. Ma, R. Zhou, F. Su, L. Zheng, L. Ma and H. Liang, Host Differential Sensitization toward Color/Lifetime-Tuned Lanthanide Coordination Polymers for Optical Multiplexing, *Angew. Chem. Int. Ed.*, 2020, **59**, 23810–23816.
- [2] W. Xu, N. Hanikel, K. A. Lomachenko, C. Atzori, A. Lund, H. Lyu, Z. Zhou, C. A. Angell and O. M. Yaghi, High-Porosity Metal-Organic Framework Glasses, *Angew. Chem. Int. Ed.*, 2023, **62**, e202300003.
- [3] Z. Su, Y.-R. Miao, G. Zhang, J. T. Miller and K. S. Suslick, Bond Breakage under Pressure in a Metal Organic Framework, *Chem. Sci.*, 2017, **8**, 8004–8011.

[4] X.-Y. Du, S. Zhao, L. Wang, H.-D. Wu, F. Ye, K.-H. Xue, S.-Q. Peng, J.-L. Xia, Z.-R. Sang, D.-D. Zhang, Z.-P. Xiong, Z.-P. Zheng, L. Xu, G.-D. Niu, J. Tang, Efficient and ultrafast organic scintillators by hot exciton manipulation, *Nat. Photonics*, 2024, **18**, 162-169.

[5] H.-R. Zou, W.-J. Zhu, J.-T. Zhao, S. Zhou, S.-Q. Xu, and L. Lei, Sub-10 nm Lanthanide-Doped Lu₆O₅F₈ Nanoscintillators for Real-Time High-Resolution Dynamic 3D X-Ray Imaging, *Adv. Funct. Mater.* 2024, 2409156.

[6] T. Yanagida, T. Kato, D. Nakauchi and N. Kawaguchi, Fundamental aspects, recent progress and future prospects of inorganic scintillators, *Jpn. J. Appl. Phys.*, 2023, **62**, 010508.