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Supplementary figures 

Figure S1 The coordination environment of Tb3+. For clarity, all hydrogen atoms are 

omitted. Symmetry codes: #1 1 + x, y, z; #2 1 – x, –y, 1 – z; #3 1 – x, –1/2 + y, 1/2 – z; #4 

x, 1/2 – y, 1/2 + z.

Figure S2 (a) The coordination environment of HDOBPDC3–. (b) The coordination mode 

of HDOBPDC3–.
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Figure S3 (a) The 1D chain structure of Tb-MOF-1 along the a-axis. (b) The 2D layer of 

Tb-MOF-1 aggregation along the b-axis. All hydrogen atoms, water molecule and DMF 

molecules are omitted for clarity.

Figure S4 (a) The channel structure of Tb-MOF-1 aggregation along the a-axis. (b) The 

3D schematic of the channel structure in Tb-MOF-1. All hydrogen atoms, coordinated 

DMF molecules and free water molecules are omitted for clarity.
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Figure S5 The powdered X-ray diffraction (PXRD) patterns of Tb-MOF-1.

Figure S6 The FT-IR spectra of H4DOBPDC and Tb-MOF-1.

Notes: Compared to the FT-IR spectra of Tb-MOF-1, the intensity of the C=O stretching 

vibration band H4DOBPDC (v = 1620 cm–1) was substantially decreased. The O-H 

stretching vibrations (v = 3489 cm–1) and the bending vibration (v = 1301 cm–1) of the 

phenolic hydroxyl groups were both weakened.1 Two new bands appear at the 1579 cm–1 

and 1365 cm–1 in Tb-MOF-1, which can be assigned to the characteristic asymmetric and 
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symmetric stretching vibration bands of carboxylate coordination structure, respectively.2 

These IR results further confirmed the formation of coordination bonds between the Tb 

ions and O atoms of the carboxy and hydroxyl groups from ligand.3 

Figure S7 The photoluminescent CIE profile of Tb-MOF-1.

Figure S8 The solid-state PL excitation spectra and PL emission spectra of Tb-MOF-1.
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Figure S9 The solid-state PL emission spectra of Tb-MOF-1 under different excitation 

wavelengths.

Figure S10 The solid-state PL emission spectra of ligand H4DOBPDC and Tb-MOF-1.
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Figure S11 The PL decay time graph of solid-state Tb-MOF-1 tested at room temperature.

Figure S12 The PLQY spectra of Tb-MOF-1.
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Figure S13 The X-ray attenuation efficiencies as a function of the material thickness of 

Tb-MOF-1 and other references toward 50 keV X-ray photons.

Figure S14 The RL spectra of the Tb-MOF-1 under a dose rate of 42.29 mGy/s. The inset 

are the photos of Tb-MOF-1 with X-ray off/on.
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Figure S15 The X-ray dose rate dependent RL of Tb-MOF-1 in the range from 42.29 to 
4.02 mGy/s.

Figure S16 The partial electronic density of states of Tb3+ ions in Tb-MOF-1.
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Figure S17 The detection limit of BaF2.

Figure S18 The PXRD result of Tb-MOF-1 after continuous X-ray irradiation for 3 h 
under a dose rate of 42.29 mGy/s.
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Figure S19 The PXRD result of the Tb-MOF-1 crystals after being immersed in water for 
30 d.

Figure S20 The photographs of the flat Tb-MOF-screen with UV off (a) /on (b).
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Figure S21 The SEM photo of the Tb-MOF-screen.

Figure S22 The X-ray dose rate dependent RL spectra of Tb-MOF-screen in the range of 

4.02–42.29 mGy/s.
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Figure S23 The linear relationship between RL intensity and X-ray dose rates of Tb-MOF-

screen.

Figure S24 (a) Radiation stability of Tb-MOF-screen under continuous X-ray irradiation 

at a dose rate of 42.29 mGy/s for 3 h. (b) The RL intensities recorded for the Tb-MOF-

screen over continuous 230 on/off cycles with the dose rate of 42.29 mGy/s.



S14

Figure S25 Schematic diagram of X-ray imaging system.

Figure S26 Schematic diagram of the spring assembled into the capsule (The physical 

photo of the spring(top) and individual capsule(bottom)).
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Figure S27 The photographs of the Tb-MOF-screen and the curved wires with different 

curved angles.

Figure S28 Schematic diagram of the different shooting angles during the X-ray imaging.

Note: The process of bending the scintillation screen and the curved wires involves initially 

bending the wires to a fixed angle. Subsequently, the flexible scintillation screen is secured 
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and tightly adhered to the wires using double-sided adhesive. The flexible scintillation 

screen and the bent wire are mounted on a rotatable stage, allowing the internal structure 

to be captured at various angles by rotating the stage.

Figure S29 The X-ray imaging photos of Tb-MOF-screen in different directions for 

curved wires under different curvature radii (30°(a), 60°(b), 90°(c)).
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Supplementary tables
Table S1 Crystal data and structure refinement for Tb-MOF-1.

[Tb(HDOBPDC)(DMF)(H2O)]n

CCDC 2346454

Formula C17H16N1O8Tb1

Mr 521.23

Crystal system monoclinic

Space group P21/c

a/Å 6.3736(2)

b/Å 15.8213(5)

c/Å 24.4175(6)

α/° 90

β/° 92.222(2)

γ/° 90

V [Å3] 2460.38(13)

Z 4

Calcd. density (g cm–3) 1.407

μ/mm–1 2.908

F(000) 1016

2θ/° 5.632 to 50.054

Reflections collected 17403

Goodness-of-fit on F2 1.101

R1 = 0.0358
Final R indices [I > 2σ(I)]

wR2 = 0.1126

aR1 = ∑(Fo − Fc)/∑Fo. bwR2 = [∑w(Fo
2 − Fc

2)2/∑w(Fo
2)2]1/2.
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Table S2 Selected bond lengths (Å) and bond angles (o) in Tb-MOF-1.

Selected bond lengths (Å)

Tb1–Tb1#1 3.8594(5) Tb1–O4#1 2.722(4)

Tb1–O4#2 2.358(3) Tb1–O2 2.213(4)

Tb1–O6#3 2.376(4) Tb1–O1#1 2.407(3)

Tb1–O1

Tb1–O3

2.325(4)

2.324(4)

Tb1–O7#4 2.358(4)

Selected bond angles (o)

O4#1–Tb1–Tb1#2 129.47(10) O4#2–Tb1–Tb1#2 83.09(8)

O4#1–Tb1–O4#2 73.20(13) O4#1–Tb1–O6#3 70.48(13)

O4#1–Tb1–O1#2 102.97(13) Tb1–O1–Tb1#2 109.29(14)

O4#1–Tb1–O7#4 138.77(13) O2–Tb1–Tb1#2 107.10(9)

O2–Tb1–O4#1 97.62(14) O2–Tb1–O4#2 169.45(12)

O2–Tb1–O6#3 83.89(16) O2–Tb1–O1 72.55(13)

O2–Tb1–O1#2 139.55(13) O2–Tb1–O7#4 110.24(15)

O2–Tb1–O3 84.42(16) O6#3–Tb1–Tb1#2 69.28(9)

O6#3–Tb1–O4#2 97.53(13) O6#3–Tb1–O1#2 71.08(13)

O1–Tb1–Tb1#2 36.06(8) O1#2–Tb1–Tb1#2 34.65(8)

O1–Tb1–O4#1 145.38(13) O1–Tb1–O4#2 117.96(11)

O1#2–Tb1–O4#2 49.77(12) O1–Tb1–O6#3 75.43(13)

O1–Tb1–O1#2 70.71(14) O1–Tb1–O7#4 74.05(13)

O1–Tb1–O3 133.64(15) O7#4–Tb1–Tb1#2 70.95(10)

O7#4–Tb1–O4#2 75.28(13) O7#4–Tb1–O6#3 140.15(13)

O7#4–Tb1–O1#2 75.05(14) O3–Tb1–Tb1#2 148.26(10)

O3–Tb1–O4#2 88.19(15) O3–Tb1–O4#1 75.81(15)

O3–Tb1–O6#3 142.34(14) O3–Tb1–O1#2 134.19(15)

O3–Tb1–O7#4 77.33(14) Tb1#5–O4–Tb1#2 106.80(13)



S19

Symmetry codes: #1 1 + x, y, z; #2 1 – x, –y, 1 – z; #3 1 – x, –1/2 + y, 1/2 – z; #4 x, 1/2 – y, 

1/2 + z; #5 –1 + x, y, z.

Table S3 Comparison of the performances for some commercially used scintillators.

Compound Detection limit
(μGy/s)

Decay time
(μs)

Spatial 
resolution
(lp/mm)

Reference

Tb-MOF-1 1.71 78.81 7.7 This work

CsI:Tl 0.116 0.608 5.0 [4]

Gd2O2S:Tb NA 621.87 3.0-6.0 [4, 5]

BaF2 ＞5.5 0.0006 NA [6]

NA: Not available



S20

Supplementary references
[1] Y. Ou, W. Zhou, Z. Zhu, F. Ma, R. Zhou, F. Su, L. Zheng, L. Ma and H. Liang, Host 

Differential Sensitization toward Color/Lifetime‐Tuned Lanthanide Coordination 
Polymers for Optical Multiplexing, Angew. Chem. Int. Ed., 2020, 59, 23810–23816.

[2] W. Xu, N. Hanikel, K. A. Lomachenko, C. Atzori, A. Lund, H. Lyu, Z. Zhou, C. A. 
Angell and O. M. Yaghi, High‐Porosity Metal‐Organic Framework Glasses, Angew. 
Chem. Int. Ed., 2023, 62, e202300003.

[3] Z. Su, Y.-R. Miao, G. Zhang, J. T. Miller and K. S. Suslick, Bond Breakage under 
Pressure in a Metal Organic Framework, Chem. Sci., 2017, 8, 8004–8011.

[4] X.-Y. Du, S. Zhao, L. Wang, H.-D. Wu, F. Ye, K.-H. Xue, S.-Q. Peng, J.-L. Xia, Z.-R. 
Sang, D.-D. Zhang, Z.-P. Xiong, Z.-P. Zheng, L. Xu, G.-D. Niu, J. Tang, Efficient and 
ultrafast organic scintillators by hot exciton manipulation, Nat. Photonics, 2024, 18, 162-
169.
[5] H.-R. Zou, W.-J. Zhu, J.-T. Zhao, S. Zhou, S.-Q. Xu, and L. Lei, Sub-10 nm 
Lanthanide-Doped Lu6O5F8 Nanoscintillators for Real-Time High-Resolution Dynamic 
3D X-Ray Imaging, Adv. Funct. Mater. 2024, 2409156.
[6] T. Yanagida, T. Kato, D. Nakauchi and N. Kawaguchi, Fundamental aspects, recent 
progress and future prospects of inorganic scintillators, Jpn. J. Appl. Phys., 2023, 62, 
010508.


