Supplementary Information (SI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2025

Supporting information

A novel benzothiazole-1,2,3-triazole-based arene osmium(II) complex as an effective rhabdomyosarcoma cancer stem cell agent

Sofia Sharkawy,^{‡ a,b}, Alba Hernández-García,[‡]^c Hana Kostrhunova,^a Delia Bautista,^d Lenka Markova,^a María Dolores Santana,^c Jana Kasparkova,^{a,e} Viktor Brabec,^{*a,e} Jose Ruiz^{*c}

 ^aCzech Academy of Sciences, Institute of Biophysics, CZ-61200 Brno, Czech Republic;
^bFaculty of Science, Department of Biochemistry, Masaryk University, CZ-62500 Brno, Czech Republic;
^cDepartamento de Química Inorgánica, Universidad de Murcia, and Murcia BioHealth Research; Institute (IMIB-Arrixaca), E-30100 Murcia, Spain;
^dACTI, Universidad de Murcia, Murcia E-30100, Spain
^eDepartment of Biophysics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic

‡ These authors contributed equally to this work.

* Corresponding authors

Table of contents

1.	Synthetic routes	S1
2.	Nuclear Magnetic Resonance (NMR)	S2
3.	Mass spectrometry	S10
4.	High performance liquid chromatography (HPLC) analysis	S14
5.	X-Ray diffraction	S16
6.	Photophysical properties	S22
7.	Stability studies	S23
8.	Interaction with Biomacromolecules	S34
9.	Biological assays	S39

1. Synthetic routes

R= -Me (L1), -F (L2), -CF₃ (L3), -NO₂ (L4), -NMe₂ (L5)

Scheme S1. Synthetic route to obtain the aldehydes. i) 1) NaNO₂, HCl_{conc}, H₂O, 0 °C, 1 h; 2) NaN₃, H₂O, 0° C, 15 min; 3) r.t., 2 h. ii) Propargyl alcohol, CuSO₄·5H₂O (5% mol), sodium ascorbate (10% mol), ^tBuOH /H₂O (1:1), r.t., 72 h. iii) 1) (COCl)₂, DMSO, DCM, -78 °C, atm., N₂, 15 min; 2) DCM, -78 °C, atm. N₂, 15 min; 3) Et₃N, atm N₂, -78 °C, 15 min, r.t., 24 h.

R= -Me (L1), -F (L2), -CF₃ (L3), -NO₂ (L4), -NMe₂ (L5)

Scheme S2. Synthetic route to obtain the ligands. i) CF₃COOH (5 % mol) EtOH, r.t., 24 h. ii) DDQ, DCM, 0 °C, 2 h.

Figure S2. ¹³C NMR of Os1 in CD₃CN.

Figure S3. ¹H-¹H COSY NMR spectrum of Os1 in CD₃CN.

Figure S4. ¹H NMR of Os2 in CD₃CN.

Figure S6. ¹H-NMR of Os3 in CD₃CN.

Figure S7. ¹³C NMR spectrum of Os3 in CD₃CN.

Figure S8. ¹H-¹H COSY NMR spectrum of Os3 in CD₃CN.

Figure S9. ¹H-¹H NOESY NMR spectrum of Os3 in CD₃CN.

Figure S10. ¹H-NMR spectrum of Os4 in CD₃CN.

Figure S12. ¹H-¹H COSY NMR spectrum of Os4 in CD₃CN.

8.5

8.0

7.5

7.0

9.0

9.0-

9.5

Ø

9.5

ppm

6.5

Figure S14. ¹³C NMR spectrum of Os5 in CD₃CN.

Figure S15. ¹H-¹H COSY NMR spectrum of Os5 in CD₃CN.

Figure S16. ¹H-¹H NOESY NMR spectrum of Os5 in CD₃CN.

3. Mass spectrometry

Figure S17. ESI-HRMS spectrum of complex Os1 (positive detection mode).

Figure S18. ESI-HRMS spectrum of complex Os2 (positive detection mode).

Figure S19. ESI-HRMS spectrum of complex Os3 (positive detection mode).

Figure S20. ESI-HRMS spectrum of complex Os4 (positive detection mode).

Figure S21. ESI-HRMS spectrum of complex Os5 (positive detection mode).

4. High performance liquid chromatography (HPLC) analysis

Time (min) 0.1 % formic acid in H ₂ O		0.1 % formic acid in CH_3CN	Flow (mL/min)		
0	80	20	0.4		
25	0	100	-		

Table S1. HPLC method

Figure S22. HPLC chromatograms with UV detection at 420 nm of complexes Os1-Os5.

Figure S23. Mass spectra of the 11-12 min peak of chromatograms of Figure S22 with peak of interest extracted for all complexes.

5. X-Ray diffraction

Table S2. X-ray diffraction data of complex Os3

Empirical formula	C ₂₆ H ₂₃ CIF ₉ N ₄ O	C ₂₆ H ₂₃ CIF ₉ N ₄ OsPS			
Formula weight	a weight 851.16				
Temperature	100(2) K				
Wavelength	avelength 0,71073 Å				
Crystal system	Orthorhombic				
Space group	Pbcn				
Unit cell dimensions	a = 26.697(4) Å	a= 90°			
	b = 9.8177(15) Å	b= 90°			
	c = 21.815(3) Å	g = 90°			

Volume	5717.9(14) Å ³
Z	8
Density (calculated)	1.978 Mg/m ³
Absorption coefficient	4.768 mm ⁻¹
F(000)	3296
Crystal size	0.320 x 0.170 x 0.150 mm ³
Theta range for data collection	2.017 to 26.371°
Index ranges	$-33 \le h \le 33$, $-12 \le k \le 12$, $-27 \le l \le 27$
Reflections collected	183983
Independent reflections	5846 [R(int) = 0.0589]
Completeness to theta = 25.242°	100.0 %
Absorption correction	Semi-empirical from equivalents
Max. And min. transmission	0.7461 and 0.5121
Refinement method	Full-matrix least-squares F ²
Data / restraints / parameters	5846 / 58 / 422
Goodness-of-fit on F ²	1.069
Final R indices [I>2sigma(I)]	R1 = 0.0186, wR2 = 0.0411
R indices (all data)	R1 = 0.0214, wR2 = 0.0422
Largest diff. Peak and hole	2.033 and -0.616 e.Å ⁻³

Table S3. Hydrogen bonds for Os3 [Å and °]

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
C(19)-H(19)F(33)#1	0.95	2.36	3.004(3)	124.5
C(19)-H(19)F(35)#1	0.95	2.43	3.358(3)	164.4

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+2,-z+1

Figure S24. Hydrogen bonds in the structure of **Os3**. Ellipsoids have been represented at 50 % probability

Table S4. Geometrical parameters of the CH^{\dots} π interactions for **Os3**.

Figure S25. Intermolecular CH- π interactions of Os3

Table S5.	X-ray	diffraction	data	of	complex	Os5
-----------	-------	-------------	------	----	---------	-----

Empirical formula C ₂₇ H ₂₉ CIF ₆ N ₅ OsPS				
Formula weight	826.23			
Temperature	100(2) K			
Wavelength	0,71073 Å			
Crystal system	Orthorhombi	С		
Space group	Pccn			
Unit cell dimensions	a = 25.037(2) Å	α =90°		
-	b = 10.6927(11) Å	β = 90°		
-	c = 21.7489(18) Å	γ =90°		
Volume	5822.4(9) Å	3		
Z	8			
Density (calculated)	1.885 Mg/m	3		
Absorption coefficient	4.666 mm⁻ ¹			
F(000)	3232			
Crystal size	0.240 x 0.200 x 0.12	20 mm ³		
Theta range for data collection	1.873 to 30.52	3°.		
Index ranges	-35≤ h≤ 35, -15≤ k≤ 15	i, -30≤ l≤ 31		
Reflections collected	139131			
Independent reflections	8896 [R(int) = 0.	0871]		
Completeness to theta = 25.242°	100.0 %			
Absorption correction	Semi-empirical from e	quivalents		
Max. And min. transmission	0.7461 and 0.5	537		
Refinement method	Full-matrix least-squ	uares F ²		
Data / restraints / parameters	8896 / 0 / 38	4		
Goodness-of-fit on F ²	1.043			
Final R indices [I>2sigma(I)]	С			
R indices (all data)	R1 = 0.0392, wR2 =	= 0.0528		
Largest diff. Peak and hole	0.767 and -0.837	e.Å ⁻³		

Figure S26. Hydrogen bonds in the structure of **Os5**. Ellipsoids have been represented at 50 % probability

Table S6. Hydrogen bonds for Os5 [Å and °]

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
C(19)-H(19)F(6)#1	0.95	2.44	3.176(3)	134.7
C(25)-H(25)Cl(1)#2	0.95	2.73	3.683(3)	177.3
C(26)-H(26C)F(3)#3	0.98	2.53	3.132(4)	119.8
C(27)-H(27C)F(6)#4	0.98	2.49	3.316(3)	141.2

Symmetry transformations used to generate equivalent atoms:

#1 -x+3/2, -y+3/2,z; #2 -x+1,y-1/2,-z+3/2; #3 x-1/2,y+1/2,-z+1; #4 x-1/2,y-1/2,-z+1

Figure S27. Intermolecular π - π interactions of **Os5**.

Table S7. Geometrical parameters of the π π stacking interactions for **Os5.**

$\pi^{}\pi$ interaction	centroid-centroid	Plane-	θ
	distance	Plane	
		angle	
		(°)	
Plane 1- Plane 1	3.470(2)	1,60(12)	0,743
Plane 2- Plane 3	4.0157(14)	11,57(8)	2.304)/1.597(4)

Plane 1 (C11, C12, C13, C14, C15 y C16), Plane 2 (C1, C2, C3, C4, C5 y C6) and Plane 3 (C20, C21, C22, C23, C24 y C25).

Table S8. Geometrical parameters of the CH $-\pi$ interactions for **Os5**.

	C-Hcentroid ring distance (Å)	C-Hcentroid ring angle (°)
C(9)-H(9A)…Plane 1	2.95	137
C(9)-H(9C)…Plane 4	2.94	164

Plane 1 (C11, C12, C13, C14, C15 y C16) and Plane 4 (S6, C16, C11, N1, C17)

Figure S28. Intermolecular π - π and CH- π interactions of Ir3

6. Photophysical properties

Table S9. Absorption wavelengths ($^{\lambda}_{abs}$) and molar extinction coefficient ($^{\varepsilon}$) of complexes in
areated acetonitrile and DMSO, and excitation wavelengths ($^{\lambda_{ex}}$) and emission wavelengths (
λ_{em}) in DMSO.

	Comp. Solvent		vent	$^{\lambda}$ (nm) (arepsilon , M ⁻¹ cm ⁻¹)		λ_{ex} (nm)	λ _{em} (nm)	
	0s1		CH	₃CN	253 (19724) 311 (22952) 379h (42	98)	-	-	-	
			DM	ISO	260 (19016) 314 (22810) 377h (46	84)	3	10	36	5
	O	s2	CH	₃CN	252 (17458) 312 (19978) 380h (38	88)	-	-	-	
		-	DM	ISO	260 (17372) 314 (21142) 378h (45	58)	3	10	36	4
	O	s3	CH	₃CN	251 (18694) 311 (22430) 380h (51	14)	-	-	-	
			DM	ISO	260 (15486) 315 (20336) 378h (64	06)	3	10	37	0
	O	s4	CH	₃CN	259 (16842) 315 (24990) 388h (35	56)	-	-	-	
			DM	ISO	261 (17880) 319 (26686) 382h (64	06)	32	20	41	2
Os	5	CH ₃	₃CN	251	(17002) 326 (27296) 360h (21758)	-	-		-	
•••		DM	SO	259	(14012) 328 (26770) 357h (22538)	36	50	52	29	

7. Stability studies

Figure S29. UV-Visible absorption spectra of complexes **Os1-Os5** (50 μ M) in DMSO at t=0 anf after 48 h.

Figure S30. ¹H NMR spectra of Os1 (1mM) in $D_2O/DMSO-d_6$ (1:2) at t=0 and after 24 h.

Figure S31. ¹H NMR spectra of Os2 (1mM) in $D_2O/DMSO-d_6$ (1:2) at t=0 and after 24 h.

Figure S33. ¹H NMR spectra of Os4 (1mM) in $D_2O/DMSO-d_6$ (1:2) at different times.

Figure S34. ¹H NMR spectra of **Os5** (1mM) in $D_2O/DMSO-d_6$ (1:2) at t=0 and after 24 h.

Figure S35. ESI-MS spectra of Os5 (1mM) in $D_2O/DMSO-d_6$ (1:2) after 24 h.

Figure S36. ¹H NMR spectra of **Os3** (1mM): **A**) in $D_2O:DMSO-d_6$ (1:2) after 1 h. **B**) After removing D_2O under reduced pressure, add 400 µL of H_2O mQ and stirring for 1 h. Subsequently, remove the water once more and dissolve in DMSO- d_6 .

Figure S37. HPLC-MS of Os1 (10 µM) in water (5 % DMSO) at t=0 and after 24 h at r.t.

Figure S38. HPLC-MS of Os2 (10 µM) in water (5 % DMSO) at t=0 and after 24 h at r.t.

Figure S39. HPLC-MS of Os3 (10 µM) in water (5 % DMSO) at t=0 and after 24 h at r.t.

Figure S40. HPLC-MS of Os4 (10 µM) in water (5 % DMSO) at t=0 and after 24 h at r.t.

Figure S41. HPLC-MS of **Os5** (10 μ M) in water (5 % DMSO) at t=0 and after 24 h at r.t., and mass spectra of the ~12.5 min and ~8.3 min peaks of chromatogram with peaks of interest extracted (see **Table S1** for HPLC method).

Figure S42. HPLC-MS of Os1 (10 µM) in RPMI (5 % DMSO) at t=0 and after 24 h at r.t.

Figure S43. HPLC-MS of Os2 (10 µM) in RPMI (5 % DMSO) at t=0 and after 24 h at r.t.

Figure S44. HPLC-MS of Os3 (10 µM) in RPMI (5 % DMSO) at t=0 and after 24 h at r.t.

Figure S45. HPLC-MS of Os4 (10 µM) in RPMI (5 % DMSO) at t=0 and after 24 h at r.t.

Figure S46. HPLC-MS of Os5 (10 µM) in RPMI (5 % DMSO) at t=0 and after 24 h at r.t.

8. Interaction with Biomacromolecules

Figure S47. Emission spectra of HSA (2.7 μ M) in the presence of increasing amounts of **Os1-Os5** complexes (0-27 μ M) from top to bottom.

Figure S48. Stern-Volmer plots of the quenching of HSA fluorescence in the presence of Os1-Os5 complexes.

Figure S49. UV/visible spectra of HSA (1 µM) with increasing amounts of Os1-Os5 (0-2 eq).

Figure S50. Scatchard plots of the quenching of HSA fluorescence in the presence of Os1-Os5 complexes.

Figure S51. Emission spectra of HSA-WF in the presence of increasing amounts of complexes **Os1-Os5** (0-25 μ M). λ_{ex} = 320 nm, [HSA-WF]= 1.0:1.0 μ M. (top to bottom gradual increments).

Figure S52. Emission spectra of HSA-IBU in the presence of increasing amounts of complexes (0-25 μ M). λ_{ex} = 280 nm, [HSA-IBU]= 1.0:1.0 μ M. [Complexes]: 0-25 μ M (top to bottom gradual increments).

Figure S53. Stern-Volmer plots of the quenching of [HSA-WF] or [HSA-IBU] fluorescence in the presence of **Os1-Os5** complexes.

9. Biological assays

Figure S54. Representative dose-response curves as obtained by MTT assay.

Figure S55. Colocalization of **Os5** in Rhabdomyosarcoma cells with lysosomes and endoplasmic reticulum. The cells were prestained with Lyso-Tracker or ER-Tracker and then exposed to **Os5** (12.9 μ M) for 1 h. **Os5** (Blue) – the signal of **Os5**; Tracker – the signal of either Lyso-Tracker (B, C) or ER-Tracker (D, E); Merge – the merged signal of **Os5** and the specific tracker; Brightfield – brightfield channel. (A) – Cells exposed only to **Os5**; (B) – cells exposed only to Lyso-Tracker; (C) – cells exposed to **Os5** and Lyso-Tracker; (D) - cells exposed only to ER-Tracker; (E) - cells exposed to **Os5** and ER-Tracker.

Figure S56. Colocalization of **Os5** with ER-Tracker, Lyso-Tracker, and TMRE. The correlation coefficients were calculated from images obtained with RD cells pretreated with individual trackers and treated with **Os5** for 1 h. The red number represents an average of correlation coefficients determined with ImageJ software.

Table S10. Percentual distribution of Os from Os5 in cellular fractions of RD cells.

Cellular fraction	Percentual distribution ^a
Cytosolic	21±4
Membrane/Particulate	71±6
Nuclear (proteins and membrane)	6.3±0.9
Cytoskeletal+DNA	1.7±0.3

^aRD cells were incubated with 50 µM Os5 for 5 hours. The cells were then processed with FractionPREP[™] Cell Fractionation kit to obtain four cellular fractions. Osmium content in individual fractions was determined with ICP-MS. Two samples were analyzed, and the results are shown as MEAN±SD.

Figure S57. Representative dose-response curves as obtained by MTT and NR assays.

Table S11. IC_{50} values (μ M). IC_{50} values were determined in CD133+ and CD133- RD cells using Cell TiterGlo 3D assay.

IC ₅₀ (μM) ^{a,b}	Os1	Os2	Os3	Os4	Os5	cisPt	Sal	CF
RD.CD133-	19 ± 2	30 ± 6	24 ± 3	47 ± 3	3.9 ± 1.2	12 ± 3	0.8 ± 0.2	592 ± 90
RD.CD133	12 ± 4	27 ± 5	17 ± 2	45 ± 6	3.1 ± 0.8	15 ± 3	0.5 ± 0.1	455 ± 90

^aThe spheroids were treated for 72 h.

^bData represents MEAN±SD from at least three independent experiments.

Figure S58. Caspase-3 activation detected with CellEvent® Caspase3/7 Green Detection Reagent. RD cells were treated with vehicle or **Os5** at concentrations corresponding to 1x, 2x, and $3xIC_{50}$ values for 24 h. STAU – cells were treated with staurosporine (2 µM) for 3 hours. Following the staining with the green reagent (30 min), the cells were analyzed with flow cytometry. $2x10^4$ cells were analyzed per run; the experiment was performed twice. The results are represented as MEAN±SD. Student t-test confirmed statistically significant differences from non-treated control for all treated samples with *p*≤0.01 or *p*≤0.001.

Figure S59. Representative dose-response curves as obtained by Cell TiterGlo 3D assay.

Figure S60. Quantification of confocal microscopy images. The graph shows ratios of Calcein AM fluorescence intensity to PI fluorescence intensity in untreated spheroids (Control) and spheroids exposed to **Os5** for 72 h. Fluorescence intensities were measured with ImageJ software. Three spheroids were scored per sample. The asterisks denote significant differences from untreated control as determined with the Student t-test (p<0.01).