The Balance of Orbital Overlap and Orbital Energy in the Activation of Methane by Actinide Cations: Insights from Inductively Coupled Plasma Tandem Mass Spectrometry

Amanda R. Bubas, Amanda D. French, Kali M. Melby, Michael J. Rodriguez, Richard M Cox*

Pacific Northwest National Laboratory, Richland, WA 99352 USA

Supporting Information

Table S1. Average electronic energy (in eV) of An⁺ from the ICP source assuming a Boltzmann distribution.^a

M^+	Mass	300 K	700 K	1000 K	6500 K	10000 K	
(isotope)	(amu)						
$^{232}Th^{+}$	232.04	0.00	0.02	0.04	0.77	0.93	
$^{231}Pa^{+}$	231.04	0.00	0.03	0.07	0.35	0.40	
²³⁸ U ⁺	238.05	0.01	0.03	0.05	0.61	0.74	
$^{237}Np^{+}$	237.05	0.00	0.01	0.02	0.26	0.31	
$^{242}Pu^+$	242.06	0.00	0.01	0.03	0.80	0.95	
²⁴³ Am ⁺	243.06	0.00	0.00	0.01	0.34	0.75	
aMasses	and	electron	ic	states	taken	from	Re

1

(https://physics.nist.gov/PhysRefData/Handbook/periodictable.htm)

M^+	$IE(An^{+})^{a} (eV)$	$\operatorname{An}^+ \operatorname{E}_p(6d7s)$	$An^{+} E_{p}(6d^{2}) (eV)$	${\rm An}^{2+} {\rm E}_{\rm p}({\rm 6d}) ~({\rm eV})$
Th^+	11.9 ± 0.1	0.00	0.00	0.00
Pa^+	11.7 ± 0.5	0.10	0.59	0.00
U^+	11.9 ± 0.5	0.04	0.57	0.026
Np^+	11.7 ± 0.3	0.00	0.9 ± 0.4	0.7 ± 0.4
Pu^+	11.7 ± 0.2	1.08	2.14	1.6 ± 0.4
Am^+	12.0 ± 0.2	1.76	3.6 ± 0.2	3.0 ± 0.4

Table S2. Ionization energies and promotion energies for An^+ and An^{2+} .

^aCompiled and reproduced from Ref.²

	r ² ICP-MS/MS only	r ² GIBMS Th, U, ICP-MS/MS Pa, Np, Pu, Am
$D_0(AnCD_2^+)$ vs. $E_p(6d^2)$	0.84	0.95
$D_0(AnCD_2^+)$ vs. $E_p(6d7s)$	0.58	0.66
$D_0(AnCD_2^+)$ vs. $IE(An^+) + E_p(6d) - EA(CH_2)$	0.74	0.84
$D_0(AnD^+)$ vs. $E_p(6d)$	0.96	0.91
$D_0(AnCD_3^+)$ vs. $E_p(6d)$	0.97	0.14
$D_0(AnCD^+)$ vs. $E_p(6d^2)$	0.48	0.08

Table S3. Summary of correlations of the indicated bond dissociation energies with the respective promotion energies.

Statisti	cal mechanic	s gives						
qvib = 1.076D+00 and <evib> = 7.645D+01 cm-1 (harmonic oscillators)</evib>								
qrot = 1.429D+05 and <erot> = 6.082D+02 cm-1 (rigid free rotors)</erot>								
qhr =	1.000D+00	and <ehr< td=""><td>:> = 0.0</td><td>00D+00 cm</td><td>n-1 (hindered</td><td>d rotors</td><td>and electronic</td><td>states)</td></ehr<>	:> = 0.0	00D+00 cm	n-1 (hindered	d rotors	and electronic	states)
qtot =	1.538D+05	(total p	artition fu	nction)				
Energy	Population	Energy	Population	Energy	Population	Energy	Population	
0.006	0.024772	0.107	0.054482	0.208	0.011594	0.310	0.001499	
0.019	0.074130	0.120	0.044293	0.221	0.008957	0.322	0.001154	
0.031	0.113397	0.133	0.035236	0.234	0.006928	0.335	0.000894	
0.044	0.120088	0.145	0.030109	0.246	0.005108	0.348	0.000672	
0.057	0.114725	0.158	0.026788	0.259	0.003930	0.360	0.000493	
0.069	0.102734	0.171	0.021955	0.272	0.003082	0.373	0.000375	
0.082	0.087726	0.183	0.018578	0.284	0.002397	0.386	0.000277	
0.095	0.070059	0.196	0.014734	0.297	0.001914	0.398	0.000206	
Statistical Rever-Swinebart Condensed Truncated								
		Mecha	nica T	-array	full T-a	array	32-nt array	
Bin size (cm-1):		n/a		3 00	102 00	array.	102 00	
Partition Eunction.		1 538	08E+05	1 53273E4	102.00	69E+05	1 54314E+05	
Population:		1 00000		0 99653 1 009		250	0 1 00329	
Auguracion.		0.09499		0.08500 0.083		202	0 08431	
Average	energy (ev).	0.004	100	0.00000	0.00.	114	0.00451	
T(vib) =	350.00 K							
BS direct count uses 2669 bins of 3.00 cm-1 up to 8000.00 cm-1								
Condensation factor= 34 [Estimated optimum= 33.50]								
condensation resources obstanting sologi								

Figure S1. Screen capture of the Beyer-Swinehart algorithm output from CRUNCH.³

Figure S2. Correlation of An^+-CD_2 BDEs with promotion energies of An^+ to a 6d7s electronic configuration. Open circles correspond to BDEs from ICP-MS/MS, and filled squares correspond to BDEs from GIBMS studies of Th⁴ and U (unpublished results from Armentrout). The solid black line is the least squares linear regression line using values from ICP-MS/MS ($r^2 = 0.58$), and the dashed blue line is the least squares linear regression line using values from GIBMS for Th and U and values from ICP-MS/MS for Pa, Np, and Pu ($r^2 = 0.66$). Models of the cross section using equation 10 provide threshold energies used to derive $D_0(An^+-CD_2)$.

Figure S3. Correlation of An^+-CD_2 BDEs from ICP-MS/MS with the sum of the ionization energy of An^+ , promotion energy of An^{2+} to a 6d electronic configuration, and the electron affinity of CH₂. Open circles correspond to BDEs from ICP-MS/MS, and filled squares correspond to BDEs from GIBMS studies of Th⁴ and U (unpublished results from Armentrout). The solid black line is the least squares linear regression line using values from ICP-MS/MS (r² = 0.74), and the dashed blue line is the least squares linear regression line using values from GIBMS for Th and U and values from ICP-MS/MS for Pa, Np, and Pu (r² = 0.84). Models of the cross section using equation 10 provide threshold energies used to derive D₀(An⁺-CD₂).

Figure S4. Correlation of An⁺–D BDEs with promotion energy of An⁺ to a 6d electronic configuration. Open circles correspond to BDEs from ICP-MS/MS, and filled squares correspond to BDEs from GIBMS studies of Th⁵ and U⁶. The solid black line is the least squares linear regression line using values from ICP-MS/MS ($r^2 = 0.96$), and the dashed blue line is the least squares linear regression line using values from GIBMS for Th and U and values from ICP-MS/MS for Pa, Np, Pu, and Am ($r^2 = 0.91$). Models of the cross section using equation 10 provide threshold energies used to derive D₀(An⁺–D).

Figure S5. Correlation of An^+-CD_3 BDEs with promotion energy of An^+ to a 6d electronic configuration. Open circles correspond to BDEs from ICP-MS/MS, and filled squares correspond to BDEs from GIBMS studies of Th⁴ and U (unpublished results from Armentrout). The solid black line is the least squares linear regression line using values from ICP-MS/MS ($r^2 = 0.97$), and the dashed blue line is the least squares linear regression line using values from GIBMS for Th and U and values from ICP-MS/MS for Pa and Np ($r^2 = 0.14$). Models of the cross section using equation 10 provide threshold energies used to derive $D_0(An^+-CD_3)$.

Figure S6. Correlation of An⁺–CD BDEs with promotion energy of An⁺ to a 6d² electronic configuration. Open circles correspond to BDEs from ICP-MS/MS, and filled squares correspond to BDEs from GIBMS studies of Th⁴ and U (unpublished results from Armentrout). The solid black line is the least squares linear regression line using values from ICP-MS/MS ($r^2 = 0.48$), and the dashed blue line is the least squares linear regression line using values from GIBMS for Th and U and values from ICP-MS/MS for Pa and Np ($r^2 = 0.08$). Models of the cross section using equation 10 provide threshold energies used to derive D₀(An⁺–CD).

REFERENCES

(1) Kramida, A.; Ralchenko, Y.; Reader, J. NIST atomic spectra database. *NIST standard reference database* **2018**, *78*.

(2) Marçalo, J.; Gibson, J. K. Gas-Phase Energetics of Actinide Oxides: An Assessment of Neutral and Cationic Monoxides and Dioxides from Thorium to Curium. *J. Phys. Chem. A* **2009**, *113* (45), 12599-12606. DOI: 10.1021/jp904862a.

(3) Dalleska, N.; Honma, K.; Sunderlin, L.; Armentrout, P. Solvation of transition metal ions by water. Sequential binding energies of M+ (H2O) x (x= 1-4) for M= Ti to Cu determined by collision-induced dissociation. *Journal of the American Chemical Society* **1994**, *116* (8), 3519-3528.

(4) Cox, R. M.; Armentrout, P. B.; de Jong, W. A. Activation of CH₄ by Th⁺ as Studied by Guided Ion Beam Mass Spectrometry and Quantum Chemistry. *Inorg. Chem.* **2015**, *54* (7), 3584-3599. DOI: 10.1021/acs.inorgchem.5b00137.

(5) Cox, R. M.; Armentrout, P. B.; de Jong, W. A. Reactions of Th⁺ + H₂, D₂, and HD Studied by Guided Ion Beam Tandem Mass Spectrometry and Quantum Chemical Calculations. *J. Phys. Chem. B* **2016**, *120*, 1601-1614. DOI: 10.1021/acs.jpcb.5b08008.

(6) Zhang, W.-J.; Demireva, M.; Kim, J.; de Jong, W. A.; Armentrout, P. B. Reactions of U⁺ with H₂, D₂, and HD Studied by Guided Ion Beam Tandem Mass Spectrometry and Theory. *J. Phys. Chem. A* 2021, *125* (36), 7825-7839. DOI: 10.1021/acs.jpca.1c05409.