Supporting Information

Dual electron transfer path and LSPR photothermal enhancement in BiOCl@ZnIn₂S₄ heterojunction for enhanced photocatalytic H₂ evolution, H₂O₂ production and tetracycline removal

Fan Wu^a, Guangyu Wu ^{a, b*}, Yonggong Tang^a, Yuwei Pan^a, Jiangang Han^c, Jin Zhang^d, Weinan Xing^a, Yudong Huang^e

- College of Ecology and Environment, Co-Innovation Center for the Sustainable
 Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- B. Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- c. School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213032, China
- d. State Key Laboratory of Chemical Engineering, School of Chemical Engineering,
 East China University of Science and Technology, Shanghai 200237, China
- e. MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China

E-mail: gywuchem@njfu.edu.cn

Materials

All chemicals used in this experiment were analytically pure and required no further purification. Bi(NO₃)₃•5H₂O, ZnCl₂, L-histidine (C₆H₉N₂O₂, L-his), pbenzoquinone (C₆H₄O₂, BQ), Acetonitrile (C₂H₃N) and Triethanolamine (C₆H₁₅NO₃) were purchased from Shanghai Macklin Biochemical Co., Ltd. [Ru(bpy)₃]Cl₂•6H₂O was purchased from Shanghai Aladdin Biochemical Technology Co., Ltd. EDTA, KCl and tert-butanol (C₄H₁₀O, TBA) were purchased from Sinopharm Chemical Reagent Co., Ltd. Ethylene glycol (C₂H₆O₂) was purchased from Nanjing Chemical Reagent Co., Ltd. Thanol (C₂H₅OH) was purchased from Shanghai Titan Scientific Co., Ltd. TC was purchased from Sun Chemical Technology (Shanghai) Co., Ltd. Thioacetamide (TAA) and InCl₃•4H₂O were purchased from Shanghai Yien Chemical Technology Co., Ltd.

Characterization

The functional group information of the sample were observed through Fourier transform infrared spectroscopy (FT-IR, Bruker VERTEX 80V, Germany). The composition and crystal structure of the samples was identified by X-ray diffraction (XRD, Rigaku Ultima IV, Japan). The micro morphology and the internal fine structure of composite materials were obtained by scanning electron microscope (SEM, JEOL 7600F, Japan) and transmission electron microscope (TEM, JEOL JEM 2100, Japan). UV-Vis DRS (Shimadzu UV-3600) was used to evaluate the optical absorption characteristics and calculate the band gap. X-ray photoelectron spectroscopy (XPS, Thermo Fisher escalab 250xi, USA) was used to further understand the elemental composition and valence information of materials. PL spectra were tested by FLS980 (Edinburgh, Britain). The separation effect and photoelectric properties of the photocatalyst were studied by photoluminescence spectroscopy, transient photocurrent response and electrochemical impedance spectroscopy (CHI-760E).

Photoelectrochemical test

Mott-Schottky experiments (M-S) were conducted on a CHI 760E electrochemical workstation with the universal three-electrode test system. In a 2 mL test tube, 5 mg of material, 1 mL of ethanol and 10 μ L of nafion solution were added as dispersant and then sonicated for 2 min to form a homogeneous mixed solution. Subsequently, the working electrode was prepared by uniformly applying the mixed solution onto an indium tin oxide (ITO) glass conductive surface with an active area of 1 cm², and dried at 60°C for 6 hours. A graphite electrode and Ag/AgCl electrode were used as the counter electrode and reference electrode, respectively. 0.5 M Na₂SO₄ solution was used as the electrolyte. The Mott-Schottky experiments were conducted at the frequency of 800, 1000 and 1200 Hz. The potential was calibrated by normal hydrogen electrode (NHE) and the formula was as the following:

 $E_{\text{NHE}} = E_{\text{Ag/AgCl}} + 0.0592 \text{ pH} + 0.198 \text{ eV}$

Where E_{NHE} was the corrected potential vs. NHE, $E_{Ag/AgCl}$ was the measured potential vs. Ag/AgCl electrode, and pH was 6.8 at 25°C.

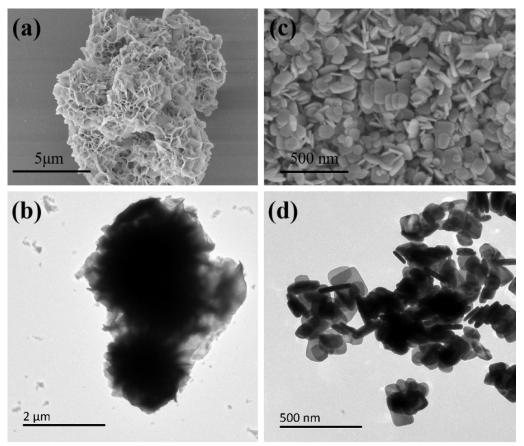


Fig. S1 SEM and TEM image of ZIS (a, b) and BiOCl (c, d).

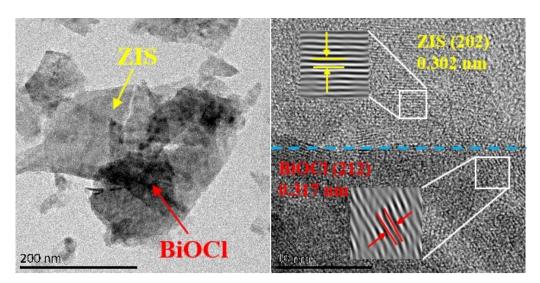


Fig. S2 HRTEN image of BiOCl@ZIS-1%.

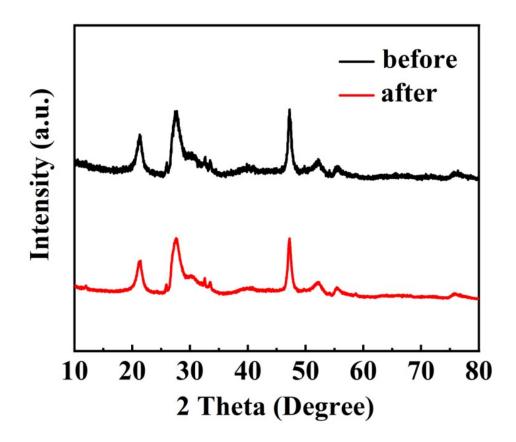


Fig. S3 XRD comparison of BiOCl@ZIS-1% before and after reaction.

Materials	Time (min)	H ₂ generation	Reference	
CoZnS@NSC-15/g-C ₃ N ₄	240	610.8 µmol h ⁻¹ g ⁻¹	1	
NiSe/ZIS	150	3240.0 μmol h ⁻¹ g ⁻¹	2	
C@TiO ₂	180	400.0 μmol h ⁻¹ g ⁻¹	3	
In ₂ O ₃ /In ₂ S ₃ -CdIn ₂ S ₄	240	2892.0 μmol h ⁻¹ g ⁻¹	4	
ZIS/CN/ATP	180	3906.2 μmol h ⁻¹ g ⁻¹	5	
$SnO_2/BaSO_4$	240	5260 μmol h ⁻¹ g ⁻¹	6	
PBA/PTI-2	120	460.0 μmol h ⁻¹ g ⁻¹	7	
MO/C@ZIS	240	2357.0 μmol h ⁻¹ g ⁻¹	8	
CIS/CeO ₂	180	226.6 μ mol h ⁻¹ g ⁻¹	9	
BiOCl@ZIS-1%	240	13689.78 μmol h ⁻¹ g ⁻¹	This work	

Tab. S1 Comparison of H₂ generation with different catalysts of same conditions

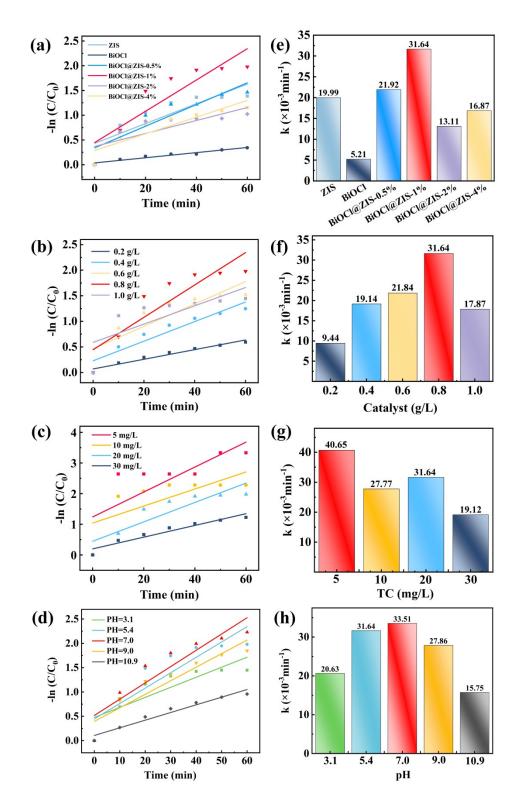


Fig. S4 Quasi-first-order kinetic equations and degradation rate constants of (a, e) different catalysts; (b, f) dosage; (c, g) TC concentration and (d, h) pH for TC degradation.

Materials	Degradation efficiency (%)	Time (min)	Reference
НОР	84.60	40	10
BWO-Ox	79.68	180	11
sp ² c-COF	73.50	90	12
CuO-NCP	67.00	300	13
CMCD-TiO@FeO@RGO	83.30	60	14
BFO/rGO	83.73	60	15
CuFeO/g-CN/rGO	67.00	150	16
Bi ₂ O ₄ @FeOOH	84.20	120	17
BiOI/BiOIO ₃	75.90	270	18
AgCl/WO/g-CN	76.30	60	19
TiC-SOH/g-CN	75.42	120	20
BiOCl@ZIS-1%	86.00	60	This work

Tab. S2 Comparison of TC degradation with different catalysts

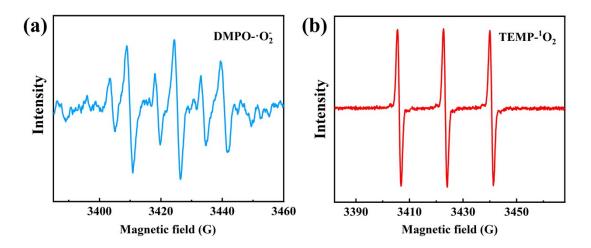


Fig. S5 EPR spectra of BiOCl@ZIS-1% in the presence of (a) DMPO and (b) TEMP.

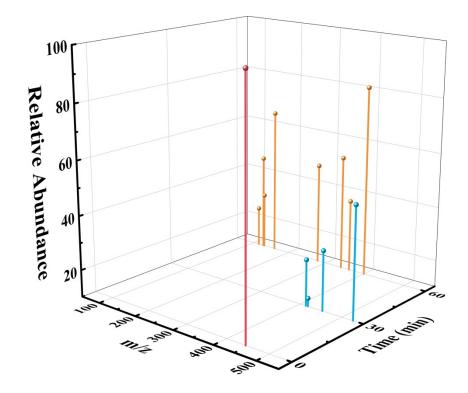


Fig. S6 Mass spectra of TC over BiOCl/ZIS-1% at 0 min, 30 min and 60 min.

condition								
Materials	Time (h)	Dosage (mg)	Solution volume (mL)	H ₂ O ₂ production	Reference			
BIO-OVs-2	2	50	50	4310 μM h ⁻¹ g ⁻¹	21			
Au(0.50)@MoS ₂	12	50	50	$1018.7 \ \mu M \ h^{-1} \ g^{-1}$	22			
BU-3	1	50	50	144.6 μM h ⁻¹ g ⁻¹	23			
g-C ₃ N ₄ -0.05	4	30	30	704.0 µM h ⁻¹ g ⁻¹	24			
Au _{0.1} Ag _{0.2} /TiO ₂	24	5	5	2833.3 μM h ⁻¹ g ⁻¹	25			
Pt@β-CD/C ₃ N ₄ -M	1	60	60	147.1 μM h ⁻¹ g ⁻¹	26			
SCNx	2	10	50	8334 μM h ⁻¹ g ⁻¹	27			
BiOCl@ZIS-1%	120	10	50	9670 μM h ⁻¹ g ⁻¹	This work			

 Tab. S3 Comparison of H2O2 production with different catalysts in the same condition

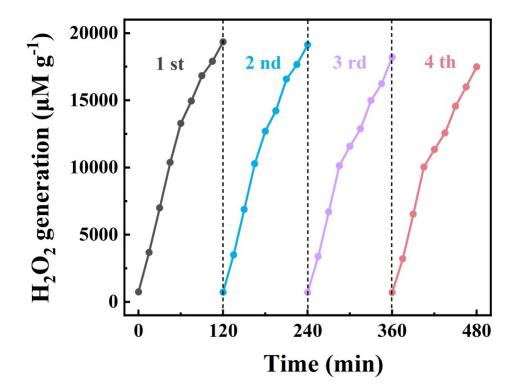


Fig. S7 Photocatalytic H₂O₂ production stability of BiOCl@ZIS-1%.



Fig. S8 (a, b) Mott-Schottky curves and (c) Valence bands (Ed) of BiOCl and ZIS.

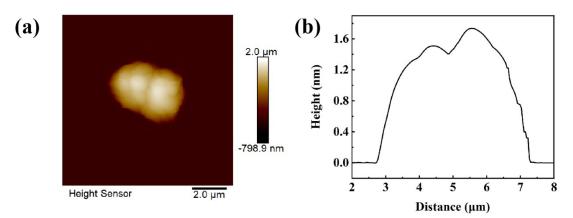


Fig. S9 AFM image of BiOCl@ZIS-1%.

Reference

- X. J. Lu, I. Ullah, J. H. Li, S. Chen, C. Z. Yuan and A. W. Xu, A bimetallic CoZn metal-organic-framework derived CoZnS@NSC Co-catalyst loaded on gC₃N₄ for significantly augmented photocatalytic H₂ evolution, *Inorg. Chem. Front.*, 2024, 11, 3435-3445.
- S. Mansoor, Z. Hu, Y. Zheng, M. Tayyab, M. Khan, Z. Akmal, L. Zhou, J. Lei and J. Zhang, Comparative study of photocatalytic H₂ production by nickel chalcogenides_{1+x} based Zn₃In₂S₆ photocatalytic system, *Sep. Purif. Technol.*, 2024, **353**, 128357.
- Y. Deligiannakis, E. Bletsa, E. Mouzourakis, M. Solakidou and K. Adamska, Carbon-Coated TiO₂ Nanoparticles for Noble-Metal-Free Photocatalytic H₂ Production from H₂O, ACS Appl. Nano Mater., 2024, 7, 11621-11633.
- Y. Qi, G. Zhou, Y. Wu, H. Wang, Z. Yan and Y. Wu, In-situ construction of In₂O₃/In₂S₃-CdIn₂S₄ Z-scheme heterojunction nanotubes for enhanced photocatalytic hydrogen production, *J. Colloid Interf. Sci.*, 2024, 664, 107-116.
- B. Wang, L. Huang, T. Peng, R. Wang, J. Jin, H. Wang, B. He and Y. Gong, Attapulgite-intercalated g-C₃N₄/ZnIn₂S₄ 3D hierarchical Z-scheme heterojunction for boosting photocatalytic hydrogen production, *J. Colloid Interf. Sci.*, 2024, 675, 52-63.
- C. Cheng, J. Zhang, H. Jia, X. Ding, G. Dong, F. Chen, Y. Hu and J. Shi, Onepot synthesis of amorphous/crystalline SnO₂/BaSO₄ composite sensitized with Eosin Y for enhanced photocatalytic H₂ production, *J. Environ. Chem. Eng.*,

2024, **12**, 112770.

- Y. Ren, Y. Li, G. Pan, N. Wang, X. Liu and Z. Wu, A novel all-organic Sscheme heterojunction with rapid interfacial charges migration for efficient photocatalytic H₂ production, *J. Mater. Sci. Technol.*, 2024, 201, 12-20.
- X. Zhang, H. Ye, Z. Zeng, K. Sa, J. Jia, Z. Yang, S. Xu, C. Han and Y. Liang, Bridging the gap between metallic MoO₂ and ZnIn₂S₄ for enhanced photocatalytic H₂ production, *Sep. Purif. Technol.*, 2024, **347**, 127624.
- J. Wang, X. Niu, Q. Hao, K. Zhang, X. Shi, L. Yang, H. Y. Yang, J. Ye and Y. Wu, Promoting charge separation in CuInS₂/CeO₂ photocatalysts by an S-scheme heterojunction for enhanced photocatalytic H₂ production, *Chem. Eng. J.*, 2024, **493**, 152534.
- Y. Zhao, L. Chang, Y. Li, W. He, K. Liu, M. Cui, M. U. Hameed and J. Xie, High-gravity photocatalytic degradation of tetracycline hydrochloride under simulated sunlight, *J. Water Process Eng.*, 2023, 53, 103753.
- L. Chen, B. Xu, M. Jin, L. Chen, G. Yi, B. Xing, Y. Zhang, Y. Wu and Z. Li, Excellent photocatalysis of Bi₂WO₆ structured with oxygen vacancies in degradation of tetracycline, *J. Mol. Struct.*, 2023, **1278**, 134911.
- Z. Hu, Y. Luo, L. Wang, Y. Wang, Q. Wang, G. Jiang, Q. Zhang and F. Cui, Synthesis of Pyrene-Based Covalent Organic Frameworks for Photocatalytic Tetracycline Degradation, ACS Appl. Polym. Mater., 2023, 5, 9263-9273.
- 13. M. Saberian and A. Nezamzadeh-Ejhieh, Synergistic photocatalytic degraded tetracycline upon supported CuO clinoptilolite nanoparticles, *Solid State Sci.*,

2024, 147, 107381.

- Z. Liu, G. Wang, Y. Li, H. Li and N. Deng, Carboxymethyl-β-cyclodextrin functionalized TiO₂@Fe₃O₄@RGO magnetic photocatalyst for efficient photocatalytic degradation of tetracycline under visible light irradiation, J. *Environ. Chem. Eng.*, 2024, **12**, 113303.
- Z. Wu, J. Liu, J. Shi and H. Deng, Bi₂Fe₄O₉/rGO nanocomposite with visible light photocatalytic performance for tetracycline degradation, *Environ. Res.*, 2024, 249, 118361.
- 16. R. Rajendran, O. Rojviroon, V. Vasudevan, P. Arumugam, M. Handayani, N. Akechatree, Y. Leelert and T. Rojviroon, Magnetically separable ternary heterostructure photocatalyst CuFe₂O₄/g-C₃N₄/rGO: Enhancing photocatalytic degradation and bacterial inactivation, *J. Water Process Eng.*, 2024, 63, 105443.
- Y. Sun, Y. Tang, F. Chen, P. Huang, W. Sun and Y. Song, Amorphous FeOOH shell decorated Bi₂O₄ for the boosted photocatalytic degradation of tetracycline under visible irradiation, *J. Environ. Chem. Eng.*, 2024, **12**, 112181.
- W. Mu, L. Wang and C. Chang, Photocatalytic adsorption/degradation of tetracycline by S-scheme BiOI/BiOIO₃ pn heterojunction from dissociation of BiOIO₃ in-situ solvothermal process, *J. Environ. Manag.*, 2024, **356**, 120630.
- S. Pu, Q. Zhao, X. Luo, D. Wang, K. Lei, Y. Duan, L. Mao, W. Feng and Y. Sun, In-situ synthesis of AgCl/WO₃ loaded with g-C₃N₄ as dual Z-scheme heterojunction for boosting photocatalytic degradation of antibiotics, *Surf.*

Interf., 2024, 46, 104016.

- J. Zhang, C. Shao, Z. Lei, Y. Li, H. Bai, L. Zhang, G. Ren and X. Wang, Treatment of antibiotics in water by SO₃H-modified Ti₃C₂ Mxene photocatalytic collaboration with g-C₃N₄, *J. Mater. Sci. Technol.*, 2024, **194**, 124-137.
- A. Yuan, T. Huang, Y. Guo, Y. Wei, H. Liu, B. Yang and B. Chang, BiOIO₃ Nanoplates with Tailorable Surface Defects for Photocatalytic H₂O₂ Production, *ACS Appl. Nano Mater.*, 2024, 7, 12761-12772.
- H. Song, L. Wei, C. Chen, C. Wen and F. Han, Photocatalytic production of H2O2 and its in situ utilization over atomic-scale Au modified MoS2 nanosheets, *J. Catal.*, 2019, **376**, 198-208.
- Y. Yang, C. Zhang, D. Huang, G. Zeng, J. Huang, C. Lai, C. Zhou, W. Wang, H. Guo and W. Xue, Boron nitride quantum dots decorated ultrathin porous g-C3N4: Intensified exciton dissociation and charge transfer for promoting visible-light-driven molecular oxygen activation, *Appl. Catal. B: Environ.*, 2019, 245, 87-99.
- 24. H. Zhang, L. Jia, P. Wu, R. Xu, J. He and W. Jiang, Improved H₂O₂ photogeneration by KOH-doped g-C₃N₄ under visible light irradiation due to synergistic effect of N defects and K modification, *Appl. Surf. Sci.*, 2020, **527**, 146584.
- D. Tsukamoto, A. Shiro, Y. Shiraishi, Y. Sugano, S. Ichikawa, S. Tanaka and T.
 Hirai, Photocatalytic H₂O₂ production from ethanol/O₂ system using TiO₂

loaded with Au-Ag bimetallic alloy nanoparticles, ACS catal., 2012, 2, 599-603.

- H. Zhu, Q. Xue, G. Zhu, Y. Liu, X. Dou and X. Yuan, Decorating Pt@cyclodextrin nanoclusters on C₃N₄/MXene for boosting the photocatalytic H₂O₂ production, *J. Mater. Chem. A.*, 2021, 9, 6872-6880.
- Y. Li, W. Wang, Y. Wang, H. He, X. Yu, D. Xia, L. Deng and Y.-N. Liu, Edge engineering of carbon nitride for enhanced sacrificial agent-free photocatalytic H₂O₂ evolution, *Chem. Eng. Sci.*, 2023, **282**, 119333.