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Materials

All chemicals used in this experiment were analytically pure and required no 

further purification. Bi(NO3)3•5H2O, ZnCl2, L-histidine (C6H9N2O2, L-his), p-

benzoquinone (C6H4O2, BQ), Acetonitrile (C2H3N) and Triethanolamine (C6H15NO3) 

were purchased from Shanghai Macklin Biochemical Co., Ltd. [Ru(bpy)3]Cl2•6H2O 

was purchased from Shanghai Aladdin Biochemical Technology Co., Ltd. EDTA, KCl 

and tert-butanol (C4H10O, TBA) were purchased from Sinopharm Chemical Reagent 

Co., Ltd. Ethylene glycol (C2H6O2) was purchased from Nanjing Chemical Reagent 

Co., Ltd. Thanol (C2H5OH) was purchased from Shanghai Titan Scientific Co., Ltd. TC 

was purchased from Sun Chemical Technology (Shanghai) Co., Ltd. Thioacetamide 

(TAA) and InCl3•4H2O were purchased from Shanghai Yien Chemical Technology 

Co., Ltd.

Characterization 

The functional group information of the sample were observed through Fourier 

transform infrared spectroscopy (FT-IR, Bruker VERTEX 80V, Germany). The 

composition and crystal structure of the samples was identified by X-ray diffraction 

(XRD, Rigaku Ultima IV, Japan). The micro morphology and the internal fine structure 

of composite materials were obtained by scanning electron microscope (SEM, JEOL 

7600F, Japan) and transmission electron microscope (TEM, JEOL JEM 2100, Japan). 

UV-Vis DRS (Shimadzu UV-3600) was used to evaluate the optical absorption 

characteristics and calculate the band gap. X-ray photoelectron spectroscopy (XPS, 

Thermo Fisher escalab 250xi, USA) was used to further understand the elemental 
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composition and valence information of materials. PL spectra were tested by FLS980 

(Edinburgh, Britain). The separation effect and photoelectric properties of the 

photocatalyst were studied by photoluminescence spectroscopy, transient photocurrent 

response and electrochemical impedance spectroscopy (CHI-760E).

Photoelectrochemical test

Mott-Schottky experiments (M-S) were conducted on a CHI 760E electrochemical 

workstation with the universal three-electrode test system. In a 2 mL test tube, 5 mg of 

material, 1 mL of ethanol and 10 μL of nafion solution were added as dispersant and 

then sonicated for 2 min to form a homogeneous mixed solution. Subsequently, the 

working electrode was prepared by uniformly applying the mixed solution onto an 

indium tin oxide (ITO) glass conductive surface with an active area of 1 cm2 , and dried 

at 60°C for 6 hours. A graphite electrode and Ag/AgCl electrode were used as the 

counter electrode and reference electrode, respectively. 0.5 M Na2SO4 solution was 

used as the electrolyte. The Mott-Schottky experiments were conducted at the 

frequency of 800, 1000 and 1200 Hz. The potential was calibrated by normal hydrogen 

electrode (NHE) and the formula was as the following:

ENHE = EAg/AgCl + 0.0592 pH + 0.198 eV

Where ENHE was the corrected potential vs. NHE, EAg/AgCl was the measured 

potential vs. Ag/AgCl electrode, and pH was 6.8 at 25℃.
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Fig. S1 SEM and TEM image of ZIS (a, b) and BiOCl (c, d).
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Fig. S2 HRTEN image of BiOCl@ZIS-1%.
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Fig. S3 XRD comparison of BiOCl@ZIS-1% before and after reaction.
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Tab. S1 Comparison of H2 generation with different catalysts of same conditions

Materials Time (min) H2 generation Reference

CoZnS@NSC-15/g-C3N4 240 610.8 μmol h-1 g-1 1

NiSe/ZIS 150 3240.0 μmol h-1 g-1 2

C@TiO2 180 400.0 μmol h-1 g-1 3

In2O3/In2S3-CdIn2S4 240 2892.0 μmol h-1 g-1 4

ZIS/CN/ATP 180 3906.2 μmol h-1 g-1 5

SnO2/BaSO4 240 5260 μmol h-1 g-1 6

PBA/PTI-2 120 460.0 μmol h-1 g-1 7

MO/C@ZIS 240 2357.0 μmol h-1 g-1 8

CIS/CeO2 180 226.6 μmol h−1 g−1 9

BiOCl@ZIS-1% 240 13689.78 μmol h-1 g-1 This work
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Fig. S4 Quasi-first-order kinetic equations and degradation rate constants of (a, e) 

different catalysts; (b, f) dosage; (c, g) TC concentration and (d, h) pH for TC 

degradation.
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Tab. S2 Comparison of TC degradation with different catalysts

Materials
 Degradation efficiency

(%)
Time (min) Reference

HOP 84.60 40 10

BWO-Ox 79.68 180 11

sp2c-COF 73.50 90 12

CuO-NCP 67.00 300 13

CMCD-TiO@FeO@RGO 83.30 60 14

BFO/rGO 83.73 60 15

CuFeO/g-CN/rGO 67.00 150 16

Bi2O4@FeOOH 84.20 120 17

BiOI/BiOIO3 75.90 270 18

AgCl/WO/g-CN 76.30 60 19

TiC-SOH/g-CN 75.42 120 20

BiOCl@ZIS-1% 86.00 60 This work
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Fig. S5 EPR spectra of BiOCl@ZIS-1% in the presence of (a) DMPO and (b) TEMP.
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Fig. S6 Mass spectra of TC over BiOCl/ZIS-1% at 0 min, 30 min and 60 min.
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Tab. S3 Comparison of H2O2 production with different catalysts in the same 
condition

Materials Time (h)
Dosage 

(mg)
Solution 

volume (mL)
H2O2 production Reference

BIO-OVs-2 2 50 50 4310 μM h-1 g-1 21

Au(0.50)@MoS2 12 50 50 1018.7 μM h−1 g-1 22

BU-3 1 50 50 144.6 μM h-1 g-1 23

g-C3N4-0.05 4 30 30 704.0 μM h-1 g-1 24

Au0.1Ag0.2/TiO2 24 5 5 2833.3 μM h-1 g-1 25

Pt@β-CD/C3N4-M 1 60 60 147.1 μM h-1 g-1 26

SCNx 2 10 50 8334 μM h-1 g-1 27

BiOCl@ZIS-1% 120 10 50 9670 μM h-1 g-1 This 
work
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Fig. S7 Photocatalytic H2O2 production stability of BiOCl@ZIS-1%.
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Fig. S8 (a, b) Mott-Schottky curves and (c) Valence bands (Ed) of BiOCl and ZIS. 
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Fig. S9 AFM image of BiOCl@ZIS-1%.
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