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Calculation of the photothermal conversion efficiency (PCE)

To investigate the intrinsic photothermal property of ZnPcNPs at various 

concentrations (5, 10, 15, and 20 µmol/L) were treated with 660 nm laser irradiation 

(0.75 W/cm2, 5 min). The temperature changes were recorded through the Optris PI 

infrared camera. Subsequently, the photothermal stability of ZnPcNP at 20.0 µmol/L 

was evaluated by five consecutive heating and cooling cycles, with laser irradiation on 

for 5 min and then off for 5 min cooling period during one complete cycle. The 

temperature during cooling process was measured every 20 s with the IR thermal 

imaging camera. Phosphate buffered saline (PBS) solution was chosen to be the control 

group. 

The PCE ( ) of the aqueous ZnPcNP (20 µmol/L) was calculated according to a 𝜂

previous study.1 Detailed calculation of  was provided as below:𝜂

……………..(2)
𝜂 =

ℎ𝑠(𝑇𝑀𝑎𝑥 ‒ 𝑇𝑆𝑢𝑟𝑟) ‒ 𝑄𝑑𝑖𝑠

𝐼(1 ‒  10
‒ 𝐴660)

where  indicates the heat transfer coefficient,  is the surface area of the sample ℎ 𝑠

container, the maximum steady temperature ( ) of the ZnPcNP solution at 20.0 𝑇𝑀𝑎𝑥

µmol/L was 57.2°C and environmental temperature ( ) was 21.0°C. Thus, the 𝑇𝑆𝑢𝑟𝑟

temperature change ( ) of the aqueous ZnPcNP was 36.2°C. The power 𝑇𝑀𝑎𝑥 ‒ 𝑇𝑆𝑢𝑟𝑟

density of laser irradiation at 660 nm ( ) was 1 W/cm2. The absorbance of the ZnPcNP 𝐼

at 660 nm ( ) was 0.55. Next, the value of  can be calculated through equation (3):𝐴660 ℎ𝑠

…………………..(3)
ℎ𝑠 =

𝑚𝐷 × 𝑐𝐷

𝜏

where  is the mass of sample solution (0.3 g),  represents the specific heat capacity 𝑚𝐷 𝑐𝐷

of water (  = 4.2 J/(g·°C)). The associated time constant during cooling process ( ) 𝑐𝐷 𝜏

was obtained through equation (4):

…………………….(4)
𝜏 =‒

𝑡
𝑙𝑛⁡(𝜃)

where  indicates the time,  is a dimensionless parameter during cooling process. Next, 𝑡 𝜃

 value is introduced as follows:𝜃
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……………………. (5)
                     𝜃 =

𝑇 ‒ 𝑇𝑆𝑢𝑟𝑟

𝑇𝑀𝑎𝑥 ‒ 𝑇𝑆𝑢𝑟𝑟

The  indicates the heat dissipated from the laser absorbed by the PBS solution and 𝑄𝑑𝑖𝑠

plastic tube container,  approximately equals to 0:𝑄𝑑𝑖𝑠

Through linear fit analysis (Figure 4e),  of ZnPcNP solution at (20 µmol/L) was 𝜏

calculated to be 282.1864 s. Therefore, the 660-nm PCE ( ) of the ZnPcNP was 𝜂

determined and calculated to be 30.01%. 
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Fig. S1. High-resolution mass spectroscopy (HRMS) spectrum of carboxy-ZnPc 3.

Fig. S2. Dynamic light scattering (DLS) histogram of ZnPcNPs with the Z-average = 

53.2 nm and PDI = 0.23.
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Fig. S3. Photos of ZnPcNPs dispersed in different physiological media, 1: water; 2: 

PBS solution; 3: RPMI-1640 medium plus 10% fetal bovine serum (FBS), at different 

time points (5 min, 4 h, 24 h, 48 h, 72 h, and 168 h).

Fig. S4. Dynamic light scattering (DLS) sizes of ZnPcNPs in water, PBS, and RPMI-

1640 + 10% FBS at 0, 1, 3, 5, and 7 days.
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Fig. S5. Ultraviolet-visible (UV-Vis) spectra of aqueous ZnPcNPs before and after 

NIR-I laser irradiation (660 nm, 0.75 W/cm2, 5 min).

Fig. S6. Zeta potential of ZnPc and ZnPcNP. 
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Fig. S7. (a) Cell viability of ZnPc before and after NIR-I laser treatment (660 nm, 0.75 

W/cm2, 5 min). (b) Fluorescence images of 4T1 cancer cells co-stained by Calcein-

AM/PI dyes under ZnPc and ‘ZnPc + Laser’ treatments.

Fig. S8. Hemolysis assay with different concentrations of aqueous ZnPcNPs (5, 10, 15, 

20, 25, and 30 µmol/L), saline (-), and deionized water (+).
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Fig. S9. Biodistribution after intravenous injection of aqueous ZnPcNPs for various 

time intervals (6, 24, and 48 h).

Fig. S10. (a) Infrared thermal pictures of PBS, ZnPc (20 μmol/L) and ZnPcNP (20 

μmol/L). (b) The photothermal response curves correlated with Fig. S10a.
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Fig. S11. (a, c) Intravenous administration of (a) solely PBS or (c) aqueous ZnPcNPs 

before NIR-I laser treatment. (b, d) NIR-I laser treatment (660 nm, 0.75 W/cm2, 5 min) 

for (b) ‘PBS + Laser’ or (d) ‘ZnPcNP + Laser’ groups, respectively.

Fig. S12. H&E images of major organs (heart, liver, spleen, lung, and kidney) after 

different treatments.
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Fig. S13. The Animal Care and Ethical Examination Certificate (Approval No.: 

GXNU-No.202409-002). 
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