Supporting Information

Two-dimensional Confined Polyoxometalate-based Chiral Luminescent Sensor for High Enantioselective Sensing

Guicong Hu,^a[‡] Zhaohui Wu,^a[‡] Ailin Cai,^a Xinzhu Xing,^a Wen Chang,^a Qinglong Qiao, ^{*b} Bo Qi^{*a} and Yu-Fei Song^{*ac}

^{*a*} State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 P. R. China. Email: bqi@mail.buct.edu.cn; songyf@mail.buct.edu.cn;

^b Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road, Dalian 116023, China. Email: qqlqiao@dicp.ac.cn;

^c Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, Zhejiang Province,
324000 P. R. China.

‡: These authors contributed equally to this work.

CONTENTS

Section 1 Experimental Section

Section 2 Characterizations of Chiral Fluorescence Sensor

Section 1 Experimental Section

1.1 Preparation of Mg₃Al-EuW₁₀. Mg₃Al-EuW₁₀ was synthesized via the step-by-step assembly process. Mg₃Al-NO₃ (0.3 g) was dispersed in formamide (300 mL), and the mixture was stirred under nitrogen for 48 h to form a suspension with the Tyndall effect. Na₉EuW₁₀O₃₆·32H₂O (0.33 mmol) was dissolved in deionized water (5 mL) and added dropwise to the reaction mixture. After stirred for five minutes to form a white precipitate, the solid products were collected by filtration and washed with deionized water and ethanol, then dried in a vacuum oven at 60 °C for 48 h.

1.2. Preparation of *L*-**CIL-Mg₃Al-NO₃**. *L*-CIL-Mg₃Al-NO₃ was synthesized via the step-by-step assembly process. Mg₃Al-NO₃ (0.3 g) was dispersed in formamide (300 mL), and the mixture was stirred under nitrogen for 48 h to form a suspension with the Tyndall effect. *L*-CIL (2.64 mmol) was dissolved in CH₂Cl₂ (2 mL) and added dropwise to the above clear and transparent hydrotalcite nanosheet solution. The reaction mixture was stirred under N₂ for 24 h. NaNO₃ (38 mmol) was dissolved in deionized water (10 mL) and added dropwise to the reaction mixture. After stirred for 12 h to form a white precipitate, the solid products were collected by filtration and washed with deionized water and ethanol, then dried in a vacuum oven at 60 °C for 48 h. Subsequently, the tert butoxycarbonyl deprotection was performed by thermal treatment of *L*-CIL-Boc-Mg₃Al-NO₃ at 150 °C under vacuum for 6 h.

1.3. Preparation of Control Fluorescence Quenching Material *L*-CIL-Mg₃Al-NO₃+EuW₁₀. *L*-CIL-Mg₃Al-NO₃+EuW₁₀ was prepared via the electrostatic modification process. The *L*-CIL-Mg₃Al-NO₃ (100 mg, containing 3 μ mol *L*-CIL) was dispersed in deionized water (100 mL) and stirred under N₂ for 5 min. Then, EuW₁₀ solution (10 mL, 0.02 mM) was added to the suspension mentioned above. The mixture was stirred vigorously for 24 h and used as the control fluorescence quenching material for the later fluorescent chiral recognition of Cinchonine/Cinchonidine.

Section 2 Characterizations of Chiral Fluorescence Sensor

Fig. S1 Excitation and emission spectra of *L*-CIL-Mg₃Al-EuW₁₀ in DMF.

Fig. S2. Excitation and emission spectra of (a) Cinchonine, (b) Quinine, (c) Naphthyl ethylamine, and (d) Naphthyl ethanol in DMF.

Fig. S3. ¹³C NMR spectra of *L*-CIL-Boc-Mg₃Al-EuW₁₀, *L*-CIL-Mg₃Al-EuW₁₀, and *L*-CIL-Boc (*:Boc's peaks).

Fig. S4. (a) Zeta potentials of *L*-CIL-Mg₃Al-NO₃, *L*-CIL-Mg₃Al-EuW₁₀, and Na₉EuW₁₀O₃₆. (b) XPS survey spectrum of *L*-CIL-Mg₃Al-EuW₁₀. (c) XPS spectrum for the W 4f core level of *L*-CIL-Mg₃Al-EuW₁₀. (d) TG-DTG profile of Mg₃Al-EuW₁₀ and *L*-CIL-Mg₃Al-EuW₁₀.

Entry	Sample	Formula			
1	L-CIL-Mg2Al-EuW10	$Mg_{0.72}Al_{0.25}(OH)_{1.94}(EuW_{10}O_{36})_{0.034}$			
		$(O_3SiC_{11}H_9N_3)_{0.063}(NO_3)_{0.007} \cdot 0.63H_2O$			
2	Mg ₃ Al-EuW ₁₀	$Mg_{0.70}Al_{0.25}(OH)_{1.90}(EuW_{10}O_{36})_{0.026}[NO_3]_{0.016}\bullet 0.71H_2O$			

Table S1. The formulas of different materials

Fig. S5. SEM images of (a) Mg₃Al-NO₃ and (b) *L*-CIL-Mg₃Al-EuW₁₀. (c) HRTEM image of *L*-CIL-Mg₃Al-EuW₁₀. The yellow circles represented the highly dispersed EuW₁₀ molecules. (d) SEM-EDX elemental mapping images of *L*-CIL-Mg₃Al-EuW₁₀ for Mg, Al, Eu, W, Si, and N elements.

Fig. S6. CD spectra of *L/D*-CIL.

Table S2. Comparison of Physicochemical Properties of Mg₃Al-EuW₁₀ and *L*-CIL-Mg₃Al-EuW₁₀.

Entry	Sample	$S_{BET} (m^2/g)^a$	$V_p (cm^3/g)^b$	D (nm) ^c			
1	<i>L</i> -CIL-Mg ₃ Al-EuW ₁₀	123.79	0.56	19.55			
2	Mg ₃ Al-EuW ₁₀	59.41	0.20	15.36			
^{<i>a</i>} S _{BET} , specific surface area calculated by the BET method in the relative adsorption pressure (P/P_0) ;							
${}^{b}V_{p}$, total point	re volume determined by N ₂ adsor	rption at relative press	sure; ^c D, Pore diar	neter obtained			

from the desorption isotherm by the BJH method

Fig. S7. Fourier transforms of the W L-edge EXAFS spectra for (a) EuW_{10} , *L*-CIL-Mg₃Al-NO₃ + EuW_{10} and *L*-CIL-Mg₃Al-EuW₁₀.

Table S3. Local structure	parameters around W	estimated by	VEXAFS analysis
---------------------------	---------------------	--------------	-----------------

Sample	Shell	N^a	S_{0}	$\sigma^2 [10^{-3} \text{\AA}^2]^{b}$	R[Å] ^c	R-factor (10-3)	
	$W-O_1$	2.44	0.9	5.07	1.78		
EuW_{10}	W-O ₂	2.62			1.96	19.44	
	W-O ₃	0.90			2.28		
	$W-O_1$	2.34		5.00	1.77		
L-CIL-Mg ₃ Al-NO ₃ + EuW ₁₀	W-O ₂	2.69	0.9		1.96	15.08	
	W-O ₃	0.96			2.28		
	$W-O_1$	2.69			1.77		
<i>L</i> -CIL-Mg ₃ Al-EuW ₁₀	W-O ₂	1.84	0.9	4.29	1.98	18.58	
	W-O ₃	1.44			2.21		

^{*a*}N = coordination number; ^{*b*}R = average distance between absorber and backscatter atoms; ^{*c*} σ^2 = Debye-Waller factor

Fig. S8. Fluorescence spectra of L-CIL-Mg₃Al-EuW₁₀ and EuW₁₀.

Fig. S9. Emission spectra (a) and luminescence intensities (b) of *L*-CIL-Mg₃Al-EuW₁₀ suspensions in DMF for 12 minutes. RSD is relative standard deviation.

Fig. S10. The structures of the analytes. (a) Cinchonine and (b) Cinchonidine, (c) Quinine and (d) Quinidine, (e) *R*-Naphthyl ethylamine and (f) *S*-Naphthyl ethylamine, (g) *R*-Naphthyl ethanol and (h) *S*-

Naphthyl ethanol.

Fig. S11. Fluorescence emission spectra excited at 278 nm. *D*-CIL-Mg₃Al-Eu W_{10} dispersed in DMF upon incremental addition of (c) Cinchonine and (d) Cinchonidine.

Fig. S12. Fluorescence intensity changes of L-CIL-Mg₃Al-EuW₁₀ toward addition of a mixture of different proportions of Cinchonine and Cinchonidine. The initial lines represent the original L-CIL-Mg₃Al-EuW₁₀ while others stand for L-CIL-Mg₃Al-EuW₁₀ with the mixtures of different ee values for three times.

Fig. S13. Fluorescence emission spectra excited at 278 nm. *L*-CIL-Mg₃Al-EuW₁₀ dispersed in DMF upon incremental addition of (a) Quinine and (b) Quinidine. (c) Fluorescence intensity changes of *L*-CIL-Mg₃Al-EuW₁₀ at 618 nm. Mg₃Al-EuW₁₀ dispersed in DMF upon incremental addition of (d) Quinine and (e) Quinidine. (f) Fluorescence intensity changes of Mg₃Al-EuW₁₀ at 618 nm.

Fig. 14. Fluorescence emission spectra excited at 278 nm. *L*-CIL-Mg₃Al-EuW₁₀ dispersed in DMF upon incremental addition of (a) *R*-Naphthyl ethylamine and (b) *S*-Naphthyl ethylamine. (c) Fluorescence intensity changes of *L*-CIL-Mg₃Al-EuW₁₀ at 618 nm. Mg₃Al-EuW₁₀ dispersed in DMF upon incremental addition of (d) *R*-Naphthyl ethylamine and (e) *S*-Naphthyl ethylamine. (f) Fluorescence intensity changes of Mg₃Al-EuW₁₀ at 618 nm.

Fig. S15. Fluorescence emission spectra excited at 278 nm. *L*-CIL-Mg₃Al-EuW₁₀ dispersed in DMF upon incremental addition of (a) *R*-Naphthyl ethanol and (b) *S*-Naphthyl ethanol. (c) Fluorescence intensity changes of *L*-CIL-Mg₃Al-EuW₁₀ at 618 nm. Mg₃Al-EuW₁₀ dispersed in DMF upon incremental addition of (d) *R*-Naphthyl ethanol and (e) *S*-Naphthyl ethanol. (f) Fluorescence intensity changes of Mg₃Al-EuW₁₀ at 618 nm.

Fig. S16. Recycling experiment. Quenching ability of *L*-CIL-Mg₃Al-EuW₁₀ dispersed in DMF in the presence of (a) Cinchonine and (b) Cinchonidine with five cycles (the intensity with 0.02 mmol·L⁻¹ analytes, respectively) at 618 nm.

Fig. S17. FT-IR spectra of L-CIL-Mg₃Al-EuW₁₀ fresh and recycle.

Fig. S18. (a) Model of $Mg_3Al-EuW_{10}$, the anionic EuW_{10} clusters were encapsulated within the interlayer of LDH. (b) Model of *L*-CIL + EuW_{10} , the anionic EuW_{10} clusters were encapsulated by the cationic chiral pyrrolidine-type ligands. (c) Model of *L*-CIL-Mg_3Al-NO₃ + EuW_{10} , the EuW_{10} clusters were distributed on the outer chiral surface of *L*-CIL-Mg_3Al-NO₃.

Fig. S19. Fluorescence emission spectra excited at 278 nm. Mg₃Al-EuW₁₀ dispersed in DMF upon incremental addition of (a) Cinchonine and (b) Cinchonidine. (c) Fluorescence intensity changes of Mg₃Al-EuW₁₀ at 618 nm. *L*-CIL-C₄ + EuW₁₀ dissolved in DMF upon incremental addition of (d) Cinchonine and (e) Cinchonidine. (f) Fluorescence intensity changes of *L*-CIL-C₄ + EuW₁₀ at 618 nm. *L*-CIL-Mg₃Al-NO₃ + EuW₁₀ dispersed in DMF upon incremental addition of (g) Cinchonine and (h) Cinchonidine. (i) Fluorescence intensity changes of *L*-CIL-Mg₃Al-NO₃ + EuW₁₀ at 618 nm.

Fig. S20. XRD pattern of the L-CIL-Mg₃Al-NO₃ + EuW₁₀.

Fig. S21. Luminescence lifetime patterns. L-CIL-Mg₃Al-EuW₁₀ dispersed in DMF in the presence of (a) Cinchonine and (b) Cinchonidine at 618 nm.

Table S4. Lifetime fitting results. L-CIL-Mg₃Al-EuW₁₀ in different percent of Cinchonine and Cinchonidine.

Additions (II)	Lifetime (618 nm/ms)			
Additions (µL)	Cinchonine	Cinchonidine		
0	1.024	1.011		
50	1.012	1.006		
100	1.000	0.995		
150	1.005	1.004		
200	0.997	1.001		

^a 50 mmol additions diluted in 10 mL DMF. ^b Excited at 278 nm.

Fig. S22. (a) Excitation spectra of *L*-CIL-Mg₃Al-EuW₁₀ suspensions with different concentrations of Cinchonine ($\lambda_{em} = 618$ nm). (b) Liquid UV-vis spectra of *L*-CIL-Mg₃Al-EuW₁₀, Cinchonine, and Cinchonidine in DMF.

Fig. S23. Quantum yield spectra. Spectra collected during quantum yield analysis for *L*-CIL-Mg₃Al-Eu W_{10} dispersed in DMF in the presence of (a, b) Cinchonine and (c, d) Cinchonidine.

Table S5. Quantum yield results. L-CIL-Mg₃Al-EuW₁₀ in different percent of Cinchonine and Cinchonidine.

Additions ((Quantum yield ^b / %			
Additions " (µL)	Cinchonine	Cinchonidine		
0	1.84	1.93		
50	0.76	0.85		
100	0.48	0.53		
150	0.34	0.36		
200	0.20	0.26		

^a 50 mmol additions diluted in 10 mL DMF. ^b Excited at 295 nm.

Fig. S24. UV-vis absorption spectra of 3 mL DMF solutions of (a-c) Cinchonine/Cinchonidine, (d-f) Quinine/Quinidine, (g-i) *R/S*-Naphthyl ethylamine, (j-l) *R/S*-Naphthyl ethanol towards additions of different mass of powder *L*-CIL-Mg₃Al-EuW₁₀. The concentrations of different enantiomer are 0.0001 mmol mL⁻¹.

Fig. S25. CD spectra of (a) Cinchonine/Cinchonidine, (b) Quinine/Quinidine, (c) R/S-Naphthyl ethylamine, (d) R/S-Naphthyl ethanol and the intensity changes of the equal proportion of the mixture with the additions of *L*-CIL-Mg₃Al-EuW₁₀.

Fig. S26. DFT calculation of the ΔE_{ad} ($\Delta E_{ad} = E_{ad(CN)} - E_{ad(CND)}$) for *L*-CIL+EuW₁₀, EuW₁₀ adsorbing CN and CND, respectively.

coordination compounds	categories	analytes	K _{SV}	K _{SV1} /K _{SV2}	centers	references
[Cl(CO) ₃ Re(L ₁)] ₄ supramolecule		2-amino-1-propanol	7.35(S) 6.02(R)	1.22	ligand	1
		2-amino-1-propanol 19.4×10 ³ (S) 15.5×10 ³ (R) 1.25		1.25		
		2-amino-2-phenylethanol	31×10 ³ (S) 27×10 ³ (R)	1.17		
${[Cd_2(L_2)(H_2O)_2] \cdot 6.5DMF \cdot 3EtOH_n}$	MOF	2-amino-3-phenylpropanol	-amino-3-phenylpropanol 0.68×10 ³ (S) 0.49×10 ³ (R)	1.39	– ligand –	2
		2-amino-3-methyl-1-butanol	1.66×10 ³ (S) 0.53×10 ³ (R)	3.12		
$[(Me_2NH_2)Zn_2(L_5)_{1.5}(H_2O)_2]_n$	MOF	histidine	115(D) 64(L)	1.80	ligand	3
		4.66×10 ³ (Cinchonine) 3.45×10 ³ (Cinchonidine) 1.35	1.35	Tb		
		Cinchonine	4.66×10 ³ (Cinchonine) 3.45×10 ³ (Cinchonidine)	1.23	3 ligand	
Zn-MOF-C-Tb	MOF	4.48×10 ³ (N-benzylcinchoninium chloride) 3.37×10 ³ (N-benzylcinchonidinium chloride)	1.33	Tb	4	
		chloride	chloride 1.60×10 ³ (N-benzylcinchoninium chloride) 1. 1.09×10 ³ (N-benzylcinchonidinium	1.46	ligand	-

Table S6. Enantioselective recognition in literature. Summary of enantioselective luminescence recognition by coordination compounds.

			chloride)			
			5.56×10 ³ (R)	2.16	Tb	_
			2.57×10 ³ (S)			_
		2-amino-1-butanoi –	0.62×10 ³ (S)		ligand	-
			0.18×10 ³ (R)	3.45	nganu	
			72(S)	1.52	TL	-
		2-amino-1-propanol —	47(R)	1.55	10	
			15.33×10 ³ (S)	1.18	ligand	_
			13.01×10 ³ (R)			
		Cinchonine	8.37×10 ³ (Cinchonine)	1.60		
	L-Mg ₃ Al-EuW ₁₀ LDHs $\frac{\frac{Clinchonidie}{Quinine}}{Quinine} + \frac{2.558 \times 10^{3} (Cinchonidine)}{4.40 \times 10^{3} (Quinine)}}{\frac{9.22 \times 10^{3} (R)}{6.30 \times 10^{3} (S)}}$ Naphthyl ethylamine $\frac{5.58 \times 10^{3} (Quinine)}{4.40 \times 10^{3} (Quinidine)}}{\frac{5.98 \times 10^{3} (R)}{3.31 \times 10^{3} (S)}}$		5.58×10 ³ (Cinchonidine)			
			5.53×10 ³ (Quinine)	1.54		
		1.54	FW /	This work		
L-CIL-IVIg ₃ AI-Eu W ₁₀		Nonhthyl othylamina	9.22×10 ³ (R)	1 46	= E u vv ₁₀	I his work
		Napitnyi etnyianine	6.30×10 ³ (S)	1.40		
			5.98×10 ³ (R)	1.01		
		maphinyi ethanoi	3.31×10 ³ (S)	1.01		