Supplementary Information (SI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2025

## Supporting information for

## Regulation of solid-electrolyte interphases formation via $\text{Li}_3\text{PO}_4$ artificial layer for ultrastable germanium anodes

Haifeng Yan, Kun Chao, Zhonghua Zhang\*, Zhenfang Zhou, Yuanming Li, Xuguang Liu, Jing Liu, Xiaosong Guo, Changming Mao\* and Guicun Li\*

H.-F. Yan, C. Chao, Z.-H. Zhang, Z.-F Zhou, Y.-M. Li, X.-G Liu, J. Liu, X.-S. Guo, M.-C. Ming\*, G.-C. Li\*

College of Materials Science and Engineering, Qingdao University of Science and Technology,

Qingdao 266042, Shandong, China

e-mail: guicunli@qust.edu.cn

M.-C. Ming\*

e-mail: mcm@qust.edu.cn

|                                       | Etotal (Ha)   | E <sub>1</sub> (Ha) | E <sub>2</sub> (Ha) | ΔE (eV) |
|---------------------------------------|---------------|---------------------|---------------------|---------|
| C, FEC                                | -2726.57140   | -2285.17098         | -441.38193          | -0.50   |
| Ge, FEC                               | -149970.75857 | -149529.35309       | -441.38183          | -0.64   |
| C/P, FEC                              | -3635.73283   | -3194.32357         | -441.38183          | -0.75   |
| Li <sub>3</sub> PO <sub>4</sub> , FEC | -7091.79770   | -6650.34230         | -441.38055          | -2.04   |

Figure S1 Calculated data on the binding energy of FEC molecules adsorbed on the surface of different materials, respectively.

|                                      | Etotal (Ha)   | E <sub>1</sub> (Ha) | E <sub>2</sub> (Ha) | ΔE (eV) |
|--------------------------------------|---------------|---------------------|---------------------|---------|
| C, EC                                | -2627.34541   | -2285.17098         | -342.17429          | -0.39   |
| Ge, EC                               | -149871.54545 | -149529.35309       | -342.17429          | -0.49   |
| C/P, EC                              | -3536.51372   | -3194.32357         | -342.17429          | -0.43   |
| Li <sub>3</sub> PO <sub>4</sub> , EC | -6992.53023   | -6650.34230         | -342.17429          | -0.37   |

Figure S2 Calculated data on the binding energy of EC molecules adsorbed on the surface of different materials, respectively.

The calculated adsorption energies of EC on the surfaces of C (001), Ge (111), P/C, and  $\text{Li}_3\text{PO}_4$  (021) are -0.39 eV, -0.49 eV, -0.43 eV, and -0.37 eV, respectively.

|                                       | Etotal (Ha)   | E <sub>1</sub> (Ha) | E <sub>2</sub> (Ha) | ΔE (eV) |
|---------------------------------------|---------------|---------------------|---------------------|---------|
| C, DMC                                | -2628.32624   | -2285.17098         | -343.13830          | -0.46   |
| Ge, DMC                               | -149872.51020 | -149529.35309       | -343.13830          | -0.51   |
| C/P, DMC                              | -3537.48252   | -3194.32357         | -343.13830          | -0.56   |
| Li <sub>3</sub> PO <sub>4</sub> , DMC | -6993.49830   | -6650.34230         | -343.13830          | -0.48   |

Figure S3 Calculated data on the binding energy of DMC molecules adsorbed on the surface of different materials, respectively.

The calculated binding energies of DMC on the surfaces of C (001), Ge (111), P/C, and  $\text{Li}_3\text{PO}_4$  (021) are -0.46 eV, -0.51 eV, -0.56 eV, and -0.48 eV, respectively.

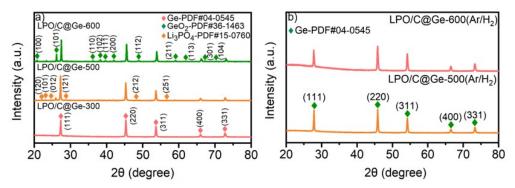



Figure S4 XRD patterns of the LPO/C@Ge in N2 atmosphere (a) and Ar/H2 atmosphere (b).

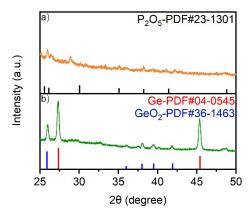



Figure S5 XRD patterns of the PA-400 (a) and 10P/C@Ge-400 (b).

The product of PA after annealing at 400°C is a composite of P<sub>2</sub>O<sub>5</sub> and amorphous products. During the synthesis, a higher amount of PA was used in the P/C@Ge-400 sample (the ratio of PA to Ge was 1:4), and the results indicated the presence of trace amounts of P<sub>2</sub>O<sub>5</sub> in the P/C@Ge-400 sample. These findings may suggest that PA is converted into phosphate oxides and a certain amount of P/C during the sample synthesis process.

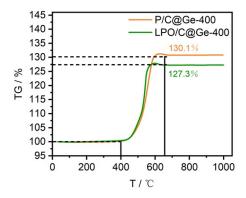



Figure S6 TG curve of LPO/C@Ge and P/C@Ge.

There is a weight increase during temperature increasing. In air condition, it is assumed that the P-doped carbon species in P/C@Ge sample are oxidized to be P<sub>2</sub>O<sub>5</sub> (boiling point is around 360 °C) and CO<sub>2</sub>, both of which are in gas states. Thus the oxidization of Ge to form GeO<sub>2</sub> contributes to the main weight increase during 400~650 °C. According to this assumption, the carbon content

is calculated to be 9.7%. As for LPO/C@Ge sample, it is hard to determine the actual content of carbon species because of the influence of Li<sub>3</sub>PO<sub>4</sub>. Thus, the carbon content is determined to be <11.6% based on above assumption.

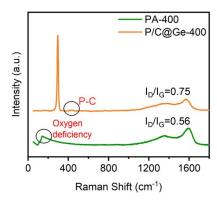



Figure S7 Raman spectra of PA-400 and P/C@Ge.

The peak at 150 cm<sup>-1</sup> in PA-400 corresponds to a large number of oxygen vacancies, which is attributed to P<sub>2</sub>O<sub>5</sub>. No distinct signal for P-doped carbon (350-450 cm<sup>-1</sup>) is observed. In contrast, the peak at 420 cm<sup>-1</sup> in P/C@Ge-400 is assigned to P-doped carbon. The analysis of the D and G bands indicates that PA-400 has a higher degree of graphitization, while the higher defect density in P/C@Ge-400 is attributed to P doping, indirectly corroborating the aforementioned conclusion.

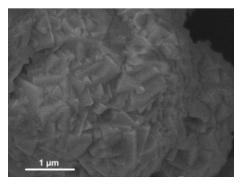



Figure S8 SEM image of GeO<sub>2</sub> pristine.

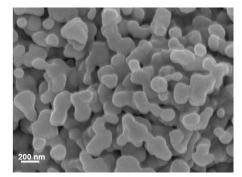



Figure S9 SEM image of bare Ge particle.

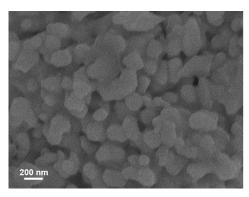



Figure S10 SEM image of LPO/C@Ge particle.

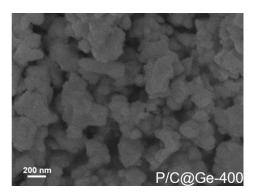



Figure S11 The SEM images of P/C@Ge-400.

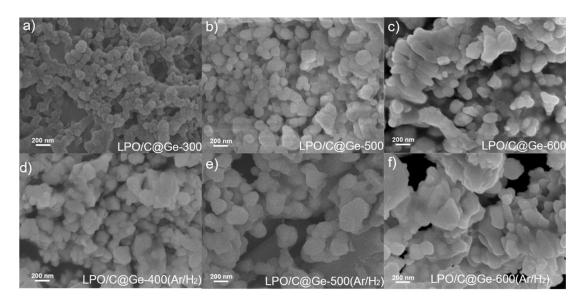



Figure S12 The SEM images of LPO/C@Ge thermally annealed at different temperatures and atmospheres. (a) 300 °C (N<sub>2</sub>), (b) 500 °C (N<sub>2</sub>), (c) 600 °C (N<sub>2</sub>), (d) 400°C (Ar/H<sub>2</sub>), (e) 500 °C (Ar/H<sub>2</sub>), (f) 600 °C (Ar/H<sub>2</sub>).

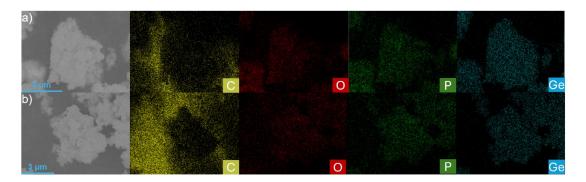



Figure S13 EDS-mapping images of LPO/C@Ge (a) and P/C@Ge (b).

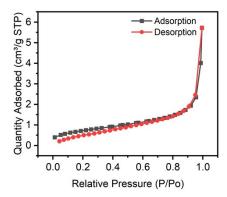



Figure S14 The N<sub>2</sub> adsorption and desorption curves of P/C@Ge.

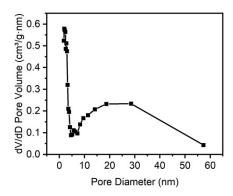



Figure S15 The corresponding pore-size distribution of P/C@Ge.

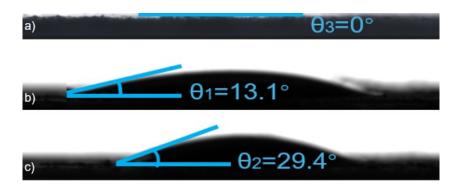



Figure S16 The contact angles measurements of bare Ge (a), LPO/C@Ge (b) and P/C@Ge (c).

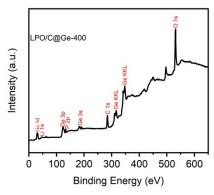



Figure S17 Survey scan XPS spectra of LPO/C@Ge.

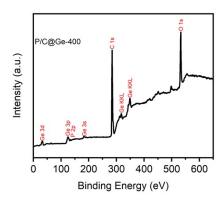



Figure S18 Survey scan XPS spectra of P/C@Ge.

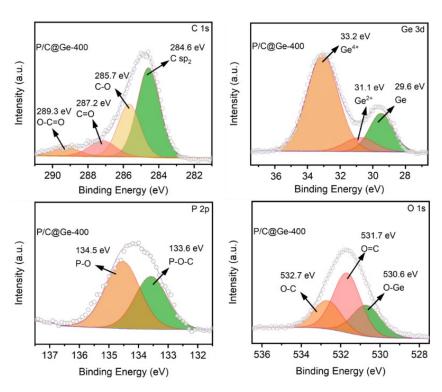



Figure S19 High resolution XPS spectrum of P/C@Ge.

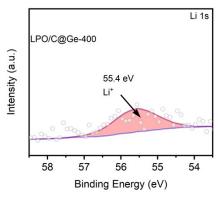



Figure S20 High resolution Li 1s XPS spectrum of LPO/C@Ge.

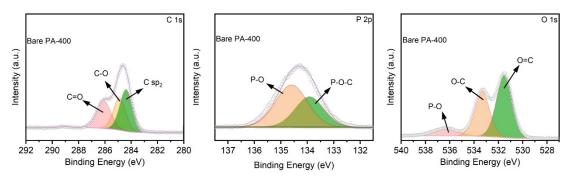



Figure S21 High resolution XPS spectrum of PA-400.

During the sintering process, the  $O_2$  generated from the decomposition of PA reacts with Ge to form Ge-O bonds, preventing P from coordinating and leading to the formation of P-doped carbon. In the bare PA sample, this results in the formation of  $P_2O_5$ . Compared with P/C@Ge-400, PA-400 exhibits weaker binding between C and O, and stronger binding between P and O, indicating that  $P_2O_5$  is the dominant form of phosphorus in PA-400, while P-C is the main form of phosphorus in P/C@Ge-400.

Table S1 Previously reported cycle performance of the Ge anode.

|               | Current                    | Initial                            | Initial    | Capacity                                        |      |
|---------------|----------------------------|------------------------------------|------------|-------------------------------------------------|------|
| Samples       | density                    | capacity                           | coulombic  | (after cycling)                                 | Ref. |
|               | 0.2 4 -1                   | 12042 41 -1                        | efficiency | 1050 0 A1 -1 (200th)                            | 5    |
| Ge nanowires  | 0.3 A g <sup>1</sup>       | 1284.3 mAh g <sup>-1</sup>         | 79.6%      | $1058.9 \text{ mAh } g^{-1} (300^{\text{th}})$  | 5    |
| Sp-Ge/C-Pitch | $1.0~{\rm A}~{\rm g}^{-1}$ | $1013.0 \text{ mAh g}^{-1}$        | 82.7%      | 645.0 mAh g <sup>-1</sup> (300 <sup>th</sup> )  | 10   |
|               |                            |                                    |            |                                                 |      |
| Ge@B-PAALi    | $1.0 \text{ A g}^{-1}$     | $1254.9 \text{ mAh g}^{-1}$        | 75.1%      | $1053.8 \text{ mAh g}^{-1} (500^{\text{th}})$   | 12   |
| Go/Co O       | 1 0 A $\alpha^{-1}$        | 1445.0 mAh g <sup>-1</sup>         | 24.6%      | 1171.0 mAh g <sup>-1</sup> (298 <sup>th</sup> ) | 15   |
| nanorod       | 1.0 A g                    | 1443.0 IIIAII g                    | 24.070     | 11/1.0 IIIAII g · (298)                         | 13   |
|               | $0.5 \; A \; g^{-1}$       | $983.4 \text{ mAh } \text{g}^{-1}$ | 60.5%      | $614.5 \text{ mAh } g^{-1} (300^{\text{th}})$   | 16   |
|               |                            |                                    |            |                                                 |      |
| Ge@N-CNTs     | $0.1 \text{ A g}^{-1}$     | 1176.0 mAh g <sup>-1</sup>         | 68.0%      | $892.0 \text{ mAh g}^{-1} (200^{\text{th}})$    | 21   |
| Ge/CNFs       | 1 0 A σ <sup>-1</sup>      | $1297.0 \text{ mAh g}^{-1}$        | 49.6%      | 1050.0 mAh g <sup>-1</sup> (100 <sup>th</sup> ) | 22   |
| 30, 01413     | 1.0 11 5                   | 1277.0 III III g                   | 15.070     | 1000.0 111111 g (100 )                          | 22   |
| LPO/C@Ge      | $1.0~{\rm A}~{\rm g}^{-1}$ | $1255.5 \text{ mAh } g^{-1}$       | 80.1%      | 1202.2 mAh g <sup>-1</sup> (600th)              | This |
|               |                            |                                    |            |                                                 | work |

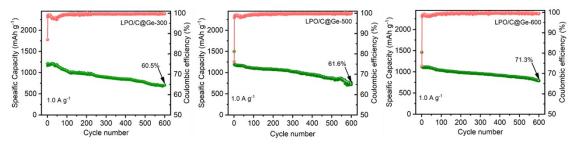



Figure S22 Cycling performance of LPO/C@Ge at a current density of 1.0 A  $g^{-1}$  under different temperatures (N<sub>2</sub> atmospheres).

Combined with the XRD results, the difference in properties suggests that the temperature and atmosphere during annealing are key factors in the formation of  $\text{Li}_3\text{PO}_4$  and  $\text{GeO}_2$ .

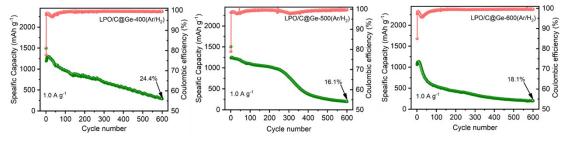



Figure S23 Cycling performance of LPO/C@Ge at a current density of 1.0 A  $g^{-1}$  under different temperatures (Ar/H<sub>2</sub> atmospheres).

Although the use of a reductive atmosphere during annealing can prevent the formation of

GeO<sub>2</sub>, it impedes the cycling performance.

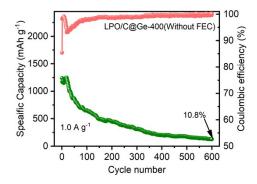



Figure S24 Cycling performance of LPO/C@Ge at a current density of 1.0 A  $g^{-1}$  under  $N_2$  atmospheres (without FEC).

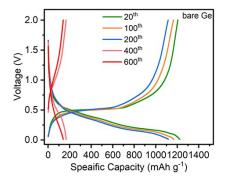



Figure S25 The cyclic voltammetric curves of bare Ge at the  $20^{th}$ ,  $100^{th}$ ,  $200^{th}$ ,  $400^{th}$  and  $600^{th}$  cycles at a current density of  $1.0~A~g^{-1}$ .

Table S2 Previously reported rate performances of Ge anode.

|               | Initial                | Initial                     | High                   |                    |      |
|---------------|------------------------|-----------------------------|------------------------|--------------------|------|
| Samples       | current                | capacity                    | current                | Capacity retention | Ref. |
|               | density                |                             | density                |                    |      |
| Ge nanowires  | $0.3 \text{ A g}^{-1}$ | $1033.5 \text{ mAh g}^{-1}$ | $3.0 \text{ A g}^{-1}$ | 59.5%              | 5    |
|               |                        |                             |                        |                    |      |
| Sp-Ge/C-Pitch | $0.2 \text{ A g}^{-1}$ | $1062.3 \text{ mAh g}^{-1}$ | $5.0 \text{ A g}^{-1}$ | 65.8%              | 10   |
|               | 0.7.1.1                |                             | - o . 1                | <b>-</b> 0.00/     |      |
| Ge@B-PAALi    | $0.5 \text{ A g}^{-1}$ | $1214.6 \text{ mAh g}^{-1}$ | $5.0 \text{ A g}^{-1}$ | 79.3%              | 12   |
|               |                        |                             |                        |                    |      |

| Ge/Co <sub>3</sub> O <sub>4</sub> | $0.5 \text{ A g}^{-1}$ | 1237.0 mAh g <sup>-1</sup>  | $5.0 \text{ A g}^{-1}$   | 63.6% | 15        |
|-----------------------------------|------------------------|-----------------------------|--------------------------|-------|-----------|
| Ge/rGO/CNTs                       | $0.1 \text{ A g}^{-1}$ | $1051.5 \text{ mAh g}^{-1}$ | $2.0 \text{ A g}^{-1}$   | 52.3% | 16        |
| Ge@N-CNTs                         | $0.1 \text{ A g}^{-1}$ | $1145.0 \text{ mAh g}^{-1}$ | $3.2 \text{ A g}^{-1}$   | 74.2% | 21        |
| Ge/CNFs                           | $0.2 \text{ A g}^{-1}$ | $1330.0 \text{ mAh g}^{-1}$ | $5.0~{ m A}~{ m g}^{-1}$ | 55.4% | 22        |
| LPO/C@Ge                          | $0.5 \text{ A g}^{-1}$ | 1327.4 mAh g <sup>-1</sup>  | $5.0 \text{ A g}^{-1}$   | 93.1% | This work |

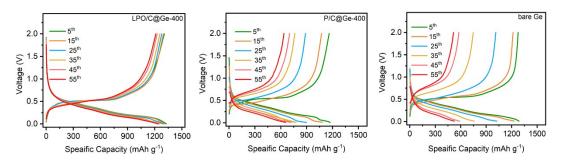



Figure S26 The Cyclic voltammetry curves of LPO/C@Ge, P/C@Ge and bare Ge at different rates  $(0.5, 1, 2, 3, 4 \text{ and } 5 \text{ A g}^{-1})$ .

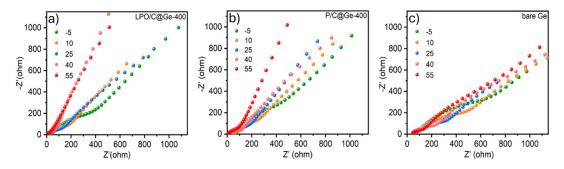



Figure S27 EIS of LPO/C@Ge (a), P/C@Ge (b), and bare Ge (c) at different temperatures.

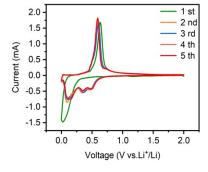



Figure S28 The CV curves of P/C@Ge at scan rate of 0.1 mV s  $^{-1}$ .

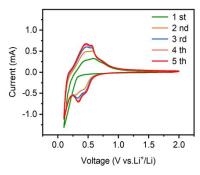



Figure S29 The CV curves of bare Ge at scan rate of 0.1 mV s<sup>-1</sup>.

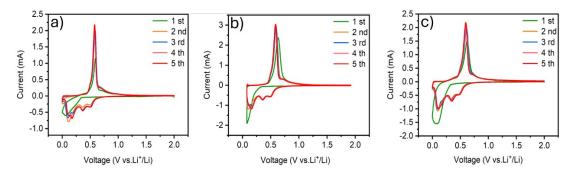



Figure S30 The CV curves of LPO/C@Ge-300 (a), LPO/C@Ge-500 (b) and LPO/C@Ge-600 (c) at scan rate of 0.1 mV s  $^{-1}$ .

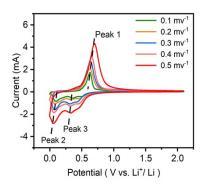



Figure S31 The CV curves of the P/C@Ge at different scan rates.

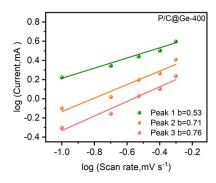



Figure S32 The plots of log (I) vs. log (v) (I: peak current; v: scan rate. The values of I and v are derived from Figure S23).

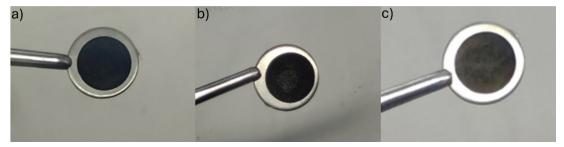



Figure S33 Photographs of LPO/C@Ge, P/C@Ge and bare Ge cathodes after 100 cycles.

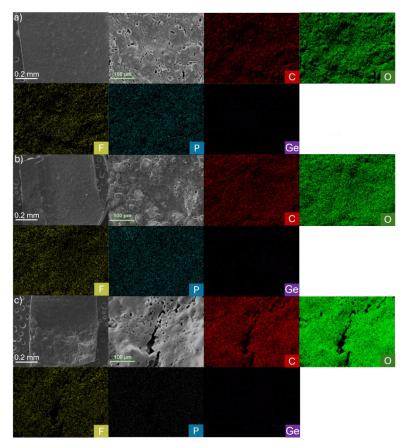



Figure S34 In-situ scanned images and EDS of the LPO/C@Ge, P/C@Ge and bare Ge cathodes after 100 cycles.