
Enhanced antioxidative properties of carbon-coated W-doped 

NiMoN catalysts for robust water electrolysis under fluctuating 

electricity

Supporting Information

1. Characterizations

Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) elemental mapping 
were conducted using a Zeiss SUPRA 55 electron microscope. Examinations of High-resolution 
transmission electron microscopy (HRTEM) and high-angle annular dark field - scanning transmission 
electron microscopy (HAADF-STEM) was conducted using a JEOL JEM-2100F. X-ray diffraction (XRD) 
patterns were recorded on a Bruker D8-Advance diffractometer using Cu Kα radiation (hυ = 1486.6 eV) 
with a scan rate of 5° per minute. Raman spectra were acquired using a Renishaw inVia Reflex with a 514 
nm laser. X-ray photoelectron spectroscopy (XPS) measurements were conducted on an ESCALAB 250Xi 
equipped with a monochromated Al Kα 150 W X-ray source.

2. Electrochemical Measurements

Electrochemical measurements were performed on an electrochemical workstation (CS 150, Wuhan 
Corrtest Instruments Co., Ltd.) using a three-electrode system. The prepared electrodes (1×1 cm2) served 
as the working electrode, while a graphite electrode and a saturated calomel electrode (SCE) acted as the 
counter and reference electrodes, respectively. Prior to measurement, the 1 M KOH electrolyte was 
purged with Ar for 30 minutes to eliminate dissolved gases. In 1 M KOH, the potential vs. reversible 
hydrogen electrode (RHE) was calculated as E(RHE) = E(SCE) + 0.2415 + 0.05916 * pH (for 1 M KOH). All 
measurements were conducted without iR compensation, and the electrolyte resistance was 
approximately 0.6 Ω.
Linear sweep voltammetry (LSV) tests were conducted at a scan rate of 1 mV s-1. Tafel plots were derived 
from the LSV data. Tafel curves were measured using the workstation over a potential range of -1.05 to -
1.2 V (vs. SCE) at a scan rate of 1 mV s-1. Electrochemical impedance spectroscopy (EIS) spectra were 
recorded at an overpotential of -0.05 V (vs. RHE), superimposing signals in a frequency range of 100,000 
to 0.05 Hz with an amplitude of 5 mV. The double-layer capacitance (Cdl), proportional to the 
electrochemically active surface area (ECSA) was determined through cyclic voltammetry (CV) tests in a 
scan rate range from 2 to 10 mV s-1. Multi-current step (ISTEP) tests were performed at -10, -100, -300, -
500, -800, and -1000 mA cm-2 ，increasing step by step in sequence with each step taking 300 seconds.
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Figure S1. SEM images of NiMoWO.

Figure S2. XRD patterns of NiMoWO.

Figure S3. XPS results of NiMoWO.
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Figure S4. SEM images of W-NiMoN@NC at various heat treatment 

temperature: (a-b) 500℃, (c-d) 600℃, (e-f) 700℃.



Figure S5. XPS results of W-NiMoN@NC and NiMoWO: (a) Ni 2p; (b) Mo 

3d; (c) W 4f; (d) O 1s; (e) N 1s; (f) C 1s.

Figure S6. Cyclic voltammetry curves of W-NiMoN@NC, NiMoN@NC, W-

doped NiMoO4, Ni-Foam and Pt/C.



Figure S7. Arrhenius equation test diagram of W-NiMoN@NC.

Figure S8. Device diagram of cyclic electrolysis test.



Figure S9. (a-c) SEM images of W-NiMoN@NC after fluctuating 

electrolysis. 

Figure S10. (a-b) HRTEM images of W-NiMoN@NC after fluctuating 

electrolysis.



Figure S11. XRD results before and after fluctuating electrolysis of W-

NiMoN@NC.

 

Figure S12. XPS results before and after fluctuating electrolysis: (a) Mo 

3d of NiMoN@NC, (b) Mo 3d of W-NiMoN@NC.



.

Figure S13. (a-b) The bar diagram of the Overall water splitting in 

different current density in 27 ℃,30% KOH for NiFe(+)||NiMoN@NC and 

NiFe(+)||W-NiMoN@NC.

Table S1. Summary of evolved gases from DCDA

Sample
Major 

Pyrolysis 
Temperature

Evolved Gas Species

200 ~ 400℃
Hydrogen, Ammonia, Water Vapor, Cyanide-
containing gases

DCDA
600 ~ 800℃

Ammonia, Primary Amines, Cyanide-containing gases, 
Carbon Dioxide, Pyridine Nitrogen-containing 
Heterocyclic gases

Table S2 Comparison of HER activity of W-NiMoN@NC electrode with 

recently reported Ni-based catalysts in 1.0 M KOH.

Catalysts
η 10

(mV vs RHE)
η 100

(mV vs RHE)
Ref.

W-NiMoN@NC 13 67 This work

NiSA-O/Mo2C 133 - [1]

Ni-Fe-Sn 27 - [2]

Ni6Fe1Mo1-LDH/NF 104 - [3]



SeNi(Fe)OOH 22 - [4]

A-NiMoO-P - 65 [5]

Pt-NiMo-OH/NF 34 - [6]

NiSe/Ni3Se2-Fe 144 - [7]

NF/NiMoO-H2 11 - [8]

NiFeMo 180 - [9]

Fe-Ni@NC-CNTs 202 - [10]

NiCoP@NiMn LDH/NF - 116 [11]

Ni@NCNT/NiMoN/NF 15 - [12]

MoNi4/MoO2@Ni 15 - [13]

(Ni−MoO2)@C 50 - [14]

Ni0.33Mo0.67-900 37 - [15]

NiFeO/NiMo 46 - [16]
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