Supplementary Information (SI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2025

Associated Material

Supporting Information

Organophosphonate- and dimethylarsinate-functionalized hexamolybdates(V) and their solution and gas phase properties

Vinaya Siby,^a Arun Pal,^a Bassem S. Bassil,^a Saurav Bhattacharya,^a Anusree Sundar,^a Juliane Oberstein,^a Damin Kim,^a Rizul Gupta,^a Alisher Kuanysh,^a Jana Hölscher,^a Dorothea Schmidt,^a Nikolai Kuhnert,^a Ulrich Kortz^{a*}

^a School of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany, Email: ukortz@constructor.university

Materials and physical measurements: All reagents were used as purchased without further The hetero groups (4-fluorophenyl) phosphonic acid (L_{PF}) and (4purification. trifluoromethoxyphenyl) phosphonic acid (L_{POCF3}) were synthesized by slightly modifying the literature procedures (see Exp. Section for details, structures depicted in Figures S1-S2). The infrared (FT-IR) spectra of the samples in the solid state were recorded using KBr discs on a Nicolet Avatar 370 spectrophotometer (400–4000 cm⁻¹) with 32 scans and 4 cm⁻¹ resolution. The peak intensities are abbreviated as follows: w, weak; m, medium; s, strong; sh, shoulder. Thermogravimetric analysis (TGA) was conducted on TA Instrument SDT Q600 ramped from room temperature to 600 °C at a heating rate of 5 °C/min in N₂ atmosphere to determine the crystal water content. The multinuclear solution NMR spectra were acquired using a JEOL ECS 400 MHz spectrometer equipped with a 5-mm probe. Chemical shift values were referenced to tetramethyl silane (¹³C and ¹H), 85% H₃PO₄ (³¹P), and CFCl₃ (¹⁹F). The instrument was tuned to resonance frequencies of 399.78 MHz, 100.52 MHz, 161.83 MHz and 376.17 MHz for ¹H, ¹³C, ³¹P and ¹⁹F NMR, respectively. The elemental analyses were carried out by Zentrallabor, Technische Universität Hamburg (TUHH), Am Schwarzenberg-Campus 1, 21073 Hamburg (Na, Mo, P, and As) and Analytische Laboratorien, Industriepark Kaiserau (Haus Heidbruch), 51789 Lindlar, (Germany) and Carl von Ossietzky University Oldenburg, 26129 Oldenburg (Germany) (CHN). The Na analysis was further verified in house by atomic absorption (AA) spectroscopy

using a Varian SpectrAA 220 AA spectrometer. Powder X-ray diffraction (PXRD) patterns were obtained utilizing a Rigaku Miniflex 600 (Rigaku Corporation, Tokyo, Japan) employing a primary beam Cu K α radiation ($\lambda = 1.541838$ Å) at 40 kV and 15 mA. The scan range spanned 20 angles from 3 to 50° incrementally measured in steps of 0.01°, with a scan rate of 10° min⁻¹. The synthesis of the hetero groups L_{POCF3} and L_{PF} was carried out in 30 ml pressure vials using a CEM Discover SP microwave reactor (CEM Microwave Technology Ltd., Buckingham, UK) under microwave radiation. High-resolution mass spectra were recorded using a Bruker Daltonics QTOF Impact HD mass spectrometer employing both negative and positive electrospray ionization modes. The QTOF Impact mass spectrometer (Bruker Daltonics) was fitted with an ESI source and external calibration was achieved with 10 mL of 0.1M sodium formate solution. The instrument ion source and the tubing were rinsed with methanol. The calibration was carried out using the enhanced quadratic calibration mode. All MS measurements were performed in both negative and positive ion modes. Samples were measured as direct infusions at a concentration of 10 µg/mL in deionized water at a flow rate of 180 µL/min. Samples were prepared by dissolving 1 mg of POM in 1 mL of deionized water followed by a 1:100 dilution. Spectral simulations were carried out in Data Analysis 4.1 (Bruker Daltonics, Bremen).

Ion mobility mass spectrometry: Solid samples of NaNH₄-CH₃PMo₆ and Na-Mo₇ were resuspended at 1 mg of solid per 100 μ L of methanol which resulted in partial solubilization. Both samples were subjected to vortexing for approximately 2 minutes, and then centrifuged at 2000 *g* for 2 minutes. 100 μ L was aspirated from each sample and diluted 1:10 with methanol (v/v) prior to infusion. Ion mobility experiments were carried out using SELECT SERIES Cyclic IMS tuning and acquisition parameters: Samples were infused at a flow rate of 10 μ L/min via a standard flow ESI source with the instrument operating in negative ion mode. The capillary voltage was 1.60 kV, with desolvation gas flow and temperature at 800 L/hr and 400 °C, respectively. The source temperature was 100 °C, and the cone voltage 80 V. The instrument was operated using a mass range of 50 to 2000 *m/z*, with the time-of-flight mass analyser operated in V-mode. The ion mobility was performed using a single pass of the cyclic mobility device: the traveling wave height propagating the ion separation was set to 24 V, the traveling wave velocity to 375 m/s, data were acquired as two TOF pushes per one mobility data bin, ADC detector start delay was offset automatically and data were acquired for 1 minute per sample at a scan duration of 0.5 s.

X-ray Crystallography: Data for NaNH₄-PMo₆ were collected at 100 K on a Bruker D8 SMART APEX II CCD diffractometer with kappa geometry and a graphite monochromator (Mo Ka radiation, $\lambda = 0.71073$ Å) by using the APEX III software package. ^[1] The collected data underwent cell refinement and data reduction using SAINT, [2] with multi-scan absorption corrections performed by SADABS.^[2] Structure solution was achieved through direct methods utilizing successive difference Fourier maps with SHELXS-97, ^[3] followed by refinement on F2 using SHELXL-2014.^[4] Anisotropic thermal parameters were applied to refine all non-hydrogen atoms. For Na-HPMo₆, NaNH₄-CH₃PMo₆, NaNH₄-HO₂CCH₂PMo₆, Na-HO₂CC₂H₄PMo₆ dmso, NaNH₄-C₆H₅PMo₆, NaNH₄-FC₆H₄PMo₆, NaNH₄-F₃COC₆H₄PMo₆, Na-Mo₇, indexing and data collection were conducted using a Rigaku XtaLAB Synergy Dualflex HyPix single-crystal diffractometer with kappa geometry and a graphite monochromator ($\lambda_{Mo K\alpha}$ = 0.71073 Å), operated via the CrysAlisPro software package. ^[5] Empirical absorption corrections were performed using ABSPACK program. [6] Structure solution was achieved through direct methods utilizing successive difference Fourier maps, and refinements were carried out against all data using SHELXL-2014.^[4] Anisotropic refinement was applied to non-hydrogen atoms, and refinements were performed via full-matrix least squares against |F|. Crystal structure images were generated using Diamond, version 3.2 (software copyright, Crystal Impact GbR). All measurements were conducted with crystals mounted on Hampton cryoloops with paratone-N oil at 100 K. The crystal structures of NaNH₄-HO₂CCH₂PMo₆, NaNH₄-C₆H₅PMo₆, NaNH₄-FC₆H₄PMo₆ and NaNH₄-F₃COC₆H₄PMo₆ displayed various levels of disorder within the phosphonate organic groups. The crystal structure of Na-HO₂CC₂H₄PMo₆.dmso was obtained upon recrystallization of the compound from an NMR tube with DMSO as solvent. The corresponding CIF files be obtained free of charge from can https://www.ccdc.cam.ac.uk/structures/, deposition numbers 2394921-2394926 and 2406188-2406190.

Bond Valence Sum Calculations: The bond valence sum (BVS) calculations for the molybdenum and oxygen atoms (Tables S2-S10) were performed on a program copyrighted by Chris Hormillosa & Sean Healy and distributed by I. D. Brown.^[7]

FT-IR spectra: The IR spectra (Figure S3-S8) ascertain the structural similarities of the polyanions within the fingerprint region from 1200 to 400 cm⁻¹. The bands at 3400-3000 cm⁻¹ and 1640-1620 cm⁻¹ correspond to v_{as} [O-H] and δ [O-H] vibrations of the interstitial water molecules, while the two weak peaks in the 3030-2800 cm⁻¹ region and medium intense bands near 1404 cm⁻¹

belong to v_{as} [C-H] and δ [C-H] vibrations of methyl groups in the dimethylarsinate ligands. Furthermore, the broad peaks in the 3600-3400 cm⁻¹ region indicate the stretching vibrations of the NH_4^+ group. The presence of NH_4^+ as counter cations in the clusters is confirmed by elemental analysis. The characteristic bands at 980-850 cm⁻¹ and 600-400 cm⁻¹ can be attributed to v_{as} [Mo=O] and v_{as} [Mo-O(Mo)] bond stretching vibrations. The v_{as} [As-O] vibration mode appears as a strong band at 820-825 cm⁻¹ with shoulders at 849-857 cm⁻¹ and the v_{as} [As-C] vibration mode occurs at 1274-1278 cm⁻¹ as peaks of medium intensity with shoulders at 1254-1259 cm⁻¹. The bands at 1444-1274 cm⁻¹ and 1143-1010 cm⁻¹ correspond to v_{as} [P-C] and v_{as} [P-O] stretching vibrations of the heteropolymolybdates and the bands at 1581 and 1559 cm⁻¹ pertain to carbonyl stretching frequencies of the carboxylate groups in NaNH4-HO2CCH2PM06 and NaNH4-S5), $HO_2CC_2H_4PMo_6$ (Figure respectively, indicating the incorporation of the phosphonocarboxylate moieties in the polyanion. Additionally, the bands at 1500-1400 cm⁻¹ in NaNH₄-C₆H₅PMo₆ (Figure S4), NaNH₄-FC₆H₄PMo₆ (Figure S6), and NaNH₄-F₃COC₆H₄PMo₆ (Figure S7) can be attributed to their respective asymmetric v_{as} [C-F] and v_{as} [C=C] stretching vibrations. The presence of a single sharp band at 969 cm⁻¹ for Na-Mo₇ (Figure S8) in comparison to the two strong bands at 957 and 920 cm⁻¹ for NaNH₄-PMo₆ for v_{as}[Mo=O] indicate a higher symmetry for the isopolymolybdate ion.

Thermogravimetric Analysis: The thermograms of the freshly prepared and air-dried samples initiated with a dehydration step due to the loss of interstitial water molecules (calc(found)%): NaNH₄-PMo₆, 6.0(6.9); Na-HPMo₆, 10.9(11.8); NaNH₄-CH₃PMo₆, 13.2(12.7); NaNH₄-HO₂CCH₂PMo₆, 13.0(9.9); NaNH₄-HO₂CC₂H₄PMo₆, 13.0(13.2); NaNH₄-C₆H₅PMo₆, 12.2 (12.2); NaNH₄-FC₆H₄PMo₆, 11.3(9.1); NaNH₄-F₃COC₆H₄PMo₆, 8.3(9.4); Na-Mo₇, 10.2(11.2). The first weight loss step for all the TGAs was determined by analyzing the exact cut off point from the 1st derivative graph as depicted in Figure S9-S17. The dissimilarity in the number of crystal waters determined by TGA from that evidenced by elemental analysis could be attributed to the variation in drying periods and aging of the samples at room temperature prior to the measurements. This stage was followed by a second weight loss step involving the release of NH₃ molecules, dimethylarsinate, and organic moieties, culminating in complete structural decomposition. The total weight losses for NaNH₄-PMo₆, Na-HPMo₆, NaNH₄-CH₃PMo₆, NaNH₄-HO₂CCH₂PMo₆, NaNH₄-HO₂CC₂H₄PMo₆, NaNH₄-C₆H₅PMo₆, NaNH₄-FC₆H₄PMo₆, NaNH₄-F₃COC₆H₄PMo₆, and Na-Mo₇ at 520 °C were 33.5%, 35.7%, 39%, 37.5%, 39.7%, 37.9%, 41.3%, 40.7%, and 42.5%, respectively.

References

1. APEX Suite of Crystallographic Software, APEX 3, Version 5-2; Bruker AXS Inc.: Madison, WI, 2015.

2. SAINT, Version7.56a and SADABS Version 2008/1; Bruker AXS Inc.: Madison, WI, 2008.

3. G. M. Sheldrick, A short history of SHELX, *Acta Crystallogr., Sect. A: Found. Crystallogr.* 2008, A64, 112-122.

4. G. M. Sheldrick, SHELXL-2014, Program for Crystal Structure Refinement, University of Gottingen: Gottingen, Germany, 2014.

5. CrysAlis^{Pro} Software System, Version 1.171.38.41, Rigaku Oxford Diffraction 2022.

6. ABSPACK, SCALE "Empirical Absorption Correction" CrysAlis Pro–Software Package, Rigaku Oxford Diffraction 2022.

7. I. D. Brown and D. Altermatt, Bond-Valence Parameters Obtained from a Systematic Analysis of the Inorganic Crystal Structure Database, *Acta Crystallogr*. 1985, **B41**, 244-247.

compound	NaNH ₄ -PM0 ₆	Na-HPM06	NaNH4- CH3PM06	NaNH4- HO2CCH2PM06	Na- HO ₂ CC ₂ H ₄ PMo ₆ . dmso	NaNH4- C6H5PM06	NaNH4- FC6H4PM06	NaNH ₄ - F ₃ COC ₆ H ₄ PMo ₆	Na-Mo7
empirical formula ^a	$\begin{array}{c} C_{6}H_{38}As_{3}Mo_{6}N\\ Na_{1.8}O_{31}PCl_{0.8} \end{array}$	C ₆ H _{44.8} O ₃₅ Na _{1.2} PAs ₃ Mo ₆	C ₇ H ₅₀ NO ₃₅ NaP As ₃ Mo ₆	$\begin{array}{c} C_8H_{45.6}N_{0.9}O_{35}Na_{1.}\\ {}_6PAs_3Mo_6Cl_{0.5} \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} C_{12}H_{49,2}N_{1,3}O_{33}\\ Na_{0,7}PAs_{3}Mo_{6} \end{array}$	C ₁₂ H ₄₅ NO ₃₂ FNa PAs ₃ Mo ₆	$\begin{array}{c} C_{13.6}H_{50.8}N_{1.5}O_{34.6}\\ F_{3}Na_{0.8}PAs_{3.3}Mo_{6} \end{array}$	C ₈ H ₅₄ As ₄ Mo ₇ NNaO ₃₈
fw, ^a g mol ⁻¹	1521.48	1536.17	1562.84	1600.53	2148.81	1587.39	1588.85	1718.39	1766.77
cryst syst	Trigonal	trigonal	trigonal	trigonal	monoclinic	trigonal	trigonal	trigonal	trigonal
space group	R-3	R-3	R-3	R-3	P21/c	R-3	R-3	R-3	R-3
a, Å	19.6625(6)	19.5011(3)	19.4432(3)	19.6852(3)	15.51260(10)	19.6927(3)	19.7297(3)	19.6877(2)	19.5197(6)
b, Å	19.6625(6)	19.5011(3)	19.4432(3)	19.6852(3)	13.09310(10)	19.6927(3)	19.7297(3)	19.6877(2)	19.5197(6)
c, Å	18.9655(8)	19.1833(3)	19.1654(3)	18.9794(3)	35.1451(3)	19.3398(3)	19.3919(4)	19.6146(2)	19.2066(8)
α, deg	90	90	90	90	90	90	90	90	90
β, deg	90	90	90	90	102.5610(10)	90	90	90	90
γ, deg	120	120	120	120	90	120	120	120	120
volume, Å ³	6350.0(5)	6317.9(2)	6274.6(2)	6369.3(2)	6967.40(10)	6495.2(2)	6537.2(2)	6584.15(15)	6337.6(5)
Z	6	6	6	6	4	6	6	6	6
D _{calc} , g cm ⁻³	2.387	2.423	2.482	2.504	2.049	2.435	2.422	2.600	2.777
abs coeff, mm ⁻¹	4.246	4.221	4.251	4.227	2.849	4.103	4.081	4.294	5.243
F(000)	4370.0	4440.0	4536.0	4632.0	4256.0	4608.0	4596.0	4988.0	5100.0
2Θ range for data collection, deg	7.178 - 54.204	4.884 - 61.878	4.89 - 61.948	4.912 - 68.19	4.73 - 62.286	4.842-68.038	4.83 - 59.556	4.792 - 59.626	7.232 - 56.56
completeness to	99.7	88.8	87.3	93.2	92.2	93.7	89.1	92.8	99.8

Table S1. Crystal data and structure refinement for NaNH₄-PMo₆, Na-HPMo₆, NaNH₄-CH₃PMo₆, NaNH₄-HO₂CCH₂PMo₆, Na-HO₂CC₂H₄PMo₆, NaNH₄-C₆H₅PMo₆, NaNH₄-FC₆H₄PMo₆, NaNH₄-F₃COC₆H₄PMo₆, and Na-Mo₇.

Θ _{max, %}									
index ranges	$-25 \leq h \leq 25,$	$-27 \le h \le 26, -$	$-27 \le h \le 26, -27$	$-30 \le h \le 30, -30 \le$	$-21 \le h \le 22, -18 \le k$	$-29 \le h \le 30, -$	$-26 \le h \le 27, -$	$-26 \le h \le 27, -27$	$-26 \le h \le 25, -$
	$ -25 \leq k \leq 25,$	$26 \le k \le 26,$	$\leq k \leq 25,$	$k \le 31, -28 \le l \le$	$\leq 18, -45 \leq l \leq 47$	$30 \le k \le 30, -29$	$25 \le k \le 26, -25$	$\leq k \leq 26, -27 \leq l \leq$	$26 \le k \le 26, -$
	$-24 \le l \le 24$	$-25 \le l \le 27$	$-24 \le l \le 26$	28		$\leq l \leq 29$	$\leq l \leq 27$	26	$25 \le l \le 25$
reflns collected	28014	31796	31581	70017	463526	72890	36414	88743	44814
indep reflns	3112	3973	3881	5431	20745	5534	3705	3898	3497
R(int)	0.0842	0.0387	0.0282	0.0514	0.0597	0.0524	0.0371	0.0282	0.1181
data/restraints/par	3112/0/146	3973/0/162	3881/0/166	5431/0/160	20745/0/438	5534/0/164	3705/0/172	3898/0/159	3497/0/162
am									
GOF on F^2	1.000	1.006	1.004	1.000	1.011	1.000	1.007	1.004	1.001
$R_{1,}^{b} w R_{2}^{c}$	$R_1 = 0.0449,$	$R_1 = 0.0274,$	$R_1 = 0.0244,$	$R_1 = 0.0411,$	$R_1 = 0.0673,$	$R_1 = 0.0364,$	$R_1 = 0.0333,$	$R_1 = 0.0359,$	$R_1 = 0.0528,$
$[I > 2\sigma(I)]$	$wR_2 = 0.1149$	$wR_2 = 0.0842$	$wR_2 = 0.0705$	$wR_2 = 0.1220$	$wR_2 = 0.1754$	$wR_2 = 0.1108$	$wR_2 = 0.0936$	$wR_2 = 0.1065$	$wR_2 = 0.1455$
R_1 , $^{\rm b} w R_2^{\rm c}$ (all data)	$R_1 = 0.0619,$	$R_1 = 0.0316,$	$R_1 = 0.0280,$	$R_1 = 0.0558,$	$R_1 = 0.0752,$	$R_1 = 0.0464,$	$R_1 = 0.0418,$	$R_1 = 0.0411,$	$R_1 = 0.0714,$
	$wR_2 = 0.1254$	$wR_2 = 0.0866$	$wR_2 = 0.0721$	$wR_2 = 0.1307$	$wR_2 = 0.1800$	$wR_2 = 0.1205$	$wR_2 = 0.1042$	$wR_2 = 0.1153$	$wR_2 = 0.1601$
largest diff peak and hole, e Å ⁻³	1.281 and -1.032	2.139 and -0.877	1.986 and -0.722	4.67 and -1.44	3.41 and -2.52	3.51 and -1.14	1.92 and -0.98	1.76 and -1.63	2.23 and -6.02

^[a] The entries represent the actual formula units and weights obtained from bulk elemental analysis, except for Na-HO₂CC₂H₄PMo₆·dmso, where the formula is reported based on single-crystal XRD data. ^bR₁ = $\Sigma ||F_o| - |F_c|| / \Sigma |F_o|$. ^cwR₂ = $[\Sigma w (F_o^2 - F_c^2)^2 / \Sigma w (F_o^2)^2]^{1/2}$.

i	j	$d_{ii}(Å)$	v_{ij}	i	j	$d_{ij}(Å)$	v_{ij}
Mo1	O1T	1.69	1.797661	Mo2	O2T	1.682	1.836953
	O21	1.942	0.909742		012	1.939	0.917148
	012	1.937	0.922119		O21	1.949	0.892692
	O1AS	2.099	0.595164		O2AS	2.076	0.633334
	O1A	2.112	0.574616		O1A	2.123	0.557784
	O2P	2.31	0.336489		O2P	2.302	0.343844
			5.13579				5.181755
OlA	Mo1	2.112	0.574616	O1P	Р	1.52	1.299737
	Mo2	2.123	0.557784				
			1.1324				

Table S2. Bond valence sum (BVS) values for **NaNH₄-PMo₆**. Bond Valence $(v_{ij}) = \exp[(R_{ij}-d_{ij})/b (R_{ij} = bond valence parameter; b = 0.37); Bond Valence Sum <math>(V_i) = \sum_j v_{ij}$.

Table S3. Bond valence sum (BVS) values for **Na-HPMo**₆. Bond Valence $(v_{ij}) = \exp[(R_{ij}-d_{ij})/b (R_{ij} = \text{bond valence parameter}; b = 0.37)$; Bond Valence Sum $(V_i) = \sum_j v_{ij}$.

i	j	$d_{ij}(Å)$	v_{ij}	i	j	$d_{ij}(Å)$	v_{ij}
Mo1	O1A	1.683	1.831995	Mo2	O2A	1.689	1.802526
	012	1.936	0.924615		012	1.933	0.932142
	O21	1.952	0.885483		O21	1.945	0.902395
	O2AS	2.07	0.643688		O1AS	2.087	0.614783
	O2B	2.126	0.55328		O2B	2.107	0.582433
	O1P	2.333	0.316209		O1P	2.355	0.297956
			5.15527				5.132235
O2B	Mo2	2.107	0.582433				
	Mo1	2.126	0.55328				
			1.135713				

Table S4. Bond valence sum (BVS) values for NaNH₄-CH₃PMo₆. Bond Valence $(v_{ij}) = \exp[(R_{ij} - d_{ij})/b (R_{ij} = bond valence parameter; b = 0.37);$ Bond Valence Sum $(V_i) = \sum_j v_{ij}$.

i	j	$d_{ij}(Å)$	v_{ij}	i	j	$d_{ij}(Å)$	v_{ij}
Mo1	OlA	1.692	1.78797	Mo2	O2A	1.685	1.822119
	012	1.93	0.93973		012	1.932	0.934665
	O21	1.9443	0.904104		O21	1.9509	0.88812
	O1AS	2.09	0.609818		O2AS	2.069	0.64543
	O2B	2.111	0.576171		O2B	2.125	0.554777
	O1P	2.3343	0.3151		O1P	2.316	0.331077
			5.132894				5.176187
O2B	Mo1	2.111	0.576171				
	Mo2	2.125	0.554777				
			1.130948				

i	j	$d_{ij}(Å)$	v_{ij}	i	j	$d_{ij}(Å)$	v_{ij}
Mo1	OlA	1.684	1.82705	Mo2	O2A	1.69	1.797661
	012	1.934	0.929626		O12	1.932	0.934665
	O21	1.948	0.895108		O21	1.943	0.907286
	O1AS	2.071	0.641951		O2AS	2.081	0.624833
	O2B	2.125	0.554777		O2B	2.109	0.579294
	O1P	2.323	0.324872		O1P	2.334	0.315356
			5.173384				5.159095
O2B	Mo2	2.125	0.554777				
	Mo1	2.109	0.579294				
			1.13407				

Table S5. Bond valence sum (BVS) values for **NaNH₄-HO₂CCH₂PMo₆**. Bond Valence $(v_{ij}) = \exp[(R_{ij}-d_{ij})/b (R_{ij} = \text{bond valence parameter}; b = 0.37)$; Bond Valence Sum $(V_i) = \sum_j v_{ij}$.

Table S6. Bond valence sum (BVS) values for **Na-HO₂CC₂H₄PMo₆·dmso**. Bond Valence $(v_{ij}) = \exp[(R_{ij}-d_{ij})/b (R_{ij} = bond valence parameter; b = 0.37);$ Bond Valence Sum $(V_i) = \sum_j v_{ij}$.

i	j	$d_{ij}(Å)$	v _{ij}	i	j	$d_{ij}(Å)$	v _{ij}
Mo1	O1T	1.689	1.802526	Mo2	O2T	1.693	1.783144
	O16	1.936	0.924615		O23	1.935	0.927117
	O61	1.936	0.924615		O32	1.942	0.909742
	O1A1	2.077	0.631625		O2A1	2.076	0.633334
	012	2.122	0.559293		012	2.116	0.568437
	O1P	2.323	0.324872		O1P	2.347	0.304468
			5.167546				5.126242
Mo3	O3T	1.687	1.812296	Mo4	O4T	1.691	1.792809
	O23	1.928	0.944824		O45	1.933	0.932142
	O32	1.932	0.934665		O54	1.933	0.932142
	O1A2	2.074	0.636767		O2A2	2.065	0.652446
	O34	2.12	0.562325		O34	2.095	0.601633
	O2P	2.368	0.287669		O2P	2.333	0.316209
			5.178545				5.227381
Mo5	O5T	1.69	1.797661	Mo6	O6T	1.692	1.78797
	O45	1.937	0.922119		O16	1.929	0.942274
	054	1.94	0.914673		061	1.929	0.942274
	O1A3	2.068	0.647177		O2A3	2.067	0.648929
	O56	2.106	0.58401		056	2.113	0.573065
	O3P	2.348	0.303646		O3P	2.397	0.265983
			5.169286				5.160494
056	Mo5	2.106	0.58401	012	Mo2	2.116	0.568437
	Mo6	2.113	0.573065		Mo1	2.122	0.559293
			1.157075				1.12773
034	Mo4	2.095	0.601633	01	C3	1.336	1.157134
	Mo3	2.12	0.562325				
			1.163958				

i	j	$d_{ii}(Å)$	v_{ij}	i	j	$d_{ij}(Å)$	v_{ij}
Mo1	O1A	1.686	1.817201	Mo2	O2A	1.687	1.812296
	012	1.928	0.944824		012	1.93	0.93973
	O21	1.949	0.892692		O21	1.947	0.897531
	O2AS	2.07	0.643688		O1AS	2.086	0.616446
	O1B	2.127	0.551786		O1B	2.11	0.57773
	O1P	2.322	0.325751		O1P	2.342	0.30861
			5.175943				5.152344
O1B	Mo2	2.11	0.57773				
	Mo1	2.127	0.551786				
			1.129516				

Table S7. Bond valence sum (BVS) values for NaNH₄-C₆H₅PMo₆. Bond Valence $(v_{ij}) = \exp[(R_{ij} - d_{ij})/b (R_{ij} = bond valence parameter; b = 0.37);$ Bond Valence Sum $(V_i) = \Sigma_j v_{ij}$.

Table S8. Bond valence sum (BVS) values for NaNH₄-FC₆H₄PMo₆. Bond Valence $(v_{ij}) = \exp[(R_{ij}-d_{ij})/b (R_{ij} = \text{bond valence parameter}; b = 0.37);$ Bond Valence Sum $(V_i) = \sum_j v_{ij}$.

i	j	$d_{ij}(Å)$	v_{ij}	i	j	$d_{ij}(Å)$	v_{ij}
Mo1	O1P	2.314	0.332871	Mo2	02	1.688	1.807405
	O1A	2.126	0.55328		O1A	2.109	0.579294
	O1B	1.683	1.831995		O1P	2.34	0.310283
	O2AS	2.071	0.641951		O21	1.947	0.897531
	O21	1.952	0.885483		012	1.93	0.93973
	012	1.934	0.929626		O1AS	2.088	0.613123
			5.175206				5.147366
O1A	Mo2	2.109	0.579294				
	Mo1	2.126	0.55328				
			1.132574				

i	j	$d_{ij}(Å)$	v_{ij}	i	j	$d_{ij}(Å)$	v_{ij}
Mol	012	1.933	0.932142	Mo2	O2AS	2.071	0.641951
	O2B	2.111	0.576171		012	1.931	0.937194
	O1AS	2.08	0.626524		O21	1.951	0.88788
	01	1.687	1.812296		O2B	2.129	0.548812
	O21	1.947	0.897531		O1P	2.312	0.334675
	O1P	2.35	0.302009		O2A	1.685	1.822119
			5.146673				5.172631
O2B	Mo2	2.129	0.548812				
	Mo1	2.111	0.576171				
			1.124983				

Table S9. Bond valence sum (BVS) values for NaNH₄-F₃COC₆H₄PMo₆. Bond Valence $(v_{ij}) = \exp[(R_{ij}-d_{ij})/b (R_{ij} = \text{bond valence parameter}; b = 0.37);$ Bond Valence Sum $(V_i) = \sum_j v_{ij}$.

Table S10. Bond valence sum (BVS) values for **Na-Mo**₇. Bond Valence $(v_{ij}) = \exp[(R_{ij}-d_{ij})/b (R_{ij} = \text{bond valence parameter}; b = 0.37)$; Bond Valence Sum $(V_i) = \sum_j v_{ij}$.

i	j	$d_{ij}(Å)$	v_{ij}	i	j	$d_{ij}(Å)$	v_{ij}
Mo1	O1M1	1.691	1.792809	Mo2	O1M2	1.684	1.82705
	O12M	1.941	0.912204		O12M	1.94	0.914673
	O21M	1.945	0.902395		O21M	1.953	0.883093
	O1AS	2.105	0.58559		O2AS	2.082	0.623147
	O2M1	2.119	0.563847		O2M1	2.134	0.541445
	O13M	2.28	0.364909		O13M	2.273	0.371878
			5.121754				5.161286
Mo3	O13M	1.684	1.826063	O2M1	Mo1	2.1196	0.562933
	O1M3	1.815	1.283678		Mo2	2.1334	0.542324
	O13M	1.684	1.826063				1.105257
	013M	1.684	1.826063				
			6.761867	O1M3	Mo3	1.815	1.283678

Table S11. ESI mass spectrometry data of the polyoxomolybdates investigated in negative ion mode. m/z values always refer to most intense peak of isotope envelope cluster. The molecular formula refers to the best fit for a simulated mass spectrum.

Compound	Monomeric 2- ion	Monomeric – ion	Dimeric 2- ion
	m/z and elemental	m/z	m/z and elemental
	composition		composition
HPM06	821.32	1331.088	1331.587
	Not assigned	Mo ₆ PAs ₃ C ₆ H ₂₂ O ₂₄ Na	$Mo_{12}P_2As_6C_{12}H_{44}O_{48}Na_2$
CH ₃ PMo ₆	821.39	1345.23	1345.73
	Not assigned	Mo ₆ PAs ₃ C ₇ H ₂₄ O ₂₄ Na	$Mo_{12}P_2As_6C_{14}H_{50}O_{48}Na_2$
C ₆ H ₅ PMo ₆	692.54	1406.07	1406.57
	$Mo_6PAs_3C_{12}H_{27}O_{24}$	Mo ₆ PAs ₃ C ₁₂ H ₂₇ O ₂₄ Na	$Mo_{12}P_2As_6C_{24}H_{54}O_{48}Na_3$
HO ₂ CCH ₂ PMo ₆	684.11	1392.22	1392.72
	$Mo_6PAs_3C_8H_{24}O_{26}$	Mo ₆ PAs ₃ C ₈ H ₂₄ O ₂₆ Na	$Mo_{12}P_2As_6C_{16}H_{48}O_{52}Na_2$
HO ₂ CC ₂ H ₄ PMo ₆	Not observed	1403.25	1402.22
		Mo ₆ PAs ₃ C ₉ H ₂₆ O ₂₆ Na	$Mo_{12}P_2As_6C_{18}H_{52}O_{52}Na_2$
Mo ₇	683.54	1390.08	1390.58
	$Mo_7As_3C_6H_{18}O_{24}$	$Mo_7As_3C_6H_{21}O_{25}$	$Mo_{14}As_6C_{12}H_{40}O_{50}Na$
PM06	662.58	1348.15	1347.65
	$Mo_6PAs_3C_6H_{22}O_{25}$	Mo ₆ PAs ₃ C ₆ H ₂₂ O ₂₅ Na	$Mo_{12}P_2As_6C_{12}H_{44}O_{50}Na_2$
4-FC ₆ H ₄ PMo ₆	702.12	1424.24	1424.23
	Mo ₆ PAs ₃ C ₁₂ H ₂₃ O ₂₆ F	Mo ₆ PAs ₃ C ₁₂ H ₂₆ O ₂₄ FNa	Not assigned
4-F ₃ COC ₆ H ₄ PMo ₆	734.62	1490.23	1490.73
	Mo ₆ PAs ₃ C ₁₃ H ₂₆ O ₂₅ F ₃	$Mo_6PAs_3C_{13}H_{26}O_{25}F_3Na$	Not assigned

Figure S1. ³¹P{¹H} (left) and ¹⁹F (right) NMR spectra (4- trifluoromethoxyphenyl) phosphonic acid (L_{POCF3}), recorded at room temperature in H₂O/D₂O.

Figure S2. ³¹P{¹H} (left) and ¹⁹F (right) NMR spectra (4-fluorophenyl) phosphonic acid (L_{PF}), recorded at room temperature in H₂O/D₂O.

Figure S3. FT-IR spectra of Na-HPMo₆ (black) and NaNH₄-PMo₆ (blue) on a KBr pellet.

Figure S4. FT-IR spectra of NaNH₄-CH₃PMo₆ (black) and NaNH₄-C₆H₅PMo₆ (red) on a KBr pellet.

Figure S5. FT-IR spectra of NaNH₄-HO₂CCH₂PMo₆ (black) and NaNH₄-HO₂CC₂H₄PMo₆ (green) on a KBr pellet.

Figure S6. FT-IR spectra of L_{PF} (black) and NaNH₄-FC₆H₄PMo₆ (violet) on a KBr pellet.

Figure S7. FT-IR spectra of L_{POCF3} (black) and NaNH₄-F₃COC₆H₄PMo₆ (cyan) on a KBr pellet.

Figure S8. FT-IR spectra of NaNH₄-PMo₆ (black) and Na-Mo₇ (brown) on a KBr pellet.

Figure S9. Thermogram of Na-HPMo₆ from room temperature to 600 $^\circ$ C under N₂ atmosphere.

Figure S10. Thermogram of $NaNH_4$ -PMo₆ from room temperature to 600 °C under N₂ atmosphere.

Figure S11. Thermogram of NaNH₄-CH₃PMo₆ from room temperature to 600 °C under N₂ atmosphere.

Figure S12. Thermogram of NaNH₄-HO₂CCH₂PMo₆ from room temperature to 600 °C under N₂ atmosphere.

Figure S13. Thermogram of NaNH₄-HO₂CC₂H₄PMo₆ from room temperature to 600 °C under N₂ atmosphere.

Figure S14. Thermogram of NaNH₄-C₆H₅PMo₆ from room temperature to 500 °C under N_2 atmosphere.

Figure S15. Thermogram of NaNH₄-FC₆H₄PMo₆ from room temperature to 600 °C under N₂ atmosphere.

Figure S16. Thermogram of $NaNH_4$ - $F_3COC_6H_4PMo_6$ from room temperature to 600 °C under N_2 atmosphere.

Figure S17. Thermogram of Na-Mo₇ from room temperature to 600 $^{\circ}$ C under N₂ atmosphere.

Figure S18. Experimental (red) and simulated (black) PXRD patterns (simulated diffraction patterns derived from single-crystal diffraction data).

Figure S19. PXRD patterns at various intervals for Na-HPMo₆ (left) and NaNH₄-HO₂CC₂H₄PMo₆ (right).

Figure S20. Time dependent (a) ¹H and (b) ¹³C{¹H} and (c) ³¹P{¹H} NMR spectra of **NaNH₄-PMo₆** dissolved in H₂O/D₂O at room temperature.

Figure S21. (upper) Monitoring reaction progress by ${}^{31}P{}^{1}H$ NMR of a reaction mixture for **PMo**₆ with Mo:P ratio of 36:1 over a period of 1 hour at (a) room temperature and (b) 80 °C. (lower) Line graph depicting the formation of **PMo**₆ in fresh synthesis solution at 80 °C for different ratios of Mo:P as based on ${}^{31}P{}^{1}H$ NMR.

Figure S22. (a) ¹H and (b) ¹³C{¹H} NMR spectra of **Na-HPMo**₆ (pink) dissolved in H₂O/D₂O at room temperature. Sodium cacodylate buffer at pH 6 is used as reference, as the pH of the polyanion salt dissolved in water is also 6.

Figure S23. ³¹P{¹H} (left) and ³¹P (right) NMR spectra of **Na-HPMo₆** (pink) and the neat hetero group **Na₂HPO₃** (blue) as reference dissolved in H_2O/D_2O at room temperature.

Figure S24. (a) ¹H and (b) ¹³C{¹H} NMR spectra of NaNH₄-CH₃PMo₆ (blue) and the neat hetero group CH₃PO₃H₂ (black) as reference, dissolved in H₂O/D₂O at room temperature.

Figure S25. ³¹P{¹H} (left) and ³¹P (right) NMR spectra of NaNH₄-CH₃PMo₆ (blue) and the neat hetero group CH₃PO₃H₂ (black) as reference, dissolved in H₂O/D₂O at room temperature.

Figure S26. ³¹P{¹H} NMR spectra of (a) $NaNH_4$ -HO₂CCH₂PMo₆ (blue) and the neat hetero group HO₂CCH₂PO₃H₂ (black) as reference; (b) $NaNH_4$ -HO₂CC₂H₄PMo₆ (blue) and the neat

hetero group $HO_2CC_2H_4PO_3H_2$ (black) as reference, dissolved in d₆-DMSO at room temperature.

Figure S27. The figure illustrates the ${}^{13}C{}^{1}H$ NMR spectra of NaNH₄-HO₂CC₂H₄PMo₆ (blue) and the neat hetero group HO₂CC₂H₄PO₃H₂ (black) as reference, dissolved in d₆-DMSO at room temperature. Peaks corresponding to structurally and hence magnetically inequivalent carbon atoms are labelled accordingly.

Figure S28. ³¹P{¹H} NMR spectra of (a) $NaNH_4$ -C₆H₅PMo₆ (blue) and the neat hetero group C₆H₅PO₃H₂ (black) as reference, dissolved in d₆-DMSO; (b) $NaNH_4$ -FC₆H₄PMo₆ (blue) and the neat hetero group L_{PF} (black) as reference; (c) $NaNH_4$ -F₃COC₆H₄PMo₆ (blue) and the neat hetero group L_{POCF3} (black) as reference, dissolved in H₂O/D₂O at room temperature.

Figure S29. ¹⁹F NMR spectra of (a) NaNH₄-FC₆H₄PMo₆ (blue) and the neat hetero group L_{PF} (black) reference; (b) NaNH₄-F₃COC₆H₄PMo₆ (blue) and the neat hetero group L_{POCF3} (black) as reference, dissolved in H₂O/D₂O at room temperature.

Figure S30: Negative mode ESI mass spectra of compound PMo₆. A: Full scan full range view; B: expanded region around m/z 662 with experimental spectra in upper panel and simulated isotope pattern in bottom panel; C expanded region around m/z 1348 with experimental spectra in upper panel (please note signals of dimeric species at lower intensity in between main signals) and simulated isotope pattern for the monomer in bottom panel; D: expanded region around m/z 1348 with experimental spectra in upper panel and simulated isotope pattern for the dimer in bottom panel.

Figure S31. Negative mode ESI mass spectra of polyanion **HPMo**₆. **A:** Full scan full range view; **B:** expanded region around m/z 1331 with experimental spectra in upper panel (please note signals of dimeric species at lower intensity in between main signals) and simulated isotope pattern for the monomer in bottom panel; **C:** expanded region around m/z 1331 with experimental spectra in upper panel and simulated isotope pattern for the dimer in bottom panel.

Figure S32. Negative mode ESI mass spectra of polyanion CH_3PMo_6 . A: Full scan full range view; B: expanded region around m/z 1345 with experimental spectra in upper panel (please note signals of dimeric species at lower intensity in between main signals) and simulated isotope pattern for the monomer in bottom panel; C: expanded region around m/z 1345 with experimental spectra in upper panel and simulated isotope pattern for the dimer in bottom panel.

Figure S33. Negative mode ESI mass spectra of polyanion $HO_2CCH_2PMo_6$. A: Full scan full range view; B: expanded region around m/z 1345 with experimental spectra in upper panel (please note signals of dimeric species at lower intensity in between main signals) and simulated isotope pattern for the monomer in bottom panel; C: expanded region around m/z 1345 with experimental spectra in upper panel and simulated isotope pattern for the dimer in bottom panel; D: expanded region around m/z 1345 with experimental spectra in upper panel and simulated isotope pattern for the dimer in bottom panel; D: expanded region around m/z 1345 with experimental spectra in upper panel and simulated isotope pattern for the dimer in bottom panel.

Figure S34. Negative mode ESI mass spectra of polyanion $HO_2CC_2H_4PMo_6$. A: Full scan full range view; B: expanded region around m/z 1402 with experimental spectra in upper panel (please note signals of dimeric species at lower intensity in between main signals) and simulated isotope pattern for the monomer in bottom panel; C: expanded region around m/z 1402 with experimental spectra in upper panel and simulated isotope pattern for the dimer in bottom panel.

Figure S35. Negative mode ESI mass spectra of polyanion **4-FC₆H₄PMo₆**. **A:** Full scan full range view.

Figure S36. Negative mode ESI mass spectra of polyanion **4-F₃COC₆H₄PMo₆**. **A:** Full scan full range view.

Figure S37. Positive mode ESI mass spectra of polyanion Mo_7 . A: Full scan full range view; B: expanded region around m/z 1498 with experimental spectra in upper panel and simulated isotope pattern in bottom panel; C expanded region around m/z 760.5 with experimental spectra in upper panel and simulated isotope pattern in bottom panel.

Figure S38. Negative mode ESI ion mobility mass spectra of polyanion Mo_7 and corresponding mobilograms. A: Expanded view of ESI mass spectrum with two overlapping species; B: Extracted ion mobilogram of m/z 1391.7 showing single dimeric species $[2M-2H]^{2-}$; C: ESI mass spectrum corresponding to dimeric species $[2M-2H]^{2-}$; D: Extracted ion mobilogram of m/z 1391.2 showing single monomeric species $[M-H]^{2-}$; E: ESI mass spectrum corresponding to monomeric species $[M-H]^{2-}$; C: ESI monomeric species $[M-H]^{2-}$; C: ESI model and the monomeric species $[M-H]^{2-}$; C: ESI mass spectrum corresponding to monomeric species $[M-H]^{2-}$; C: ESI mass spectrum corresponding to monomeric species $[M-H]^{2-}$; E: ESI mass spectrum corresponding to monomeric species $[M-H]^{2-}$; C: ESI mass spectrum corresponding to monomeric species $[M-H]^{2-}$; E: ESI mass spectrum corresponding to monomeric species $[M-H]^{2-}$; E: ESI mass spectrum corresponding to monomeric species $[M-H]^{2-}$; E: ESI mass spectrum corresponding to monomeric species $[M-H]^{2-}$; E: ESI mass spectrum corresponding to monomeric species $[M-H]^{2-}$; E: ESI mass spectrum corresponding to monomeric species $[M-H]^{2-}$; E: ESI mass spectrum corresponding to monomeric species $[M-H]^{2-}$; E: ESI mass spectrum corresponding to monomeric species $[M-H]^{2-}$; E: ESI mass spectrum corresponding to monomeric species $[M-H]^{2-}$; E: ESI mass spectrum corresponding to monomeric species $[M-H]^{2-}$; E: ESI mass spectrum corresponding to monomeric species $[M-H]^{2-}$; E: ESI mass spectrum corresponding to monomeric species $[M-H]^{2-}$; E: ESI mass spectrum corresponding to monomeric species $[M-H]^{2-}$; E: ESI mass spectrum corresponding to monomeric species $[M-H]^{2-}$; E: ESI mass spectrum corresponding to monomeric species $[M-H]^{2-}$; E: ESI mass spectrum corresponding to monomeric species $[M-H]^{2-}$; E: ESI mass spectrum corresponding to monomeric species $[M-H]^{2-}$; E: ESI mass spectrum corresponding to monomeric specie