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S1. Methods

S1.1 Catalyst characterizations

X-ray diffraction (XRD) analyzer (Rigaku Ultima IV) was used to record the XRD patterns of the 

samples. The ratio of Si/Al was determined by X-ray fluorescence (XRF) using a Rigaku ZSX 

Primus II instrument.

Emission scanning electron microscopy (SEM) (ZEISS SUPRRATM55 SAPPHIRE) and 

transmission electron microscopy (TEM) (JEOL-JEM 2000FX) were used for morphological 

observation. The samples were dispersed in ethanol following ultra-sonication and then dropped on 

a carbon-coated copper grid for measurement.

N2 pysisorption was carried out on the Micromeritics ASAP 3020 instrument. The sample was 

firstly degassed at 200 °C in a vacuum for 12 h and then moved to the analysis station for 

adsorption-desorption at −196 °C. The specific surface area was determined based on the Brunauer-

Emmett-Teller (BET) method and the pore volume and pore diameter were calculated based on the 

Barrett-Joyner-Halenda (BJH) model.

X-ray photoelectron spectroscopy (XPS) was collected on a Thermo Scientific K-Alpha with Al 

Kα at 150 W (hν = 1486.6 eV) under 5 × 10–7 Pa, calibrated internally by the carbon deposit C1s 

(Eb = 284.8 eV).

27Al MAS NMR experiments were tested on Bruker AVANCE III 600 spectrometers at 156.4 

MHz with a MAS probe at a spinning rate of 14 kHz. 1.0 M Al(NO3)3 solution was referenced to 

the chemical shift of 27Al.

NH3 temperature-programmed desorption (NH3-TPD) experiments were recorded with a thermal 

conductivity detector (TCD). Typically, 100 mg sample was pretreated in an Ar flow (30 mL·min–1) 
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at 200 °C for 1 h. After cooling to 50 °C, the sample was saturated with ammonia flow for 0.5 h, 

and then the Ar flow was introduced as the sweep gas. Finally, NH3-TPD was presented in the 

temperature range from 50 to 600 °C at a rate of 10 °C.

X-ray adsorption near-edge spectroscopy (XANES) experiments were performanced at BL11B in 

Shanghai synchrotron Radiation Facility (SSRF) in transmission mode. The XANES spectra of the 

samples were recorded at the Co K-edge (7712 eV) under ambient conditions.

S1.2 Catalytic performance measurements

Syngas conversion was carried out on a continuous flow fixed-bed reactor under mild reaction 

conditions (280 °C, 2.0 MPa, 2000 mL·h–1·g–1 and H2/CO ratio = 1). The calcined CMA and the 

ZSM-5 zeolites were ground and sieved through a 40–60 mesh. By granule mixing of 0.33 g CMA 

and 0.67 g ZSM-5, 1.0 g catalyst was loaded into the middle of a stainless steel autoclave. Before 

the reaction, the catalysts were in situ reduced at 300 °C for 8 h under 10% H2/Ar flow (200 

mL·min–1) at 0.1 MPa. Then, the reactor was cooled to the desired temperature under the reduction 

atmosphere and the feed gas was introduced into the reactor. After passing through a hot trap (120 

°C) and a cold trap (0 °C), the tail gas products were analyzed online using a Shimadzu GC-2010. 

H2, N2, CO, CH4, and CO2 were detected using a thermal conductivity detector equipped with a 

TDX-01 column. A flame ionization detector equipped with a KCl-modified alumina capillary 

column was used to analyze the C1–C6 hydrocarbons. The collected liquid products were analyzed 

on two Shimadzu GC-2010 systems equipped with an HP-5 and an HP-innowax capillary column, 

respectively. CO conversion was calculated by the internal standard method using N2 from the feed 

gas. Calculations of CO2 selectivity and hydrocarbon product distribution were based on a molar 

carbon basis and the carbon balance was kept among 97–100%.
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S2. Results and discussions

Fig. S1 TEM images of the Hol-HZ5 (a and b).
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Fig. S2 SEM images of the Sbx-HZ5-65 (a), Sbx-HZ5-82 (b), Sbx-HZ5-123 (c), and Sbx-HZ5-252 

(d).
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Fig. S3 XRD patterns of Sbx-HZ5 with different Si/Al molar ratio.
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Fig. S4 The pore size distribution curves of different types of zeolites (a) and Sbx-HZ5-Uy (b).
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Fig. S5 Mn 2p (a) and Al 2p (b) for XPS of fresh and spent CMA catalysts.
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Fig. S6 Stability test of the CMA/Sbx-HZ5-123 under the standard reaction conditions. 



S9

20

30

40

50

60

70

65 82 123 252
0

20

40

60

80

100

Si/Al ratio of Sbx-HZ5

Pr
od

uc
t d

is
tr

ib
ut

io
n 

(%
)

 C
onversion or selectivity (%

)

 CH4         C0
2-4         C=

2-4         C0
5+         C=

5+         Aro. 

CO 
Conv.

CO2 
Sel.

Fig. S7 The effect of Si/Al ratio of Sbx-HZ5 on the catalytic performance over bifunctional 

catalysts under the standard conditions.
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Fig. S8 NH3-TPD profiles of the Sbx-HZ5 zeolites with different Si/Al ratio.
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Fig. S9 SEM (a) and EDX elemental maps of Al (b), O (c), and Si (d) of Sbx-HZ5-U2.
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Table S1. Catalytic performance of syngas conversion over CMA and CMA/HZSM-5 bifunctional 

catalysts under the standard reaction conditions.

Product Selectivity (%)
Catalysts

CO

Conv. 

(%)

CO2

Sel. 

(%) CH4 C2-4
o C2-4

= C5+
o C5+

= Aro.

Aro.

Yield 

(%)

CMA 38.4 44.7 2.7 2.9 38.5 17.3 38.6 0 0

CMA/C-HZ5 33.5 38.1 2.1 1.8 7.9 29.1 24.5 34.6 7.2

CMA/H-HZ5 46.1 40.4 2.2 1.6 7.9 22.2 14.8 51.3 14.1

CMA/Hol-HZ5 54.5 44.3 2.7 2.1 6.1 13.8 24.9 50.3 15.3

CMA/Sbx-HZ5 57.9 53.8 3.3 2.3 3.4 21.5 22.0 47.5 12.7

CMA/Sbx-HZ5-U1 57.8 49.3 2.6 1.6 5.9 25.9 18.2 45.7 13.4

CMA/Sbx-HZ5-U2 70.4 41.3 3.5 2.3 6.0 8.1 14.5 65.6 27.1

CMA/Sbx-HZ5-U3 26.7 47.9 2.6 4.6 0.3 11.1 22.3 59.1 8.2

Reaction condition: 280 oC, 2.0 MPa, 2000 mL·g–1·h–1, and H2/CO = 1.
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Table S2. The aromatics distribution over CMA and CMA/HZSM-5 bifunctional catalysts under 

the standard reaction conditions.

Selectivity in aromatics (%)
Catalysts

B T E+X C9 C10 C11+

CMA / / / / / /

CMA/C-HZ5 6.5 8.9 25.0 14.1 18.3 27.3

CMA/H-HZ5 0.3 6.7 29.3 28.5 22.7 12.6

CMA/Hol-HZ5 6.0 10.8 21.0 23.8 16.2 22.2

CMA/Sbx-HZ5 2.6 2.5 18.9 20.1 32.8 23.1

CMA/Sbx-HZ5-U1 2.3 2.9 27.3 24.3 32.9 10.4

CMA/Sbx-HZ5-U2 0.3 3.4 24.1 28.5 20.0 23.7

CMA/Sbx-HZ5-U3 2.3 8.0 31.5 24.7 20.1 13.4

Reaction condition: 280 oC, 2.0 MPa, 2000 mL·g–1·h–1, and H2/CO = 1.
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Table S3. Comparison of reported work on syngas conversion to aromatics.

Catalysts
T 

(oC)

P 

(MPa)

GHSV 

(mL·g–1·h–1)

CO 

Conv. 

(%)

CO2

Sel. (%)

CH4

Sel. (%)

Aro. 

Sel. 

(%)

Ref.

CMA/Sbx-HZ5-U2 280 2.0 2000 70.4 41.3 3.5 65.6
This 

work

CMA/Hol-Z5-N@2S1 280 2.0 1000 70.7 41.8 2.9 63.5 1

FeMn+HZSM-5 320 1.0 3600 43.0 33.2 21.8 31.5 2

FeMn@MZ5 320 2.0 3000 51.9 36.6 ~20.0 47.1 3

ZnCr2O4-400&H-

ZSM-5
390 3.0 1500 32.6 46.9 2.1 76.0 4

MnCr-Z5 430 4.0 2250 12.2 47.3 6.9 64.7 5

ZnCrOx+HZSM-5 350 4.0 1500 16.0 46.9 1.7 73.9 6

Zn-ZrO2+HZSM-5 400 3.0 500 21.0 42.0 2.2 81.0 7

Cr2O3/HZSM-5 395 4.0 2000 14.4 43.2 2.8 84.7 8

Fe/ZnCr2O4+HZSM-5 380 4.0 1500 57.5 ~47 ~3 74 9

Mo-ZrO2+HZSM-5 400 3.0 3000 22.0 41.0 3.4 76.0 10
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