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Concerned physical relation

The optical bandgap can be calculated by the formula below:!
1

(hoF(A)" = A(hv - E,) (ST
where F(A) is the absorption coefficient, 4v is the photon energy, A is the proportional
constant and £, is the optical bandgap. n = 1/2 is adopted for the estimations owning to

the direct bandgap of TPPAgX,.

Spectral splitting was not found over a wide range of temperature, verifying the single
emitting center instead of multiple excited states. Due to the enhanced thermal non
radiative recombination, the radiation intensity shows a significant increase at first and
then decrease with temperature rises up. The activation energy (£,) for the activation
of PL intensity can be extracted through the Arrhenius formula:?

E

a

T
I(T) = Iy/(1 + Ae ) (SZ)
where /(T) and I, represent the emission intensity at individual temperatures (T) and 0

K, respectively, and kg represents the Boltzmann constant.

As the temperature increases from 80 K to 320 K, the emission linewidth (FWHM)
broadened gradually, which resulted from the pronounced exciton—phonon coupling

effect. The Huang—Rhys factor (S) based on the following formula:3

,,,,, h wphonon

FWHM(T) = 2.367/SA® 0n0n \/cothi.ffzé )
B

(S3)
where h is the reduced Planck constant, ®pnenon 1 the frequency of longitudinal optical

phonon, and kg is the Boltzmann constant.
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Figure S1. Rod-like crystals of TPPAgX, (X =1, Br, Cl) and its element distribution
analysis by energy dispersive spectroscopy (EDS) mapping. The diameter of the single
crystal rod is about 1.25 mm, 0.75 mm, 0.05 mm.
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Figure S2. (a) Survey X-ray photoelectron spectrum (XPS) of TPPAgI,. No impurity
elements other than TPPI, Ag, and I. High resolution scans of (b) Ag, (c) I. All elements

are in the expected valence states.
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Figure S3. (a) Survey X-ray photoelectron spectrum (XPS) of TPPAgBr,. No impurity
elements other than TPPI, Ag, and Br. High resolution scans of (b) Ag, (c) Br. All
elements are in the expected valence states.
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Figure S4. (a) Survey X-ray photoelectron spectrum (XPS) of TPPAgCl,. No impurity
elements other than TPPI, Ag, and Cl. High resolution scans of (b) Ag, (c) CL. All
elements are in the expected valence states.
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Figure S5. Thermogravimetric analysis (TGA) and differential scanning calorimeter
(DSC) analysis of (a) TPPAgI,, (b) TPPAgBr,, (c) TPPAgCl, powder under N, flowing
atmosphere using a ramp rate of 20°C min~! from 20 to 800°C.



—_—
v}
-’

TPPI PL
’;‘ ex =370 nm ?;Lem =429 nm PLE
“' F\
N
=y
‘Vl
=
D
N
=
—
=
W@
N
E \
E \
et
e
4
200 300 400 500 600 700
Wavelength (nm)
(C) TPPBr ——PL
-
= | 2ex=313nm dem =515 nm —PLE
=
-
B
-
- -
w
= [
s I
R |
= |
- |
= |
@ I
N
E
E
£
S
-4
300 400 500 600 700 800
Wavelength (nm)
()
TPPCI = PL
~—~
= | Aex=315nm _ A, =347 nm —— PLE
<
N
£
w
=
feed
&
=
—
=
7]
N
=
o]
g
)
=]
4 Aem =497 nm

50 300

Figure S6. (a, c, €) The normalized excitation spectrum and emission spectrum of
TPPI/Br/Cl. (b, d, f) time-resolved PL curve of the TPPI/Br/Cl, the fluorescence
lifetime of TPPI is obtained by excitation of 370 nm and emission of 429 nm, TPPBr is
obtained by excitation of 313 nm and emission of 515 nm, TPPCI is obtained by
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Figure S7. The photoluminescence quantum yield (PLQY) spectra. We placed the
TPPAgX, (X =1, Br, Cl) crystals and TPPI/Br/Cl on a clean quartz plate and tested it
in an integrating sphere. The reference is measured by placing a blank quartz plate in
the integrating sphere. (a - ¢) PLQY of TPPAgX, (X =1, Br, Cl). (d - f) PLQY of

TPPI/Br/Cl.
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Figure S8. (a) — (c) is the Total and projected density of states (DOS) of the states of

TPPAgl,, TPPAgBr,, and TPPAgCl,, respectively.
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Figure S9. 3D PL excitation and emission correlation map. The correlation between
the excitation and emission of (a) TPPAgI, crystal, with the main excitation around 378



nm and the main emission around 462 nm. (b) TPPAgBr; crystal, excitation around 316
nm and emission around 492 nm. (¢) TPPAgCI, crystal, excitation around 315 nm and

emission around 356 nm.
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Figure S10. Schematic diagram of the single self-trapped luminescence mechanism of

TPPAgX, (X =1, Br, Cl).
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Figure S11. (a - c) Fitting results of PL intensity as a function of temperature.
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Figure S12. (a - ¢) PL decay time diagram of crystal at different temperatures (80 - 290
K). The fluorescence lifetime of TPPAgI, is obtained by excitation of 378 nm and
emission of 462 nm. The fluorescence lifetime of TPPAgBr, was obtained by excitation
of 316 nm and emission of 466 nm. The fluorescence lifetime of TPPAgCl, was
obtained by excitation of 312 nm and emission of 467 nm.



According to the dipole selection rule,* the singlet state is first filled under ultraviolet
excitation, and then the excitons gradually fill the triplet state through ISC. It can return
directly to the ground state by emitting phosphorescence, or it can be emitted TADF
via the RISC path. The difference is that under X-ray irradiation, high-energy X-ray
photons first interact with heavy atoms through the photoelectric effect and Compton
scattering. Subsequently, high-energy internal electrons are ejected and then collide
with other atoms, producing a large number of secondary electrons.® This process will
continue until all the secondary electrons do not have enough energy to ionize or excite
other molecules.® These low-energy secondary electrons usually play a major role in
the electronic transitions that induce luminescence. Thus, similar to the case of
electrical excitation, the excitons produced by recombination fill the triplet and singlet
states in a ratio of 3:1 according to the spin conservation law.” Thus, in scintillation,

more X-ray induced triplet excitons can be generated and perform TADF emission.
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Figure S13. Schematic diagram of luminescence mechanism during the RL process of
TPPAgClL,.3
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Figure S14. (a) and (b) are the Highest Occupied Molecular Orbit (HOMO) and
Lowest Unoccupied Molecular Orbit (LUMO) of TPPCIl and TPPAgCl,, respectively.
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Figure S15. Figures on left show the picture of TPPAgX, (X = I, Br, Cl) irradiated
under visible light, and on the right show the picture irradiated under UV light, where
(a) irradiated by 365 nm UV light, (b-c) irradiated by 254 nm UV light.
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Figure S16. Flexible testing of X-ray imaging films made from a mixture of TPPAgX,
(X =1, Br, Cl) and PDMS (30°-80°).
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Figure S17. Plot of line pair image analysis at basic spatial resolution obtained by
comparison using standard cards.



Table S1. The chemical composition data measured by EDS of TPPAgX, (X =1, Br,

Cl) crystal.
Crystal materials C P Ag I/Br/Cl1 Total
TPPAgl, 51.58% 15.83% 10.67%  21.92% 100%
TPPAgBr, 56.58% 14.47% 18.93%  10.02% 100%
TPPAgCl, 87.39% 3.95% 5.94% 2.72% 100%

Table S2. Single crystal X-ray diffraction data of TPPAgI, single crystals.

Compound TPPAgl,
Empirical formula (C4HyoP)Agl,
Formula weight 1402.08
Temperature/K 200.0
Crystal system monoclinic
space group P-1
a/A 11.0509(5)
c/A 13.3965(6)
o/° 16.5842(8)
p/e 83.100(2)
v/° 97.245(2)
v/° 76.019(2)
Volume/A3 2315.72(19)
Z 2
Ry, wR, 0.1438(7612), 0.3413(9358)
Pealcg/cm’ 2.011




Table S3. Single crystal X-ray diffraction data of TPPAgBr;, single crystals.

Compound TPPAgBr,
Empirical formula (Cy4H,oP)AgBI,
Formula weight 607.06
Temperature/K 298.0
Crystal system monoclinic
space group P121/nl
a/A 14.4708(11)
b/A 7.8856(6)
c/A 19.9274(15)
o/° 90
p/e 103.067(3)
v/° 90
Volume/A3 2215.1(3)
V4 4
Ry, wR, 0.0718(3594), 0.1822(3875)

pcalcg/cm3

1.820




Table S4. Single crystal X-ray diffraction data of TPPAgCI, single crystals.

Compound TPPAgCl,
Empirical formula (Cy4H,P)AgCl,
Formula weight 518.14
Temperature/K 293.0
Crystal system monoclinic
space group P121/nl
a/A 14.2365(6)
b/A 8.0965(3)
c/A 19.2365(9)
o/° 90
p/e 101.581(4)
v/° 90
Volume/A3 2172.17(16)
V4 4
Ry, wR, 0.0422(3947), 0.1276(5240)

pcalcg/cm3

1.584
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