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1. Experimental Section

Materials. R-3-Aminopiperidine dihydrochloride (R-APD-2HCI, Innochem, 98%), S-
3-Aminopiperidine dihydrochloride (S-APD-2HCI, Innochem, 97%), 1R,2R-
diaminocyclohexane (1R,2R-DACH, Innochem, 98%), 1S,2S-diaminocyclohexane
(15,25-DACH, Innochem, 98%), Hydrobromic acid (HBr, >48% in H,O, AR,
KESHI), lead (IT) acetate (Pb(OAc),-3H,0, Innochem, 99.5%), lead (II) oxide (PbO,
Alfa Aesar, 99.99%), lead (II) bromide (PbBr;, Aladdin, 99.0%) all reagents and

solvents were used without further purification.

Synthesis of (R-/S-APD)PbBr, single crystals. (R-/S-APD)PbBr, was prepared with
stoichiometric quantities of (Pb(OAc),-3H,0 (1 mmol, 379 mg) and R-/S-APD-2HCI
(1 mmol, 187.19 mg) in HBr solution (4 mL). After obtaining a clear solution by heating
the mixture at 120 °C and stirring for 30 min. And the colorless platelike crystals of (R-
/S-APD)PbBr, were obtained at room temperature overnight. The crystals were washed

with cold diethyl ether.

Synthesis of (1R,2R-/15,2S-DACH),PbBrs2H,0O single crystals. (1R,2R-/1S,2S-
DACH),PbBrg¢-2H,0 was prepared with an amount of PbO (2 mmol, 466 mg) powder
dissolved in HBr solution (6.0 mL). After obtaining a clear solution by heating the
mixture at 120 °C and stirring for 30 min. And then the 1R,2R-/1S5,2S-DACH (2 mmol,
228 mg) was added to the solution. The needle-like white crystals of (1R,2R-/1S,25-

DACH),PbBrg-2H,0 were obtained at room temperature overnight.

Synthesis of bulk single crystals of (R-/S-APD)PbBr, and (1R,2R-/1S8,2S-
DACH),PbBrg2H,0. R-/S-APD-2HCI (4.15 mmol, 718 mg) and PbBr, (4.15 mmol,
1550 mg) were dissolved in 30.0 mL of HBr solution at 65 °C under constant stirring
and formed a pale yellow transparent solution. The solution was filtered with a 0.2 pm
Teflon syringe filter after cooling to room temperature. Block-shaped colorless (R-/S-
APD)PbBr, single crystals were grown in an ambient atmosphere for about several

weeks. The same method was used to prepare the bulk single crystals of (1R,2R-/1S5.25-
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DACH)szBrG : 2H20

Characterization. Powder X-ray diffraction (PXRD) experiments were carried out
using a Rigaku Ultima IV X-ray diffraction instrument in the 20 between 5° and 50°
with a step size of 0.02° under Cu Ka radiation (A = 1.541871 A). Single crystal X-ray
diffraction (SCXRD) measurements were performed using a XtaLAB Synergy R, DW
system, HyPix diffractometer under Mo Ka (A = 0.71073). The single crystal structures
were determined wusing the SHELXT methods with Olex2 programl.
Thermogravimetric analyses (TGA) patterns were obtained using a Linseis STA
PT1600 under N, atmosphere in the temperature range of 25 to 800 °C, with a heating
rate of 10 °C/min. UV-vis absorption spectra were collected using a UV-vis
spectrophotometer (UV 2600). Solid-state circular dichroism (CD) spectra were
acquired using a JASCO J-1500 CD spectrometer. The perovskite sample was ground
into powder. The samples for CD measurement were prepared though pressing the
chiral perovskite powder and KBr powder (chiral perovskite: KBr = 1:100, w:w) into a

pellet.

Second Harmonic Generation (SHG) Measurements. The SHG measurements of
chiral perovskites were examined by using a home-built multiphoton nonlinear optical
microscope system with a femtosecond pump (Mai Tai HP, 100 fs, 80 MHz,
wavelength ranging from 690 to 1040 nm) in reflection geometry. The measurements
were conducted under a reflection geometry at a 45°angle of both incidence and
detection. The linearly polarized and circularly polarized pumps were altered with the
M2 and M4 plates, respectively. For linear polarization-resolved SHG measurement, a
M2 waveplate and an analyzer were respectively placed in the incident and output light
path. For circular polarization-resolved SHG measurements, the A/2 waveplate was
replaced by a A/4 waveplate and placed in the incident light path to modulate its
polarization between LCP and RCP states. The power-dependent SHG measurements
were completed by collecting the SHG signal intensity with increasing laser power

upon laser excitation at specific wavelengths. When at a certain laser power, the SHG
4



intensity begins to deviate from the well-fitted quadratic relationship or drop. This
power has been hence identified as the laser damage threshold (LDT) of the single
crystal. The LDT was defined as LDT = P/(F x nr’t), where P, denoted incident power
when the SHG signal is offset from the square dependence, F, r and ¢ are frequency and
radius of laser spot, pulse width, respectively. The laser spot was ~20 pm in diameter.
The pulse width was ~100 fs. The frequency was 80 MHz. The second-order NLO
susceptibility of the chiral perovskites was determined by using Y-cut quartz with a de

of 0.3 pm/V as the reference.

Theoretical Calculations. The DFT calculations were performed using the program
VASP (Vienna Ab Initio Simulation Package)5.4.4, and the raw data was analyzed by
vaspkit 1.4.1. We used the GGA-PBE function to describe the exchange correlation. A
400 eV kinetic energy cutoffand a4 x 3 x 2 for (R-/S-APD)PbBr, /3 % 3 x 1 for (1R,2R-
/18,28-DACH),PbBrg:2H,Ogamma-centered K sampling grid were used for
integration. The structures are firstly fully relaxed until the Hellmann—Feynmann force
on each atom and the total energy difference between neighboring loops reach 10°¢eV
and 0.02 eV-Ang! within 500 loops limitation. For the band structure, the K-Path was
generated by vaspkit 1.4.1. Besides DOS, the PDOS (projected density of states) has
been also calculated. PDOS is calculated as projected DOS, where the information

about the different contributions of the different elements is computed.



2. Characterization
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Figure S1. Experimental and calculated powder X-ray diffraction (PXRD) patterns of a. (R-/S-
APD)PbBr, and b. (1R,2R-/15,2S-DACH),PbBrg-2H,0.
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Figure S2. Powder X-ray diffraction (PXRD) patterns of the as-prepared and exposed in the air
after 60 days. a. (R-APD)PbBry, b. (S-APD)PbBry, ¢. (1R,2R-DACH),PbBrs2H,0, d. (1S,25-
DACH)QPbBI‘@ZHQO
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Figure S3. Thermal stability of a. (R-APD)PbBrs,, b. (S-APD)PbBry, c. (1R2R-
DACH),PbBrg-2H,0 and d. (15,25-DACH),PbBrs-2H,0, was measured by the thermogravimetric
analysis (TGA) method.

Figure S4. The hydrogen bonding N-H: - -Br of (R-APD)PbBr,, which are marked by the dotted blue
lines.
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Figure S5. a. View of the individual inorganic chain based on edge-shared [PbBrg]*- octahedrons
of (R-APD)PbBr,. b. View of the individual inorganic chain based on edge-shared [PbBrs]*
octahedrons of (S-APD)PbBr;. ¢. View of an individual one-dimensional inorganic chain wrapped
by the organic cations of (R-APD)PbBr,. d. View of an individual one-dimensional inorganic chain

wrapped by the organic cations of (S-APD)PbBr,.

Figure S6. The asymmetry unit of a. (1R,2R-DACH),PbBrg:2H,O and b. (1S,25-
DACH),PbBrs-2H,0 as viewed from the b-axis.



Figure S7. The hydrogen bonding N-H---Br and O-H:--Br of (1R,2R-DACH),PbBrs-2H,0, which
are marked by the dotted blue lines.
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Figure S8. a. The distorted [PbBrg]* structure of (R-APD)PbBr, (left) and (S-APD)PbBr, (right). b.
The distorted [PbBrg]* structure of (1R,2R-DACH),PbBrs-:2H,O (left) and (1S,25-
DACH),PbBrg-2H,0 (right).
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Figure S9. The corresponding Tauc plots of a. (R-APD)PbBr,, b. (S-APD)PbBry,
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Figure S10. a. Circular dichroism spectra of R-APD-2HCI and S-APD-2HCI . b. Circular dichroism
spectra of 1R,2R-DACH-2HCl and 1S§,25-DACH-2HCI.
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Figure S13. a. The scanned image of (S-APD)PbBr, crystal by detecting the SHG signal at 520 nm
when pumped 1040 nm. The scanned area is 2.0 X 1.2 mm? b. The scanned image of (15,25-

DACH),PbBrg-2H,0 crystal by detecting the SHG signal at 440 nm when pumped at 880 nm. The
scanned area is 2.0 x 1 mm?.
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Figure S14. Comparison of LDT of chiral metal halides in literatures and this work.
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Figure S15. The comparison of SHG signal intensities of (S-APD)PbBry and (1S,25-
DACH),PbBrg-2H,0 crystals and Y-cut quartz at 1020 nm under the same test conditions.
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Figure S16. Polarization dependence of the SHG intensity of (S-APD)PbBr, crystal as a function
of the linear polarization angle pumped at 1040 nm. The purple line is the nonlinear fitting of data
points.

13



a b

2101 & 2 310, '3

Zos] 71 v O 2og| & 2

277 0 o J 2 oy O ? ©)

Zo6{d Vo 1% 2061 P ) s o

Zald T3y 7Y & | 2] J |

rode LAY LA B s

Pt\)loz_" | S o\ 0/ ‘1 3‘ ? ?ti)loz_éﬁ? é) 9 Qe >

EPold Yol 3 L]0y 0¥ W

S00f ® @ f % £ 00] %p
0 45 90 135 180 225 270 315 360

0 45 90 135 180 225 270 315 360
Angle (degree)
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various elliptic polarized angles pumped at 1040 nm laser, respectively. The laser is left-handed
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CD results reported herein represents that acquired under optimal condition.
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Figure S18. Summary of SHG-CD intensity at various elliptic polarized angles measured on
different crystals. a. and b. The SHG-CD intensity of (S-APD)PbBr, crystals with thicknesses of
~200 and ~500 pm, respectively. ¢. and d. The SHG-CD intensity of (15,2S-DACH),PbBrs-2H,0
crystals with thicknesses of ~200 and ~400 um, respectively. e. and f. The SHG-CD intensity of (R-
APD)PbBTr, crystals with thicknesses of ~250 and ~500 pm, respectively. g. and h. The SHG-CD
intensity of (1R,2R-DACH),PbBrs-2H,0 crystals with thicknesses of ~300 and ~500 pm,
respectively. It is noted that Figures S18a, S18c, S18e and S18g corresponding to Figure Sc, Figure
5d, Figure S17a and Figure S17b, were used only for comparison of the SHG-CD intensity of

different crystals.
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Figure S19. Electro-phonon renormalized band gaps of (S-APD)PbBr,. Calculated band
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Figure S20. Electro-phonon renormalized band gaps of (S-APD)PbBr,. Calculated band
structure considering the effect of electron-phonon coupling at 400 K (a), 500 K (b), 600 K (c) and
700 K (d). The electron-phonon interactions from ZG displacements were generated accounting for

thermal lattice expansion.
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Figure S23. Electro-phonon renormalized band gaps of (S-APD)PbBr, and (1S,2S5-
DACH),PbBrg-2H,0. Phonon-induced band gap renormalization of (S-APD)PbBr, (blue) and
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Figure S24. a. The unite cell structure of (S-APD)PbBr;. b. The unite cell structure of (15,25~
DACH)zpbBI'62H20
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Table S1. Crystal data and structure refinement of (R-/S-APD)PbBr1y,.

CCDC 2339434 2339435

Identification code (R-APD)PDbBr, (S-APD)PbBr,

Empirical formula CsH4N,PbBr, CsH,4N,PbBr,

Formula weight,g-mol! 629.01 629.01

Temperature (K) 300 150

Crystal system orthorhombic orthorhombic

Space group P2,2,2, P2,2,2,

a(A) 8.7802(2) 8.7810(3)

b(A) 10.8321(3) 10.8005(4)

c(A) 13.9609(4) 13.7783(5)

a (°) 90 90

L) 90 90

7 (°) 90 90

V (A3) 1327.79(6 1306.72(8)

VA 4 4

p (calculated) (g/cm?) 3.147 3.197

Absorption coeffcient, mm! 24.704 25.103

F (000) 1120.0 1120.0

Theta range for data collection  5.48 to 52.74 4.792 to 60.832
-10<h<9 -11<h<11

Index ranges -13<k<13 -13<k<13
-17<1<17 -15<1<19

Reflections collected 9538 9815

Independent reflections 2707 [Riy = 0.0443] 3208 [Riy = 0.0954]

Data/restraints/parameters 2707/0/110 3208/42/110

Goodness-of-fit on F? 1.095 1.170

Final R indices [I > 25(I)]

R indices (all data)

Largest diff. peak and hole,
e.A3

Flack parameter

R, =0.0341, wR, =
0.0795
R, =0.0368, wR, =
0.0804

1.22 and -2.66

-0.012(8)

Ry =0.0711, wR,=
0.1867
R, =0.0797, wR, =
0.1925

6.72 and -4.70

-0.02(3)

19



Table S2. Crystal data and structure refinement of (1R,2R-/1S,25-DACH),PbBrg-2H,0.

CCDC

2339436

2339439

Identification code
Empirical formula
Formula weight,g-mol-!
Temperature (K)
Crystal system

Space group

a(A)

b(A)

c(A)

a (°)

B

7 ()

V (A3)

VA

p (calculated) (g/cm?)
Absorption coeffcient, mm-!
F (000)

Theta range for data
collection

Index ranges

Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F?
Final R indices [I > 2o(])]
R indices (all data)

Largest diff. peak and hole,
e A3

Flack parameter

(1R,2R-DACH),PbBr4-2H,0
C1,H36N40,PbBrg
955.10

150

orthorhombic
P2,2,2,

9.8774(2)
10.8539(2)
24.3071(5)

90

90

90

2605.92(9)

4

2.434

15.688

1776

4.11 to 61.462

10<h<13
l4<k<12

31<1<29

23794

6672 [Rin = 0.0284]
6672/0/236

1.023

R =0.0206, wR, = 0.0330
Ry =0.0249, wR, = 0.0336

0.69 and -0.63

-0.018(3)

(18,25-DACH),PbBrs-2H,0
C1,H36N40,PbBry
955.10

293

orthorhombic
P2,2,2,

9.9329(2)
10.9337(3)
24.3960(6)

90

90

90

2649.49(11)

4

2.394

23.099

1776

3.624 to 67.239

8<h<ll
-12< k<13

28<1<29

16990

4731 [Rin = 0.07]
4731/0/231

1.063

Ry =0.0452, wR, = 0.1141
Ry =0.0469, wR, = 0.1167

1.841 and -2.254

-0.053(6)
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Table S3. Bond Lengths for (R-/S-APD)PbBr,.

(R-APD)PbBr, (S-APD)PbBr;

Atom Atom Length/A Atom Atom Length/A
Pbl Br2 3.0136(13) | Pbl Brl! 3.026(3)
Pbl Br2! 3.0334(13) | Pbl Brl 3.021(3)
Pbl Br3 2.9560(13) | Pbl Br2 2.943(2)
Pbl Bré 3.0810(14) | Pbl Br3 2.898(3)
Pbl Brs 2.9023(14) | Pbl Bré 3.083(3)
Pbl Bré 3.3350(14) | Pbl BrS 3.309(2)

Table S4. Bond Lengths for (1R,2R-/1§,25-DACH),PbBrs-2H,0.

(1R,2R-DACH),PbBrs-2H,0

(15,28-DACH),PbBr:2H,0

Atom Atom Length/A Atom Atom Length/A
Pbl Brl 3.0154(5)  Pbl Br6 2.9766(17)
Pbl Br2 3.0463(5)  Pbl Brl 2.9848(17)
Pbl Br3 2.9752(5) Pbl Br2 3.0195(16)
Pbl Br4 3.0039(5) Pbl Br5 3.0230(16)
Pbl Br5 2.9911(5) Pbl Br3 3.0588(16)
Pbl Br6 3.0820(5) Pbl Br4 3.0717(18)
Table S5. Octahedral distortion calculation for (R-/S-APD)PbBry; and (1R,2R-/1S,2S-

DACH),PbBrs-2H,0.

Octahedral Distortion

Ad

(R-APD)PbBr,
(S-APD)PbBr,

(1R,2R-DACH),PbBr-2H,0
(15,28-DACH),PbBrs-2H,0

2.05 % 103
1.86 x 103
1.4 x 104

1.34 x 10
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Table S6. Comparison of LDT of chiral metal halides in literatures and this work.

Laser
Repeti Power
Pulse spot Power/ LDT
tionrat intensity Ref.
width/ fs diameter mW GW/cm?
e¢/MHz mJ/cm?
/ pm
(R-MPEA), sPbBr; s(DMSO), s
100 82 10 67.5 0.52 5.2 !
nanowires
(8-2-CsH14N,),Pbls single crystals 100 80 20 745 297 29.66 2
(S-2-MPD)PbBr; single crystals 100 80 20 714 2.84 28.42 3
(R-MBA)CuBr, microflakes 100 82 - - 1.7 17 4
(R-MBA),CuCl, microplates 100 82 - - 0.4 4 4
DMA,BiBr, 100 80 20 563 2.23 22.3 5
(R-2-MP)ZnCly 100 80 20 575 2.29 22.89 6
(S-CIMBA),SnCl, 100 80 20 615 2.45 24.48 7
(S-FMBA),Sn Cl¢ 100 80 20 1000 3.98 39.81 7
(R-NEA),CuCl, films 100 80 - - 0.56 5.6 8
(R-CYHEA)Cu;Cl,, films 100 80 - - 0.52 5.2 8
(R-MPEA )¢InCl, 100 80 20 961 3.82 38.26 °
DMA,[InCl¢]Br 100 80 20 800 3.18 31.85 10
R-2-mpip[SnBr;]Br 100 80 20 438 1.74 17.44 u
R-2-mpipSnBr; 100 80 20 1185 4.72 47.17 u
(R-3-aminopiperidine)SbCls 100 80 20 961 3.94 394 12
(R-3-aminopiperidine)SbBrs 100 80 20 350 1.39 13.93 12
(MPEA),SnBrg 100 80 20 420 1.67 16.72 13
(C4H(NO)PbCl; 140 80 2 - - 19.94 14
(C4H,(NO)PbBTr; 140 80 2 - - 46.82 14
(S-NEA);Ge,l;"H,0 100 80 6 - - 38.46 15
(R-MBA),CuCl, film 100 80 20 - - 3.31 16
(L-Pro)Pbl;*H,O 100 80 20 700 2.8 27.87 1
(18,2S-DACH),PbBrs" 2H,0 100 80 20 1362 5.42 54.22 This work
(S-APD)PbBr, 100 80 20 1491 5.94 59.36 This work
P
Powerintensity = 2
far
LDT = >
frret

The laser-induced damage threshold (LDT) was defined as LDT = P/(F x mr’t),
where P, denoted incident power when the SHG signal is offset from the square

dependence, F, r and t are frequency and radius of laser spot, pulse width, respectively.
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Table S7. Comparison of gsyg.cp in the literature and this work.

Chiral compounds Morphology Laser conditions Anisotropic g factor Ref
[(R/S)-3- ) 1064 nm, pulse power of
aminopiperidine|Pbl, single crystal 400mV gna-co=0.21 "
(R-MBA),Bi,Brjo spiral microplates. 1200 nm, 100 fs, 1 kHz gsug-cp= 0.58 19
(R-MBACI),Pbl, thin film 880 nm, 100 fs, SOMHz gsnc-cp= 1.57 20
P-DMA4[InClg]Br single crystal 1040 nm, 100 fs. 80 MHz  gsug.cp= 1.56 10
(R-1-(1-NEA),CuCly thin film 880 nm, 100 fs, 80 MHz gsug-cp= 0.41 2
(R-1-(2-NEA),CuCl, thin film 880 nm, 100 fs, S0 MHz  gspg.cp = 0.1 21
(R/S-MPEA)BAPbBI4 thin film 800 nm, 100 fs, 80 MHz gsnc-cp = 0.8 2
(R-NEA);Ge;,l;°H,O single crystal 880 nm, 100 fs, 80 MHz gsug-cp = 0.48 15
(S-NEA);Ge,l;-H,0 single crystal 880 nm,100 fs, 80 MHz gsuc-cp = 0.45 15
(1S,25-DACH),PbBrs - 2H,0 single crystal 1040 nm,100 fs, 80 MHz  gspg.cp = 1.58 This work
(S-APD)PbBr, single crystal 1040 nm,100 fs, 80 MHz  gspc.cp = 0.60 This work
_ I LCP ™~ 1 RCP
JstG - co ILCP + IRCP

where [ cp and Ircp represent the SHG intensities under LCP and RCP light excitation, respectively.
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