Supplementary Information

Influence of CeO₂ Support Morphology on the Structural and NO₂-RR Performance of CeO₂@Au Catalyst

Jin Li^a, Wei Zhang^a, Xiujing Xing^b, Yaokang Lv^c, Renliang Lyu^{a,*}, Wei Xiong^{a,*}, and Hao Li^{d,*}

^a Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor & Green Chemical Technology, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China

^b Chemistry Department, University of California, Davis, California 95616, United States

^c College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014 P. R. China

^d Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan

E-mail address: lyurenliang@wit.edu.cn(R. L.); xiongwei@wit.edu.cn (W. X.); li.hao.b8@tohoku.ac.jp (H. L.)

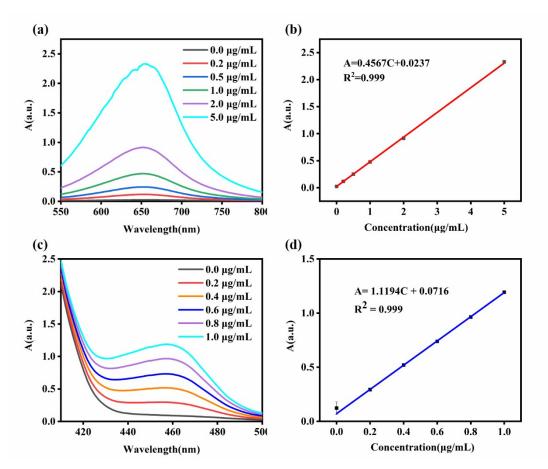
Tel/Fax: +86-27-87195001; +81-080-9363-8256

^{*}Corresponding author

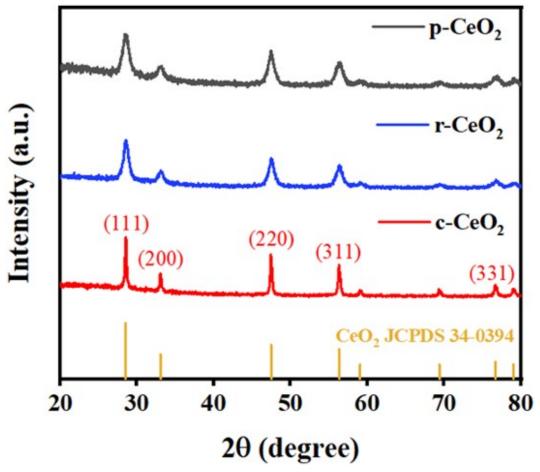
1. Detection of the product ammonia

In this study, the concentration of the product ammonia was detected by the indophenol blue method ^[1], which was carried out as follows: 2.0 mL of diluted electrolyte solution was taken in a colorimetric tube, followed by the addition of 2.0 mL of oxidising agent, 1.0 mL of NaClO, and 0.2 mL of 1 wt.% sodium nitroprusside solution in that order, and the mixture was placed in the dark and left to stand for 1 h. At the end of the standing period, the mixture was analyzed by ultraviolet (UV) test. In this paper, by calibrating the concentration absorbance curves using standard NH₂SO₄ solutions of 0 μ g mL⁻¹, 0.2 μ g mL⁻¹, 0.5 μ g mL⁻¹, 1.0 μ g mL⁻¹, 2.0 μ g mL⁻¹, and 5.0 μ g mL⁻¹ as shown in **Fig. S1a-b**, the standard curves we fitted (A = 0.4567 C + 0.0237 with R² = 0.999) with good linearity. The ammonia yield and Faraday efficiency were calculated as follows:

$$NH_3$$
 yield rate = $([NH_3] \times V) / (t \times m)$ (1)


$$FE = (6 \times F \times [NH_3] \times V) / (M \times Q) \times 100\%$$
 (2)

In this formula, [NH₃] is the concentration of ammonia, V is the volume of the electrolyte, t is the electrolysis time, m is the mass of the catalyst, F is Faraday's constant, M is the relative molecular mass of NH₃, and Q is the amount of Coulomb that passes through the electrode during electrolysis.


2. Detection of hydrazine

The concentration of the by-product hydrazine (N_2H_4) was examined in this study using the Watt-Chrisp method ^[2]. Take 5.0 mL of electrolyte after electrolysis in the cuvette, add 5.0 mL of freshly prepared colour developer (consisting of a mixture of 5.99 g of

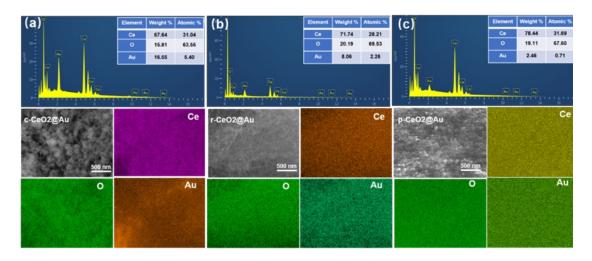

p-dimethylaminobenzaldehyde, 300 mL of ethanol, 30 mL of hydrochloric acid (36%)) to form a mixed solution, and place it in a dark environment to stand for 20 min. At the end of the stationary period, the mixture was analysed by UV detection. In this paper, hydrazine hydrochloride and 0.1 M PBS solution were used as standards and solvents to prepare solutions with N_2H_4 concentrations of 0.0 μ g mL, 0.2 μ g mL, 0.4 μ g mL, 0.6 μ g mL, 0.8 μ g mL, and 1.0 μ g mL, respectively, and the absorbance of each solution was measured by using the above mentioned Watt-Chrisp method as shown in **Fig. S1c-d**. As shown, the fitted curves (A = 1.1194 C + 0.0716, R² = 0.999) were calculated and there was a good linear relationship between N_2H_4 concentration and absorbance.

Figure S1. (a) UV absorption spectra at different NH₃ concentrations and (b) Ammonia nitrogen standard curve; (c) UV-Vis absorption spectra of different concentrations of N₂H₄and (d) Standard curve of N₂H₄.

Figure S2. XRD plots of c-CeO₂, r-CeO₂ and p-CeO₂.

 $\textbf{Figure S3}. \ EDS \ plots \ of (a) \ c- \ CeO2@Au, (b) \ r-CeO2@Au \ and (c) \ p-CeO2@Au.$

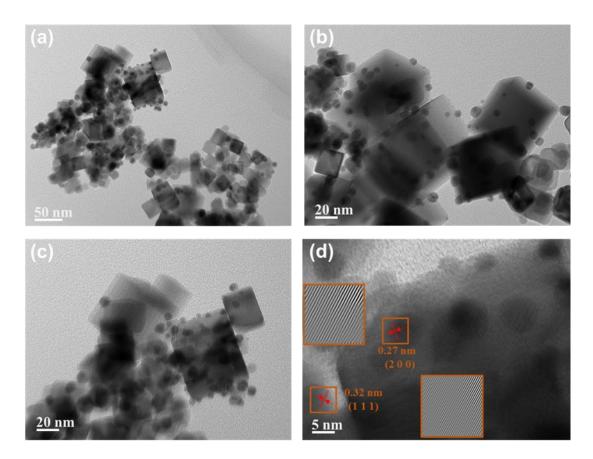
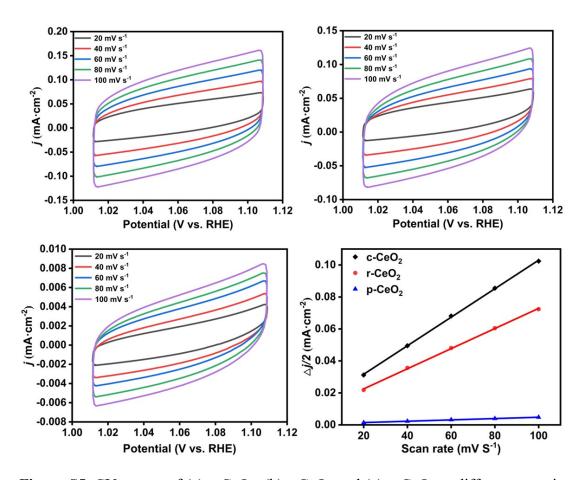



Figure S4. (a-c) TEM maps of c-CeO $_2$ @Au; (d) HR-TEM analysis of c-CeO $_2$ @Au.

Figure S5. CV curves of (a) c-CeO₂, (b) r-CeO₂ and (c) p-CeO₂ at different scanning rates; (d) plots of current density versus scanning rate.

Table S1. ICP testing of c-CeO₂@Au, r-CeO₂@Au and p-CeO₂@Au.

Materials	Elements	content (%)
c- CeO ₂ @Au	Au	38.88 %
r-CeO ₂ @Au	Au	35.99 %
p-CeO ₂ @Au	Au	19.88 %

References

- [1] D Zhu, L Zhang, RE Ruther, RJ Hamers, Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction, *Nature materials*., 2013, **12**, 836-841.
- [2] Watt G W, Chrisp J D, Spectrophotometric method for determination of hydrazine, Analytical Chemistry., 1952, 24, 2006-2008.