Supplementary Information (SI) for Materials Chemistry Frontiers. This journal is © the Partner Organisations 2024

Supporting information

Constructing Vertically Aligned ZIF-67 Microrod Arrays on Carbon

Cloth with Commercial-level Mass-loading for High-performance

Supercapacitors

Chenchen Bai, a Bingjun Li, a Dejun Li, a Yan Han a and Caiyun Wang b

^a College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387, China

^b Faculty of Engineering and Information Sciences, University of Wollongong, New South Wales 2500, Australia

Fig. S1 (a, b) SEM images and (c, d) capacitive performances of Co/CC immersed in a 2-MeIM aqueous solution for 24 h followed by adding Co(NO₃)₂·6H₂O aqueous solution for another 24 h (a, c) and 72 h (b, d).

Fig. S2 (a-d) SEM images of bare CC (a, b) and Co/CC (c, d). (e) EDS mappings of Co/CC.

Fig. S3 XRD pattern of Co/CC.

Fig. S4 (a) SEM image and (b) EDS mappings of ZIF-67/CC-24.

Fig. S5 TEM image of ZIF-67/CC.

Fig. S6 Digital photographs of ZIF- 67 grown on bare CC and Co-covered CC: (a) bare CC immersed in an aqueous solution containing 2-MeIM and Co(NO₃)₂·6H₂O for 72 h; (b) Co/CC immersed in a 2-MeIM aqueous solution for 72 h; (c) Co/CC immersed in a 2-MeIM aqueous solution for 24 h followed by adding Co(NO₃)₂·6H₂O aqueous solution for another 48 h.

Fig. S7 (a) SEM image and (b) EDS mappings of ZIF-67/CC-NC.

Fig. S8 Full scan survey XPS spectrum for ZIF-67/CC-24.

- Fig. S9 High-resolution XPS C1s spectrum of ZIF-67/CC.
- Fig. S10 TGA curves of ZIF-67/CC, CC and ZIF-67 powders.
- **Fig. S11** (a) XPS spectra of Co 2p and (b) XRD pattern of ZIF-67/CC electrode after cycling.
- **Fig. S12** (a) CV curves of AC/CC electrode at different scan rates. (b) Galvanostatic charge-discharge curves of AC/CC electrode at different current densities.
- **Fig. S13** CV curves of ZIF-67/CC//AC/CC ASSC device collected within different potential windows at 10 mV s⁻¹.
- Fig. S14 Cycling performance of ZIF-67/CC//AC/CC ASSC device at 10 mA cm⁻².
- Fig. S15 Nyquist plot of the ASSC device.
- **Table S1** Capacitive performance comparison of reported MOF materials.
- **Table S2** Comparison of areal energy and power densities for some reported MOF-based devices.

Fig. S1 (a, b) SEM images and (c, d) capacitive performances of Co/CC immersed in a 2-MeIM aqueous solution for 24 h followed by adding Co(NO₃)₂·6H₂O aqueous solution for another 24 h (a, c) and 72 h (b, d).

The immersion time of Co/CC was optimized to regulate the ZIF-67 mass-loading on CC in preliminary experiments. It was observed from SEM images that the morphology of samples obtained at different immersion time was different. A shorter immersion time (ZIF-67/CC-24, Fig. S1a) was not helpful to preferred orientation growth of ZIF-67, whereas a longer time (ZIF-67/CC-72, Fig. S1b) caused the bundled formation of ZIF-67 rods. The ZIF-67 mass-loading of ZIF-67/CC-24 and ZIF-67/CC-72 was about 6 and 20 mg cm⁻², respectively. The areal specific capacitances of ZIF-67/CC-24 were about 1400, 1360, 1270 and 1180 mF cm⁻² at 1, 2, 5 and 10 mA cm⁻². The corresponding gravimetric specific capacitances were 233, 227, 212 and 197 F g⁻¹, respectively. For ZIF-67/CC-72 with higher mass-loading, the areal specific capacitances were 1740, 1640, 1530 and 1380 mF cm⁻² at 1, 2, 5 and 10 mA cm⁻².

While the gravimetric specific capacitances dropped to 87, 82, 77 and 69 F g⁻¹, respectively. Therefore, the change of capacitive performances was not only due to the variation of mass-loading but also the different morphology.

Fig. S2 (a-d) SEM images of bare CC (a, b) and Co/CC (c, d). (e) EDS mappings of Co/CC.

Fig. S3 XRD pattern of Co/CC.

Fig. S4 (a) SEM image and (b) EDS mappings of ZIF-67/CC-24.

Fig. S5 TEM image of ZIF-67/CC.

Fig. S6 Digital photographs of ZIF- 67 grown on bare CC and Co-covered CC: (a) bare CC immersed in an aqueous solution containing 2-MeIM and Co(NO₃)₂·6H₂O for 72 h; (b) Co/CC immersed in a 2-MeIM aqueous solution for 72 h; (c) Co/CC immersed in a 2-MeIM aqueous solution for 24 h followed by adding Co(NO₃)₂·6H₂O aqueous solution for another 48 h.

Fig. S7 (a) SEM image and (b) EDS mappings of ZIF-67/CC-NC.

Fig. \$8 Full scan survey XPS spectrum for ZIF-67/CC-24.

Fig. S9 High-resolution XPS C1s spectrum of ZIF-67/CC.

Fig. S10 TGA curves of ZIF-67/CC, CC and ZIF-67 powders.

Fig. S11 (a) XPS spectra of Co 2p and (b) XRD pattern of ZIF-67/CC electrode after cycling.

Fig. S12 (a) CV curves of AC/CC electrode at different scan rates. (b) Galvanostatic charge-discharge curves of AC/CC electrode at different current densities.

Fig. S13 CV curves of ZIF-67/CC//AC/CC ASSC device collected within different potential windows at $10~\text{mV}~\text{s}^{-1}$.

Fig. S14 Cycling performance of ZIF-67/CC//AC/CC ASSC device at 10 mA cm⁻².

Fig. S15 Nyquist plot of the ASSC device.

Table S1 Capacitive performance comparison of reported MOF materials.

Materials	Electrolyte	Current	Capacitances	Rate capability	Cyclic stability	Ref.
		$(A g^{-1})$	$(F g^{-1})$	(%)	(%/cycles)	
Cu-CAT NWAs	3 M KCl	0.5	202	66 (0.5-10 A g ⁻¹)	80/5000	[11]
ZIF-67/PEDOT	1 M H ₂ SO ₄	1	107	$55 (0.5-10 \text{ A g}^{-1})$	85/2000	[18]
ZIF-67 microflowers	1 M KOH	1	188.7	$73 (0.5-8 \text{ A g}^{-1})$	105/3000	[35]
PPy/Ni-CAT-NWs	3 M KCl	0.1	284	$70 (0.1 \text{-} 0.6 \text{ A g}^{-1})$	-	[36]
rGO/Cu-MOF fiber	1 M KCl	0.005 (mA cm ⁻¹)	2.17 (mF cm ⁻¹)	-	69/1000	[37]
ZIF-67/CC	1M LiOH	1	257	91 (1-10 mA cm ⁻²)	99/10000	This work

Table S2 Comparison of areal energy and power densities for some reported MOF-based devices.

Devices	Mass loading	Electrolysts	Energy density	Power density	Ref.
Devices	$(mg cm^{-2})$	Electrolyte	(mWh cm ⁻²)	(mW cm ⁻²)	
Ni@Z67//AC	-	3М КОН	3.8×10^{-2}	0.7	[38]
$Ti_3C_2T_x/ZIF$ -	1-1.5	3М КОН	3.6×10^{-2}	0.75	[26]
67/CoV ₂ O ₆ //AC	1-1.3				
ZIF-PPy*	10	PVA/Na ₂ SO ₄ gel	1.1×10^{-2}	1.44	[39]
PANI-ZIF67-CC*	4	PVA/H ₂ SO ₄ gel	4.4×10^{-3}	0.48	[4]
Co-MOF/NF//AC	6.656	2M KOH	1.7	4.0	[40]
Co-MOF/graphenen//AC	2.6	6M KOH	2.1×10^{-2}	2.21	[41]
CoNi-MOF//AC	1	1М КОН	2.9×10^{-2}	1.5	[12]
CC/CoNi-MOF//g-CNT	1.48	1M KOH	0.264	0.704	[42]
Ni-CAT/NiCo-	1.5	1М КОН	9.3×10 ⁻²	18.3	[9]
LDH/NF//AC	1.3				
Cu ₃ (HHTP) ₂ //PPy	_	PVA/KCl	8.8×10 ⁻⁵	4.5×10 ⁻³	[43]
Cu ₃ (111111) ₂₁ /11 y		hydrogel			
Cu–CAT NWAs*	0.5	PVA/KCl gel	5.2×10^{-3}	10^{-4}	[11]
Cu-CAT-NWAs/PPy	2.01	LiCl-PVA gel	2.2×10^{-2}	0.47	[10]
ZIF-67/CC//AC	12	LiOH/PVA gel	380	1600	This work

^{*} Symmetric supercapacitor