Supplementary Information (SI) for Materials Chemistry Frontiers. This journal is © the Partner Organisations 2025

Supplementary Information

Novel Twisted-Structure Polymer Electrode Material with Intrinsic Pores for High-Performance Electrochromic Supercapacitor

Yuchen Chang^{1,†}, Qidi Huang^{2,†}, Lei Yang¹, Mi Ouyang¹, Yujie Dong^{1,*}, Weijun Li¹, Cheng Zhang^{1,*}

¹ International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.

E-mail: dongyujie@zjut.edu.cn; czhang@zjut.edu.cn

² Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, P. R. China.

‡ Yuchen Chang and Qidi Huang contributed equally to this work

Calculation Formulas.

1. Optical contrast

$$\Delta T = |T_{ox} - T_{neut}| \tag{S1}$$

 T_{ox} and T_{neut} represent the transmittance of the material in the oxidation state and in the neutral state, respectively.

2. Coloration efficiency (CE)

$$CE(\lambda) = \Delta A/Q_d = \log[T_{ox}/T_{neut}]/Q_d$$
 (S2)

where ΔA denotes the change in absorbance per unit area, which is expressed by the logarithm of the ratio of the oxidized state transmittance (T_{ox}) and the neutral state transmittance (T_{neut}), and Q_d denotes the charge injected per unit area of the electrode, which can be obtained by integrating the timing current curve.

3. Area-specific capacitance

$$C_{s} = I \times t / \Delta V \times s \tag{S3}$$

where I/s is the current density in mA/cm², t is the discharge time of the material in s, and ΔV is the voltage window in V.

4. Volume ratio capacitance

$$C_{v} = I \times t / \Delta V \times v \tag{S4}$$

where v (cm³) represents the volume of the electrode material.

5. Coulombic efficiency (CE')

$$CE' = C_d/C_c \times 100\%$$
 (S5)

C_d and C_c refer to the discharge capacitance and charge capacitance respectively.

6. Energy density

$$E = CU^2/2 \tag{S6}$$

C and U refer to the specific capacitance and potential window of the supercapacitor, respectively.

7. Power density

$$P = E/t (S7)$$

E and t refer to energy density and discharging time of the supercapacitor, respectively.

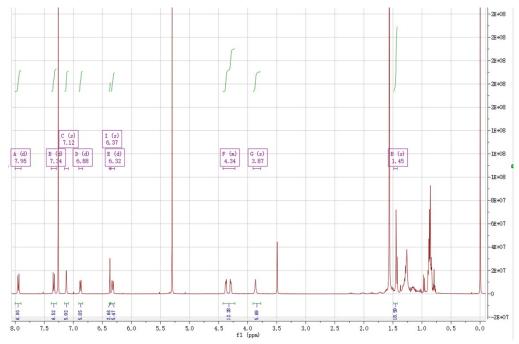


Fig. S1 ¹H NMR spectrum of 3DMAC-EDOT in CDCl₃.

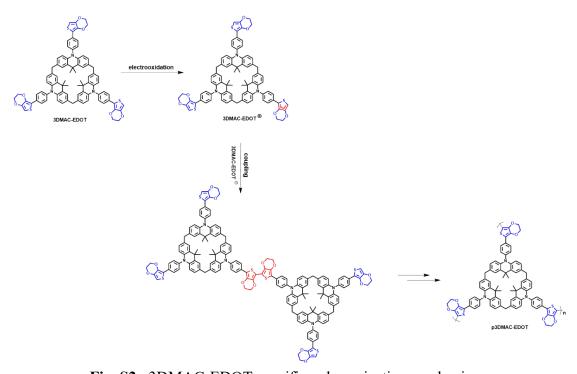
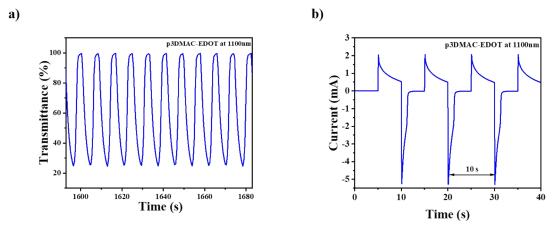



Fig. S2 p3DMAC-EDOT specific polymerization mechanisms

Fig. S3 Transmittance a) and current b) dynamics of p3DMAC-EDOT at 5 s pulse time.

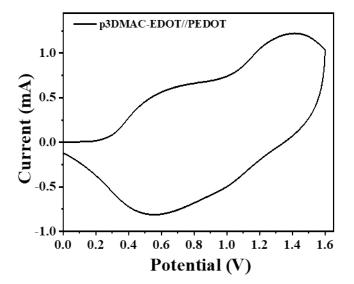


Fig. S4 CV curves for p3DMAC-EDOT//PEDOT devices with a sweep rate of 100 $\,$ mV/s.

Fig. S5 Exterior color photos of p3DMAC-EDOT//PEDOT devices at different voltages.

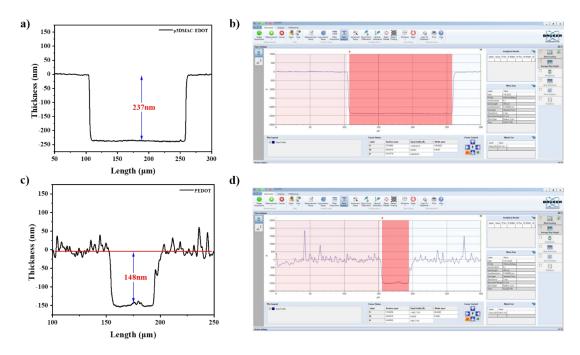


Fig. S6 Thickness of a) and b). p3DMAC-EDOT film, c) and d). PEDOT film.