Electronic Supplementary Materials

Chirality Expression from Hierarchical Foldamer-Mesoscopic Helical Silica Frameworks

Piyanan Pranee,^{a,c} Robin Hess,^a Anthony Boudier,^{a,b} Zakaria Anfar,^a Matheus De Souza Lima Mendes,^a Eric Merlet,^a Wijak Yospanya,^c Emilie Pouget,^a Sylvain Nlate,^a Céline Olivier,^b Thierry Buffeteau,^b Yann Ferrand^{*a} and Reiko Oda^{*a,c}

- a. Institute of Chemistry & Biology of Membranes & Nano-objects (CBMN), University of Bordeaux, CNRS, Bordeaux INP, UMR 5248, F-33600 Pessac, France.
- b. Institute of Molecular Sciences (ISM), University of Bordeaux, CNRS, Bordeaux INP, UMR 5255, F-33405 Talence, France.
- c. WPI-Advanced Institute for Materials Research, Tohoku University, 2-1-1, Katahira, Aoba-Ku, Sendai 980-8577, Japan

Calculation

1. Dissymmetric factor (gabs and glum)

The dissymmetric factor (g_{abs}) was calculated by the equation:.

 $g_{abs} = \Delta \epsilon / \epsilon = \theta (mdeg) / (32980 \times A)$ where θ is the ellipticity, A is the absorbance, ϵ is the molar extinction coefficient and $\Delta \epsilon$ is the molar circular dichroism.

The dissymmetric factor (g_{lum}) was calculated by the equation:.

 $g_{lum} = CPL(mdeg).Ln(10)/(32980.F).$

where F is the fluorescence at 505 nm.

2. Estimation of Q₄ volume.

Diameter	\simeq 20.31 $ imes$ 10 ⁻⁸ cm
Height	\simeq 9.14 $ imes$ 10 ⁻⁸ cm
Volume	2.96 x 10 ⁻²¹ cm ³ / Q_4 molecule

Therefore, Q₄ 7.50 x 10⁻⁸ mole will contain volume as

= (7.50 × 10⁻⁸) × 6.023 x 10²³ × 2.96 x 10⁻²¹ = 1.34 × 10⁻⁴ cm³

The equivalent quantity of Q_4 was calculated to be 7.5×10^{-8} mole which corresponds to 1.34×10^{-4} cm³ when dried.

3. Calculation of the enantiomeric excess (ee%).

 $Fol_{p} \rightarrow Fol_{M}$ $Fol_{p} \leftarrow Fol_{M}$ $Fol_{p} \leftarrow Fol_{M}$ $Fol_{p} = P - foldamers, Fol_{M} = M - foldamers,$

 $\binom{1}{(1)} - \frac{d[C_P]}{dt} = k_1[C_P] - k_2[C_M]$ $[C_P] = concentration of P - foldamers, [C_M] = concentration of M - foldamers$

 $IF\left[C_{Fol}\right] = \left[C_{P}\right] + \left[C_{M}\right]$

$$(2) [C_M] = [C_{Fol}] - [C_P]$$
$$[C_{Fol}] = Total \ concentration \ of \ foldamers$$

$$-\frac{d[C_P]}{dt} = k_1[C_P] - k_2([C_{Fol}] - [C_P])$$
$$-\frac{d[C_P]}{dt} = (k_1 + k_2)[C_P] - k_2[C_{Fol}]$$
$$(3) \ \frac{d[C_P]}{dt} + (k_1 + k_2)[C_P] = k_2[C_{Fol}]$$

IF equilibrium can reach racemic mixture : $k_2 = k_1 = k$

So (3) becomes:
$$\frac{d[C_P]}{dt} + 2k[C_P] = k[C_{Fol}]$$

Solutions are:
$$[C_P](t) = \alpha \cdot e^{-2kt} + \frac{[C_{Fol}]}{2}$$

(4)
$$\Delta A_{vis} = \Delta A_{PFol} + \Delta A_{MFol}$$
$$\Delta A_{vis} = \Delta \varepsilon_{PFol} l[C_P](t) + \Delta \varepsilon_{MFol} l[C_M](t)$$

PFol and MFol being enantiomers :(5) $\Delta \varepsilon_{PFol} = -\Delta \varepsilon_{MFol}$

So (4) becomes using (5):
$$\Delta A_{vis} = \Delta \varepsilon_{PFol} l([C_P](t) - [C_M](t))$$

 $Using (2): \Delta A_{vis} = \Delta \varepsilon_{RFol} l([C_P](t) - ([C_{Fol}] - [C_P](t)))$
 $\Delta A_{vis} = \Delta \varepsilon_{RFol} l(2[C_P](t) - [C_{Fol}])$
 $\Delta A_{vis} = \Delta \varepsilon_{PFol} l(2(\alpha \cdot e^{-2kt} + \frac{[C_{Fol}]}{2}) - [C_{Fol}])$
 $\Delta A_{vis} = \Delta \varepsilon_{PFol} l(2\alpha \cdot e^{-2kt})$

thus
$$g_{abs}(t) = \frac{2\Delta\varepsilon_{PFol}l\alpha}{A_{tot}} \cdot e^{-2kt}$$

$$g_{abs}(t) = \Gamma \cdot e^{-2kt}$$

with $\Gamma = \frac{2\Delta\varepsilon_{PFol}l\alpha}{A_{tot}}$ (this is a constant)

Here we can see that $g_{abs}(t=0) = \Gamma$ by continuity of the system $g_{abs}(t=0) \approx \lim_{\delta t \to 0} g_{abs}(t=-\delta t)$

which is the $g_{\it abs}$ of the foldamers at the equilibrium inside the helice

<u>LH-INHs</u>	<u>RH-INHs</u>	
At 180 sec, 385 nm	At 180 sec, 385 nm	
$g_{abs}(t) = \Gamma \cdot e^{-2(k)(t)}$	$g_{abs}(t) = \Gamma \cdot e^{-2(k)(t)}$	
$g_{abs}(t) = \Gamma \cdot e^{-2(k)(180)}$	$g_{abs}(t)=\Gamma\cdot e^{-2(k)(180)}$	
$-1.88 \times 10^{-4} = \Gamma \cdot e^{-360k} \qquad \dots \dots (1)$	$0.854 \times 10^{-4} = \Gamma \cdot e^{-360k} \qquad \dots \dots (1)$	
At 300 sec, 385 nm $g_{abs}(t) = \Gamma \cdot e^{-2(k)(t)} \label{eq:gaussian}$	At 300 sec, 385 nm $g_{abs}(t) = \Gamma \cdot e^{-2(k)(t)}$	
$g_{abs}(t)=\Gamma\cdot e^{-2(k)(300)}$	$g_{abs}(t)=\Gamma\cdot e^{-2(k)(300)}$	
$-1.11 x 10^{-4} = \Gamma \cdot e^{-600k} \qquad \dots \dots (2)$	$0.31 x 10^{-4} = \Gamma \cdot e^{-600k} \qquad \dots \dots (2)$	
$(1)/(2) 1.69 = e^{240k}$	(1)/(2) $2.75 = e^{240k}$	
$k = 2.19 \times 10^{-3}$	$k = 4.22 \times 10^{-3}$	
(1) $-1.88 \times 10^{-4} = \Gamma \cdot e^{-360k}$	(1) $0.854 \ge 10 - 4 = \Gamma \cdot e^{-360k}$	
If $k = 2.19 \times 10^{-3}$	If $k = 4.22 \times 10^{-3}$	
$\Gamma = -4.13 \times 10^{-4}$	$\Gamma = 3.90 \times 10^{-4}$	
At 0 sec, 385 nm	At 0 sec, 385 nm	
$g_{abs}(t) = \Gamma \cdot e^{-2(k)(0)}$	$g_{abs}(t) = \Gamma \cdot e^{-2(k)(0)}$	
$g_{abs}(t)=\Gamma$	$g_{abs}(t) = \Gamma$	
$g_{abs}(t) = -4.13 \times 10^{-4}$	$g_{abs}(t) = 3.90 \times 10^{-4}$	
g_{abs} of Chiral Q ₈ (LH) = -1.0x10 ⁻² (385 nm)	g_{abs} of Chiral Q ₈ (RH) = 1.0x10 ⁻² (385 nm)	
Therefore, ee% from (LH-INHs) ~4.1%	Therefore, ee% from (RH-INHs) ~3.9%	

Supplementary Information

Figure S1. Absorption (a) and fluorescence (b) spectra of rac-Q₄, rac-Q₄/*M*-INHs, and rac-Q₄/*P*-INHs.

Figure S2. (a) LD_{abs} and (b) LD_{CPL} of *rac*-Q₄/*M*-INHs, *rac*-Q₄/*P*-INHs and *rac*-Q₄.

Figure S3. Absorption (a) and fluorescence (b) spectra of *rac*-Q₄/INHs after drop casting at 4 °C, 20 °C and 60 °C, (Q₄: 1 mM, 100 μL, INHs: 200 μg/2×2 cm²).

Figure S4. (a) ECD-absorption and CPL-fluorescence spectra of *rac*-Q₄/INHs and *rac*-Q₄ after drop-casting in different solvents, (*rac*-Q₄: 1 mM, 100 μL, INHs: 200 μg/2×2 cm²).

Figure S5. Plots between (a) g_{abs} and (b) g_{lum} versus vapor pressure (log₁₀Pa), (*rac*-Q₄: 1 mM, 100 µL, INHs: 200 μ g/2×2 cm²).

Figure S6. g_{abs} (at 324 nm) of *rac*-Q₄/INHs after drop-casting Q₄ in different solvents (toluene, chlorobenzene, aniline) during time (The CD response was detected from Transmission Circular Dichroism or TCD).

Figure S7. (a) ECD-absorption spectra, (b) g_{abs} and (c) absorbance at 324 nm of *rac*-Q₄/INHs by varying the concentration of *rac*-Q₄ (0.25-1.0 mM, 100 μ L) on INHs (200 μ g).

Figure S8. (a) CPL-fluorescence spectra and (b) g_{lum} of *rac*-Q₄/INHs by varying the concentration of Q₄ (0.25-1.0 mM, 100 μ L) on INHs (200 μ g), (λ_{ex} 320 nm).

Figure S9. IR spectra of INHs, INHs-calcinated and INHs-NH₂

Figure S10. Absorption (a) and fluorescence (b) spectra of *rac*-Q₄/INHs, *rac*-Q₄/INHs-NH₂, *rac*-Q₄/calcinated-INHs, (λ_{ex} 320 nm).

Figure S11. (a) ECD-absorption and (b) CPL-fluorescence spectra of *rac*-Q₆/INHs, *rac*-Q₆/INHs-NH₂ and *rac*-Q₆/calcinated-INHs, (λ_{ex} 320 nm). (c) ECD-absorption and (d) CPL-fluorescence spectra of *rac*-Q₈/INHs, *rac*-Q₈/INHs-NH₂ and *rac*-Q₈/INHs-NH₃ (λ_{ex} 320 nm).

Figure S12. Absorption spectra of rac-Q₄/INHs, rac-Q₆/INHs, rac-Q₈/INHs and rac-Q₁₆/INHs.

Figure S13. CPL-fluorescent spectra (a) and g_{lum} at 505 nm of *rac*-Q₄/INHs, *rac*-Q₆/INHs, *rac*-Q₈/INHs and *rac*-Q₁₆/INHs.

Figure S14. ECD spectra of P-Q₄ (yellow), P-Q₆ (blue), P-Q₈ (brown), P-Q₁₆ (green) and their enantiomers M-Q₄ (blue), M-Q₆ (light brown), M-Q₈ (grey), M-Q₁₆ (light blue).

Figure S15. ECD-Absorption spectra of Q_8 at 3 and 5 min after washing out from *M*-/*P*-INHs (from 20-time experiment).

Figure S16. ECD-absorption and CPL-fluorescence spectra (λ_{ex} 320 nm) of *M*-Q₄ and *P*-Q₄ in CHCl₃ (a,b) and deposited onto a substrate (c, d).

Figure S17. VCD spectra of *rac*-Q₄/*P*-INHs and *rac*-Q₄/*M*-INHs.

Figure S18. Differential ($Q_n/P(M)$ -INHs - P(M)-INHs) VCD spectra of Q_4 /INHs and Q_8 /INHs normalized to the absorbance intensity of the 1540 cm⁻¹ band, the most intense band of the foldamers.

Figure S19. (top) IR spectra of *M*-INHs (black) and *P*- Q_4/M -INHs (red), (bottom) Raw VCD spectrum of *P*- Q_4/M -INHs (blue).

Figure S20. Normalized differential (P(M)-Q₄/P-INHs - P-INHs) VCD spectra of Q₄/P-INHs, M-Q₄/P-INHs, P-Q₄/P-INHs.

Figure S21 TEM images of drop cast INHs (top) and rac-Q₄/INHs.

Solvent	Boiling point	Vapor pressure at 20
	(°C)	°C (Pa)
Benzene	80.3	10130
Toluene	110.8	2932
Chlorobenzene	132	1200
Chlorotoluene	157	359
Aniline	184.4	40
Nitrobenzene	211.1	27

Table S1. Solvents for drop-casting of rac-Q₄ foldamers

Reference: MIDSIS-TROCS 4.0, Maritime Integrated Decision Support Information System on transport of Chemical Substance. (http://midsis.rempec.org)

Table S2. Infrared analysis: wavenumbers, assignment and origin of the major bands of P-Q4

Wavenumber, cm ⁻¹	Assignment	Origin
1802	vC=O	Ketone, camphanyl
1747	vc=o	COOMe
1720	vc=0	Amide 1, camphanyl
1686	vc=o	Amide 1, quinoline
1591, 1570	vC=C	quinoline

1540	δNH	Amide 2, quinoline
1511, 1469	vc=c	quinoline
1420	δCH_3	OiBu
1383, 1360, 1332	^ν C-C + ^δ CH	quinoline
1265	υ _a C-O- φ	OiBu
1213	υ _a C-O- φ	OiBu
1160	$v_{\sf ip}{\sf CH}$	quinoline
1116	v C-C + δ C-C	quinoline
1055	ν _s C-O-φ	OiBu