# **Supporting Information**

# Solvent involved synthesis of pyrrolidin-5-one-2carboxamides via a sequential Ugi/olefination reaction

Na Chen,‡<sup>a</sup> Tianyu Long,‡<sup>a, b</sup> Han-Han Kong,\*<sup>a</sup> Zheng-Wei Wu,<sup>a</sup> Qing-Qing Yang,<sup>a</sup> Nianyu Huang<sup>c</sup> and Long Wang<sup>\*a, d</sup>

<sup>a</sup> Key laboratory of inorganic nonmetallic crystalline and energy conversion materials, College of

Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China.

<sup>b</sup> College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang, Hubei 443002, China.

<sup>c</sup> Hubei Key Laboratory of Natural Products Research and Development, College of Biological and

Pharmaceutical Science, China Three Gorges University, Yichang, Hubei 443002, China.

<sup>d</sup> Hubei Three Gorges Laboratory, Yichang, Hubei 443007, China.

 $\ddagger$  These authors contributed equally to this work.

Email: wanglongchem@ctgu.edu.cn; konghanhan@ctgu.edu.cn;

## **Table of Contents**

| 1. General Information                                 | S3  |
|--------------------------------------------------------|-----|
| 2. Optimization of Reaction Conditions                 | S4  |
| 3. Preparation of Substrates                           | S8  |
| 4. Preparation and Characterization Data of Products 6 | S8  |
| 5. Crystal Structure of 6g                             | S17 |
| 6. Synthetic Application of the Reaction               | S18 |
| 6.1 Derivatization of the 6g, 7g and 16g               | S18 |
| 6.2 Characterization Data of Products 7g-18g           | S23 |
| 7. Reference                                           | S28 |
| 8. Copies of NMR Spectras of Compounds 6a-6x, 7g-18g   |     |
| 9. Copies of HRMS Analysis                             | S66 |

#### **1. General Information.**

Unless otherwise noted, materials were purchased from commercial suppliers and used without purification. N,N-dimethylformamide (DMF) was distilled from K<sub>2</sub>CO<sub>3</sub> under high vacuum and fractionated in an all-glass apparatus. Dichloromethane was freshly distilled from calcium hydride. Toluene was distilled from sodium/benzophenone. Other solvents were also purified before using. The material of the reaction vessel is Schlenk tube with common glass. No filters were used in the general procedures. Reactions were monitored by thin layer chromatography (TLC), and column chromatography purifications were performed using 200-300 mesh silica gel. <sup>1</sup>H NMR spectra were recorded on 400 MHz spectrophotometers on Bruker AVANCE III. Solvent for NMR are CDCl<sub>3</sub> and DMSO- $d_6$ . Chemical shifts are reported in delta ( $\delta$ ) units in parts per million (ppm) relative to the singlet (0 ppm) for tetramethylsilane (TMS), relative to the signal of chloroform ( $\delta = 7.26$  ppm, singlet) and dimethyl sulfoxide- $d_6$  ( $\delta = 2.50$  ppm, singlet). Data are reported as follows: chemical shift, multiplicity (s = single, d = doublet, t = triplet, m = multiplet, dd = doublet of doublets), coupling constants (Hz) and integration. <sup>13</sup>C NMR spectra were on recorded on 400 (101 MHz) with complete proton decoupling. Chemical shifts are reported in ppm relative to the central line of the heptalet at 77.16 ppm for CDCl<sub>3</sub> and 39.52 ppm for DMSO- $d_6$ . Melting point was measured with X-4 melting point instrument. High resolution mass spectra (HRMS) analysis was taken on a Shimadzu LCMS-IT-TOF mass spectrometer.

# 2. Optimization of Reaction Conditions

Table S1. The Effect of the Base on the Reaction<sup>a</sup>

| Me | $\begin{array}{c} 0\\ Br\\ Br\\ 1a\\ \end{array} + 2a\\ \hline \\ NH_2 \\ 3a \\ \end{array}$ | 1) MeOH (5a)<br>2) Base                      | HN OMe CI              |
|----|----------------------------------------------------------------------------------------------|----------------------------------------------|------------------------|
|    | Entry <sup>a</sup>                                                                           | Base                                         | Yield <sup>b</sup> (%) |
|    | 1                                                                                            |                                              | 20                     |
|    | 2                                                                                            | DBU                                          | 39                     |
|    | 3                                                                                            | Et <sub>3</sub> N                            | 30                     |
|    | 4                                                                                            | DMAP                                         | Trace                  |
|    | 5                                                                                            | t-BuOK                                       | 41                     |
|    | 6                                                                                            | КОН                                          | 40                     |
|    | 7                                                                                            | <b>K</b> <sub>2</sub> <b>CO</b> <sub>3</sub> | 45                     |

~

<sup>*a*</sup>General conditions: **1a** (0.24 mmol), **2a** (0.2 mmol), **3a** (0.24 mmol), **4a** (0.24 mmol), in MeOH (2 mL) at 25 °C for 24 h. Then base (0.4 mmol), 25 °C, 24 h. <sup>*b*</sup>Yield of isolated product.

| $\bigvee$ NH <sub>2</sub> $\rightarrow$ | $ \begin{array}{c}                                     $ | HN OMe CI              |
|-----------------------------------------|----------------------------------------------------------|------------------------|
| Entry <sup>a</sup>                      | <b>Temp.</b> [°C]                                        | Yield <sup>b</sup> (%) |
| 1                                       | 25                                                       | 45                     |
| 2                                       | 60                                                       | 64                     |
| 3                                       | 80                                                       | 18                     |
| 4                                       | 100                                                      | 10                     |

### Table S2. The Effect of the Temperature on the Reaction<sup>*a*</sup>

<sup>*a*</sup>General conditions: **1a** (0.24 mmol), **2a** (0.2 mmol), **3a** (0.24 mmol), **4a** (0.24 mmol), in MeOH (2 mL) for 24 h. Then K<sub>2</sub>CO<sub>3</sub> (0.4 mmol), 24 h. <sup>*b*</sup>Yield of isolated product.

| Me <sup>+</sup> <sub>2</sub> S<br>Br<br>1a<br>+<br>NH <sub>2</sub><br>3a | $2a \qquad 1) MeOH (5a) \\ 2 \lambda CO_3 (2 equination 2) K_2CO_3 (2 equination 2$ | HN OMe CI              |
|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Entry <sup>a</sup>                                                       | 1a (Equiv.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yield <sup>b</sup> (%) |
| 1                                                                        | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 64                     |
| 2                                                                        | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 72                     |
| 3                                                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 82                     |

### Table S3. The Effect of the Equivalent on the Reaction<sup>*a*</sup>

<sup>*a*</sup>General conditions: **1a**, **2a** (0.2 mmol), **3a** (0.24 mmol), **4a** (0.24 mmol), in MeOH (2 mL) at 60 °C for 24 h. Then K<sub>2</sub>CO<sub>3</sub> (0.4 mmol), 60 °C, 24 h. <sup>*b*</sup>Yield of isolated product.

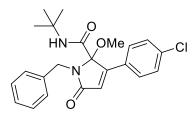
| Table S4. | The Effect | of the Time | on the | Reaction <sup>a</sup> |
|-----------|------------|-------------|--------|-----------------------|
|-----------|------------|-------------|--------|-----------------------|

| $ \begin{array}{c}                                     $ | $\begin{array}{c} 0 \\ 2a \\ \end{array} \begin{array}{c} 1 \end{array} \begin{array}{c} MeOH \\ 2 \end{array} \begin{array}{c} (5a) \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 2 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 1 \\ 2 \end{array} \\ \begin{array}{c} K_2CO_3 \end{array} (2 equiv) \\ \end{array} \\ \begin{array}{c} 4a \end{array} \end{array}$ | ()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>( |
|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Entry <sup>a</sup>                                       | Time. [h]                                                                                                                                                                                                                                                                                                                                                                                     | Yield <sup>b</sup> (%)                                                          |
| 1                                                        | 24, 24                                                                                                                                                                                                                                                                                                                                                                                        | 82                                                                              |
| 2                                                        | 36, 24                                                                                                                                                                                                                                                                                                                                                                                        | 82                                                                              |
| 3                                                        | 24, 12                                                                                                                                                                                                                                                                                                                                                                                        | 57                                                                              |

<sup>*a*</sup>General conditions: **1a** (0.36 mmol), **2a** (0.2 mmol), **3a** (0.24 mmol), **4a** (0.24 mmol), in MeOH (2 mL) at 60 °C. Then K<sub>2</sub>CO<sub>3</sub> (0.4 mmol), 60 °C. <sup>*b*</sup>Yield of isolated product.

### 3. Preparation of Substrates

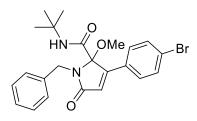
(Carboxymethyl)dimethylsulfonium bromide **1a** was prepared according to procedures.<sup>[1]</sup> aryl glyoxal **2** were prepared according to procedures.<sup>[2]</sup>


### 4. Preparation Characterization Data of Products 6



A mixture of (Carboxymethyl)dimethylsulfonium bromide **1a** (80 mg, 0.4 mmol), aryl glyoxal **2** (0.2 mmol), amines **3** (0.24 mmol) and isocyanides **4** (0.24 mmol) was stirred in alcohols (2 mL) at 60 °C for 24 h. Then K<sub>2</sub>CO<sub>3</sub> (55 mg, 0.4 mmol) was added, the reaction mixture was stirred at 60 °C for 24 h. The solvent was removed under reduced pressure and the residue was purified by silica gel chromatography (petroleum ether/ethyl acetate = 4:1) to afford pyrrolidin-5-one-2-carboxamides **6**.

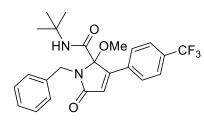
 $1-Benzyl-\mathit{N-(tert-butyl)-3-(4-chlorophenyl)-2-methoxy-5-oxo-2, 5-dihydro-1 H-pyrrole-2-methoxy-5-oxo-2, 5-dihydro-1 H-pyrrole-2-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-methoxy-5-me$ 


carboxamide (6a):



White solid, 67.6 mg, 82% yield; mp 192.2 – 194.1 °C. <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ ):  $\delta$  = 7.77 (d, J = 8.4 Hz, 2H), 7.54 – 7.51 (m, 3H), 7.30 – 7.29 (m, 4H), 7.24 – 7.22 (m, 1H), 7.06 (s, 1H), 4.47 (d, J = 15.7 Hz, 1H), 4.28 (d, J = 15.7 Hz, 1H), 2.84 (s, 3H), 1.11 (s, 9H). <sup>13</sup>C NMR

(101 MHz, DMSO- $d_6$ ):  $\delta = 170.0, 164.1, 152.5, 137.3, 135.0, 128.9, 128.8, 128.4, 128.0, 127.8, 126.9, 123.9, 95.3, 51.1, 51.6, 42.0, 27.8. HRMS (ESI-TOF) m/z: [M+Na]<sup>+</sup> calcd for C<sub>23</sub>H<sub>25</sub>ClN<sub>2</sub>NaO<sub>3</sub> 435.1446, found: 435.1456.$ 


1-Benzyl-3-(4-bromophenyl)-*N*-(tert-butyl)-2-methoxy-5-oxo-2,5-dihydro-1*H*-pyrrole-2carboxamide (6b):



White solid, 54.7 mg, 60% yield; mp 171.4 – 173.2 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta = 7.52 - 7.50$  (m, 2H), 7.47 – 7.45 (m, 2H), 7.36 – 7.34 (m, 2H), 7.31 – 7.27 (m, 3H), 6.88 (br, 1H), 6.66 (s, 1H), 4.69 (d, J = 15.4 Hz, 1H), 4.23 (d, J = 15.4 Hz, 1H), 2.79 (s, 3H), 1.25 (s, 9H). <sup>13</sup>C

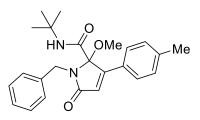
NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  = 170.4, 164.2, 152.8, 137.0, 132.2, 129.0, 128.6, 128.4, 128.2, 127.5, 125.0, 124.1, 96.2, 51.9, 51.1, 43.2, 28.4. HRMS (ESI-TOF) m/z: [M+H]<sup>+</sup> calcd for C<sub>23</sub>H<sub>26</sub>BrN<sub>2</sub>O<sub>3</sub> 457.1127, found: 457.1121.

# 1-Benzyl-*N*-(tert-butyl)-2-methoxy-5-oxo-3-(4-(trifluoromethyl)phenyl)-2,5-dihydro-1*H*-pyrrole-2-carboxamide (6c):



White solid, 50.0 mg, 56% yield; mp 171.4 – 173.2 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta = 7.72 - 7.70$  (m, 2H), 7.65 – 7.63 (m, 2H), 7.37 – 7.35 (m, 2H), 7.32 – 7.29 (m, 2H), 7.27 – 7.23 (m, 1H), 6.90 (br, 1H), 6.75 (s, 1H), 4.71 (d, J = 15.4 Hz, 1H), 4.25 (d, J = 15.4 Hz, 1H), 2.81

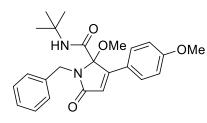
(s, 3H), 1.26 (s, 9H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  = 170.0, 164.1, 152.5, 136.9, 133.5, 132.6 (q, *J* = 32.8 Hz), 128.6, 128.5, 127.6, 127.0, 126.0 (m), 125.9 (m), 125.9(0), 96.4, 52.0, 51.2, 43.4, 28.5. <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  = -63.0 (s, 3F). HRMS (ESI-TOF) m/z: [M+Na]<sup>+</sup> calcd for C<sub>24</sub>H<sub>25</sub>F<sub>3</sub>N<sub>2</sub>NaO<sub>3</sub> 469.1709, found: 469.1714.


1-Benzyl-3-(3-bromophenyl)-*N*-(tert-butyl)-2-methoxy-5-oxo-2,5-dihydro-1*H*-pyrrole-2carboxamide (6d):



White solid, 52.9 mg, 58% yield; mp 188.1 – 190.1 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.72 (t, *J* = 1.6 Hz, 1H), 7.52 (t, *J* = 9.3 Hz, 2H), 7.36 – 7.35 (m, 2H), 7.32 – 7.23 (m, 4H), 6.95 (br, 1H), 6.67 (s, 1H), 4.72 (d, *J* = 15.3 Hz, 1H), 4.20 (d, *J* = 15.3 Hz, 1H), 2.79 (s, 3H), 1.29 (s, 9H).

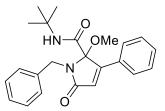
<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  = 170.2 , 164.1, 152.4, 137.0, 133.3, 132.0, 130.5, 129.5, 128.6, 128.4, 127.5, 125.5, 124.8, 123.1, 96.3, 52.0, 51.1, 43.4, 28.5. HRMS (ESI-TOF) m/z: [M+Na]<sup>+</sup> calcd for C<sub>23</sub>H<sub>25</sub>BrN<sub>2</sub>NaO<sub>3</sub> 479.0941, found: 479.0947.


1-Benzyl-*N*-(tert-butyl)-2-methoxy-5-oxo-3-(p-tolyl)-2,5-dihydro-1*H*-pyrrole-2-carboxamide (6e):



White solid, 47.1 mg, 60% yield; mp 163.4 – 165.2 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta = 7.49$  (d, J = 8.2 Hz, 2H), 7.37 – 7.35 (m, 2H), 7.31 – 7.27 (m, 2H), 7.25 – 7.23 (m, 1H), 7.18 (d, J = 8.1 Hz, 2H), 6.89 (br, 1H), 6.61 (s, 1H), 4.72 (d, J = 15.4 Hz, 1H), 4.21 (d, J = 15.4 Hz, 1H), 2.78 (s,

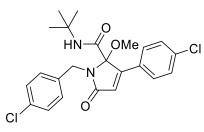
3H), 2.36 (s, 3H), 1.26 (s, 9H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  = 170.9, 164.5, 154.0, 141.0, 137.3, 129.7, 128.6, 128.4, 127.4, 127.3, 126.7, 122.6, 96.5, 51.8, 51.0, 43.2, 28.5, 21.6. HRMS (ESI-TOF) m/z: [M+Na]<sup>+</sup> calcd for C<sub>24</sub>H<sub>28</sub>N<sub>2</sub>NaO<sub>3</sub> 415.1992, found: 415.2002.


1-Benzyl-*N*-(tert-butyl)-2-methoxy-3-(4-methoxyphenyl)-5-oxo-2,5-dihydro-1*H*-pyrrole-2carboxamide (6f):



White solid, 50.6 mg, 62% yield; mp 163.4 – 165.2 °C <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.48 (d, *J* = 8.9 Hz, 2H), 7.30 – 7.27 (m, 2H), 7.23 – 7.19 (m, 2H), 7.17 – 7.13 (m, 1H), 6.82 – 6.79 (m, 3H), 6.45 (s, 1H), 4.63 (d, *J* = 15.4 Hz, 1H), 4.14 (d, *J* = 15.4 Hz, 1H), 3.74 (s, 3H), 2.71

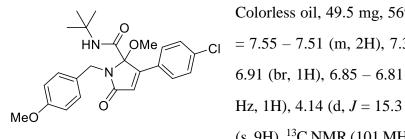
(s, 3H), 1.18 (s, 9H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  = 171.0, 164.6, 161.4, 153.7, 137.4, 128.6, 128.4, 128.3(5), 127.3, 122.7, 121.2, 114.3, 96.4, 55.4, 51.8, 51.0, 43.2, 28.5. HRMS (ESI-TOF) m/z: [M+Na]<sup>+</sup> calcd for C<sub>24</sub>H<sub>28</sub>N<sub>2</sub>NaO<sub>4</sub> 431.1941, found: 431.1953.


1-Benzyl-N-(tert-butyl)-2-methoxy-5-oxo-3-phenyl-2,5-dihydro-1H-pyrrole-2-carboxamide (6g):



White solid, 57.5 mg, 76% yield; mp 142.6 – 144.7 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta = 7.60 - 7.58$  (m, 2H), 7.39 – 7.36 (m, 5H), 7.32 – 7.28 (m, 2H), 7.24 – 7.22 (m, 1H), 6.90 (br, 1H), 6.66 (s, 1H), 4.73 (d, J = 15.4 Hz, 1H), 4.21 (d, J = 15.4 Hz, 1H), 2.80 (s, 3H), 1.26 (s, 9H). <sup>13</sup>C NMR (101 MHz,

CDCl<sub>3</sub>)  $\delta = 170.7$ , 164.4, 154.0, 137.2, 130.6, 130.2, 129.0, 128.7, 128.4, 127.5, 126.8, 123.7, 96.5, 51.8, 51.1, 43.3, 28.5. HRMS (ESI-TOF) m/z: [M+Na]<sup>+</sup> calcd for C<sub>23</sub>H<sub>26</sub>N<sub>2</sub>NaO<sub>3</sub> 401.1836, found: 401.1838.

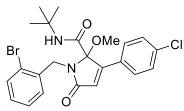

*N*-(tert-butyl)-1-(4-chlorobenzyl)-3-(4-chlorophenyl)-2-methoxy-5-oxo-2,5-dihydro-1*H*-pyrrole-2-carboxamide (6h):



White solid, 51.7 mg, 58% yield; mp 124.5 – 126.5 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.53 (d, *J* = 8.6 Hz, 2H), 7.36 (d, *J* = 8.6 Hz, 2H), 7.30 – 7.25 (m, 4H), 6.86 (br, 1H), 6.64 (s, 1H), 4.58 (d, *J* = 15.5 Hz, 1H), 4.26 (d, *J* = 15.5 Hz, 1H), 2.86 (s, 3H), 1.24 (s, 9H). <sup>13</sup>C NMR

(101 MHz, CDCl<sub>3</sub>)  $\delta$  = 170.4, 164.1, 152.9, 136.8, 135.5, 133.3, 129.9, 129.3, 128.6, 128.4, 128.0, 123.9, 96.1, 51.9, 51.2, 42.5, 28.4. HRMS (ESI-TOF) m/z: [M+Na]<sup>+</sup> calcd for C<sub>23</sub>H<sub>24</sub>Cl<sub>2</sub>N<sub>2</sub>NaO<sub>3</sub> 469.1056, found: 469.1065.

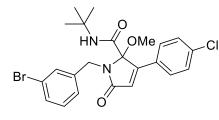
### *N*-(tert-butyl)-3-(4-chlorophenyl)-2-methoxy-1-(4-methoxybenzyl)-5-oxo-2,5-dihydro-1*H*pyrrole-2-carboxamide (6i):




Colorless oil, 49.5 mg, 56% yield; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$ Colorless oil, 49.5 mg, 56% yield; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$ Colorless oil, 49.5 mg, 56% yield; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$ 6.91 (br, 1H), 6.85 – 6.81 (m, 2H), 6.63 (s, 1H), 4.67 (d, J = 15.3Hz, 1H), 4.14 (d, J = 15.3 Hz, 1H), 3.77 (s, 3H), 2.79 (s, 3H), 1.28 (s, 9H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta = 170.2$ , 164.2, 159.0, 152.6,

136.5, 129.9, 129.2, 129.1(5), 128.5, 127.9, 124.0, 113.7, 96.3, 55.3, 51.8, 51.0, 42.7, 28.4. HRMS (ESI-TOF) m/z: [M+Na]<sup>+</sup> calcd for C<sub>24</sub>H<sub>27</sub>ClN<sub>2</sub>NaO<sub>4</sub> 465.1552, found: 465.1563.

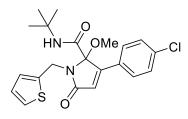
1-(2-Bromobenzyl)-N-(tert-butyl)-3-(4-chlorophenyl)-2-methoxy-5-oxo-2,5-dihydro-1H-


pyrrole-2-carboxamide (6j):



Colorless oil, 54.9 mg, 56% yield; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta = 7.56 - 7.54$  (m, 2H), 7.51 - 7.47 (m, 2H), 7.37 - 7.35 (m, 2H), 7.27 - 7.23 (m, 1H), 7.11 - 7.07 (m, 1H), 6.92 (br, 1H), 6.68 (s, 1H), 4.67 (d, J = 16.3 Hz, 1H), 4.57 (d, J = 16.3 Hz, 1H), 2.93 (s, 3H), 1.17 (s, 9H).

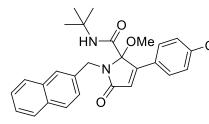
<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  = 170.6, 164.0, 153.2, 136.8, 135.9, 132.5, 130.6, 129.3, 129.0, 128.5, 128.0, 127.9, 123.8, 122.6, 95.8, 51.9, 51.2, 42.4, 28.3. HRMS (ESI-TOF) m/z: [M+Na]<sup>+</sup> calcd for C<sub>23</sub>H<sub>24</sub>BrClN<sub>2</sub>NaO<sub>3</sub> 513.0551, found: 513.0555.


1-(3-Bromobenzyl)-*N*-(tert-butyl)-3-(4-chlorophenyl)-2-methoxy-5-oxo-2,5-dihydro-1*H*pyrrole-2-carboxamide (6k):



Colorless oil, 52.0 mg, 53% yield; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$ = 7.53 (d, J = 8.6 Hz, 2H), 7.48 (s, 1H), 7.39 – 7.35 (m, 3H), 7.32 – 7.28 (m, 1H), 7.20 – 7.16 (m, 1H), 6.86 (br, 1H), 6.65 (s, 1H), 4.58 (d, J = 15.5 Hz, 1H), 4.27 (d, J = 15.5 Hz, 1H), 2.87 (s, 3H),

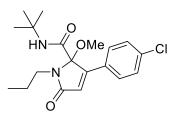
1.25 (s, 9H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  = 170.4, 164.0, 153.0, 139.2, 136.8, 131.5, 130.7, 130.2, 129.3, 128.5, 128.0, 127.3, 123.9, 122.4, 96.1, 52.0, 51.2, 42.6, 28.5. HRMS (ESI-TOF) m/z: [M+Na]<sup>+</sup> calcd for C<sub>23</sub>H<sub>24</sub>BrClN<sub>2</sub>NaO<sub>3</sub> 513.0551, found: 513.0554.


*N*-(tert-butyl)-3-(4-chlorophenyl)-2-methoxy-5-oxo-1-(thiophen-2-ylmethyl)-2,5-dihydro-1*H*pyrrole-2-carboxamide (6l):



Colorless oil, 55.2 mg, 66% yield; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.47 - 7.45 (m, 2H), 7.28 (d, *J* = 8.6 Hz, 2H), 7.13 - 7.12 (m, 1H), 6.96 - 6.95 (m, 1H), 6.91 (br, 1H), 6.86 - 6.84 (m, 1H), 6.54 (s, 1H), 4.88 (d, *J* = 15.8 Hz, 1H), 4.22 (d, *J* = 15.8 Hz, 1H), 2.77 (s, 3H), 1.26 (s, 9H). <sup>13</sup>C

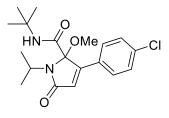
NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  = 170.0, 164.2, 152.9, 139.3, 136.8, 129.3, 128.6, 128.1, 127.4, 126.8, 125.4, 124.0, 96.4, 52.1, 51.2, 37.7, 28.6. HRMS (ESI-TOF) m/z: [M+Na]<sup>+</sup> calcd for C<sub>21</sub>H<sub>23</sub>ClN<sub>2</sub>NaO<sub>3</sub>S 441.1010, found: 441.1020.


*N*-(tert-butyl)-3-(4-chlorophenyl)-2-methoxy-1-(naphthalen-2-ylmethyl)-5-oxo-2,5-dihydro-1*H*pyrrole-2-carboxamide (6m):



Colorless oil, 56.4 mg, 61% yield; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$ CI = 8.24 (d, J = 8.4 Hz, 1H), 7.78 - 7.71 (m, 2H), 7.50 - 7.46 (m, 1H), 7.43 - 7.39 (m, 4H), 7.35 - 7.31 (m, 1H), 7.25 - 7.23 (m, 2H), 6.76 (br, 1H), 6.58 (s, 1H), 5.37 (d, J = 15.5 Hz, 1H), 4.40 (d, J = 15.5 Hz, 1H), 4.4

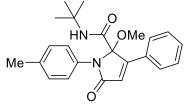
15.5 Hz, 1H), 2.34 (s, 3H), 1.19 (s, 9H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  = 170.2, 164.2, 153.1, 136.7, 133.7, 132.5, 131.8, 129.2, 128.8, 128.6, 128.5, 128.0, 127.8, 126.6, 125.9, 125.1, 124.0, 123.9(7), 96.8, 52.0, 50.9, 41.6, 28.5. HRMS (ESI-TOF) m/z: [M+Na]<sup>+</sup> calcd for C<sub>27</sub>H<sub>27</sub>ClN<sub>2</sub>NaO<sub>3</sub> 485.1602, found: 485.1603.


*N*-(tert-butyl)-3-(4-chlorophenyl)-2-methoxy-5-oxo-1-propyl-2,5-dihydro-1*H*-pyrrole-2carboxamide (6n):



White solid, 47.3 mg, 65% yield; mp 144.2 – 146.5 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.54 (d, *J* = 8.5 Hz, 2H), 7.37 (d, *J* = 8.5 Hz, 2H), 6.96 (br, 1H), 6.58 (s, 1H), 3.23 – 3.15 (m, 2H), 3.10 (s, 3H), 1.75 – 1.55 (m, 2H), 1.37 (s, 9H), 0.93 (t, *J* = 7.4 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  = 170.4, 164.6,

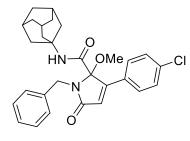
152.2, 136.5, 129.2, 128.7, 128.0, 124.4, 95.9, 51.9, 51.0, 41.4, 28.6, 21.7, 11.8. HRMS (ESI-TOF) m/z: [M+Na]<sup>+</sup> calcd for C<sub>19</sub>H<sub>25</sub>ClN<sub>2</sub>NaO<sub>3</sub> 387.1446, found: 387.1448.


*N*-(tert-butyl)-3-(4-chlorophenyl)-1-isopropyl-2-methoxy-5-oxo-2,5-dihydro-1*H*-pyrrole-2carboxamide (60):



White solid, 45.9 mg, 63% yield; mp 152.2 – 154.3 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.52 (d, *J* = 8.6 Hz, 2H), 7.36 (d, *J* = 8.6 Hz, 2H), 6.93 (br, 1H), 6.51 (s, 1H), 3.63 – 3.56 (m, 1H), 3.16 (s, 3H), 1.48 (d, *J* = 6.9 Hz, 3H), 1.39 (d, *J* = 6.9 Hz, 3H), 1.37 (s, 9H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$ 

= 169.9, 164.6, 151.6, 136.4, 129.2, 128.7, 127.8, 125.4, 96.2, 51.8, 51.3, 44.9, 28.6, 20.7, 19.4. HRMS (ESI-TOF) m/z:  $[M+Na]^+$  calcd for  $C_{19}H_{25}ClN_2NaO_3$  387.1446, found: 387.1447.

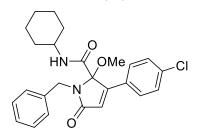

*N-(tert-*butyl)-2-methoxy-5-oxo-3-phenyl-1-(*p*-tolyl)-2,5-dihydro-1*H*-pyrrole-2-carboxamide (6p)



Colorless oil, 49.9 mg, 66% yield; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta = 7.67 - 7.64$  (m, 2H), 7.43 - 7.41 (m, 3H), 7.27 - 7.18 (m, 4H), 6.74 (s, 1H), 6.71 (s, 1H), 3.35 (s, 3H), 2.35 (s, 3H), 1.13 (s, 9H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta = 170.3$ , 164.2, 153.8, 137.3, 132.5, 130.8, 130.0,

129.6, 129.0, 127.0, 126.8, 124.1, 97.3, 51.6, 51.3, 28.2, 21.2. HRMS (ESI-TOF) m/z: [M+Na]<sup>+</sup> calcd for C<sub>23</sub>H<sub>26</sub>N<sub>2</sub>NaO<sub>3</sub> 401.1836 found: 401.1842.

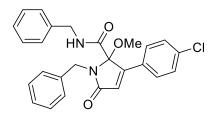
*N*-(adamantan-1-yl)-1-benzyl-3-(4-chlorophenyl)-2-methoxy-5-oxo-2,5-dihydro-1*H*-pyrrole-2carboxamide (6q):




White solid, 78.4 mg, 80% yield; mp 172.4 – 174.3 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.54 (d, *J* = 8.6 Hz, 2H), 7.37 – 7.35 (m, 4H), 7.32 – 7.29 (m, 2H), 7.27 – 7.25 (m, 1H), 6.79 (br, 1H), 6.64 (s, 1H), 4.76 (d, *J* = 15.3 Hz, 1H), 4.17 (d, *J* = 15.3 Hz, 1H), 2.75 (s, 3H), 2.11 – 2.02 (s, 3H), 1.91 (q, *J* = 11.5 Hz, 6H), 1.68 – 1.63 (s, 6H). <sup>13</sup>C NMR

 $(101 \text{ MHz}, \text{CDCl}_3) \delta = 170.4, 163.9, 152.8, 137.2, 136.6, 129.3, 128.7, 128.6, 128.5, 128.0, 127.5, 124.0, 96.4, 52.6, 51.1, 43.4, 41.3, 36.3, 29.4.$  HRMS (ESI-TOF) m/z: [M+Na]<sup>+</sup> calcd for

C<sub>29</sub>H<sub>31</sub>ClN<sub>2</sub>NaO<sub>3</sub> 513.1915, found: 513.1926.

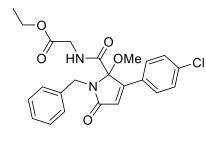

### 1-Benzyl-3-(4-chlorophenyl)-*N*-cyclohexyl-2-methoxy-5-oxo-2,5-dihydro-1*H*-pyrrole-2carboxamide (6r):



White solid, 54.3 mg, 62% yield; mp 180.0 – 182.3 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.53 (d, *J* = 8.7 Hz, 2H), 7.36 – 7.33 (m, 4H), 7.32 – 7.25 (m, 3H), 6.92 (d, *J* = 8.4 Hz, 1H), 6.65 (s, 1H), 4.73 (d, *J* = 15.3 Hz, 1H), 4.16 (d, *J* = 15.3 Hz, 1H), 3.70 – 3.61 (m, 1H), 2.78 (s, 3H),

1.81 - 1.77 (m, 2H), 1.72 - 1.61 (m, 4H), 1.37 - 1.28 (m, 2H), 1.20 - 1.17 (m, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta = 170.3$ , 164.3, 152.5, 137.0, 136.7, 129.3, 128.8, 128.6, 128.4, 128.0, 127.6, 124.1, 96.3, 51.0, 48.6, 43.5, 33.0, 32.8, 25.5, 24.9, 24.8. HRMS (ESI-TOF) m/z: [M+Na]<sup>+</sup> calcd for C<sub>25</sub>H<sub>27</sub>ClN<sub>2</sub>NaO<sub>3</sub> 461.1602, found: 461.1602.

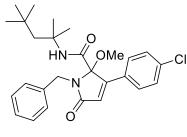
#### *N*,1-dibenzyl-3-(4-chlorophenyl)-2-methoxy-5-oxo-2,5-dihydro-1*H*-pyrrole-2-carboxamide (6s):




White solid, 44.6 mg, 50% yield; mp 212.7 – 214.2 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ = 8.03 (d, *J* = 8.5 Hz, 1H), 7.47 (d, *J* = 8.7 Hz, 2H), 7.37 – 7.29 (m, 8H), 7.27 (s, 2H), 7.17–7.15 (m, 2H), 6.67 (s, 1H), 4.67 (d, *J* = 15.3 Hz, 1H), 4.47–4.41 (m, 1H), 4.25 (d, *J* = 15.3 Hz, 1H),

1H), 4.18 - 4.13 (m, 1H), 2.81 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta = 170.2$ , 165.4, 152.6, 137.4, 136.8, 136.7(7), 131.6, 129.4, 129.0, 128.8, 128.4, 128.3, 128.1, 127.6, 124.3, 96.3, 51.0, 43.9, 43.5. HRMS (ESI-TOF) m/z: [M+Na]<sup>+</sup> calcd for C<sub>26</sub>H<sub>23</sub>ClN<sub>2</sub>NaO<sub>3</sub> 469.1289, found: 469.1287.

Ethyl(1-benzyl-3-(4-chlorophenyl)-2-methoxy-5-oxo-2,5-dihydro-1*H*-pyrrole-2-

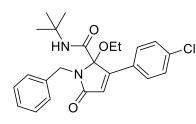

carbonyl)glycinate (6t):



White solid, 56.6 mg, 64% yield; mp 171.2 – 172.6 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.50 (d, J = 8.6 Hz, 2H), 7.46 – 7.45 (m, 1H), 7.32 – 7.26 (m, 4H), 7.22 – 7.16 (m, 3H), 6.59 (s, 1H), 4.52 (d, J = 15.2 Hz, 1H), 4.35 (d, J = 15.2 Hz, 1H), 4.20 – 4.12 (m, 2H), 3.84 – 3.78 (m, 1H), 3.70 – 3.64 (m, 1H), 2.77 (s, 3H), 1.21 (t, J =

7.1 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  = 170.0, 169.4, 165.9, 152.3, 136.9, 136.8, 129.5, 129.0, 128.3, 128.2, 128.0, 127.6, 124.1, 95.9, 61.9, 51.0, 43.2, 41.3, 14.2. HRMS (ESI-TOF) m/z: [M+Na]<sup>+</sup> calcd for C<sub>23</sub>H<sub>23</sub>ClN<sub>2</sub>NaO<sub>5</sub> 465.1188, found: 465.1194.

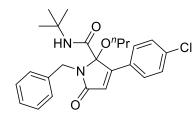
### 1-Benzyl-3-(4-chlorophenyl)-2-methoxy-5-oxo-*N*-(2,4,4-trimethylpentan-2-yl)-2,5-dihydro-1*H*pyrrole-2-carboxamide (6u):




Colorless oil, 49.6 mg, 53% yield; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta =$ 7.55 (d, J = 8.6 Hz, 2H), 7.37 – 7.34 (m, 4H), 7.31 – 7.27 (m, 2H), 7.25 – 7.24 (m, 1H), 7.05 (br, 1H), 6.65 (s, 1H), 4.70 (d, J = 15.5 Hz, 1H), 4.23 (d, J = 15.5 Hz, 1H), 2.82 (s, 3H), 1.58 (d, J = 1.4 Hz, 2H), 1.31 (s, 3H), 1.26 (s, 3H), 1.02 (s, 9H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta =$ 

170.4, 163.8, 152.7, 137.0, 136.6, 129.2, 128.6, 128.5, 128.4, 128.1, 127.5, 124.2, 96.5, 56.1, 54.2, 51.3, 43.2, 31.7, 27.7. HRMS (ESI-TOF) m/z: [M+Na]<sup>+</sup> calcd for C<sub>27</sub>H<sub>33</sub>ClN<sub>2</sub>NaO<sub>3</sub> 491.2072, found: 491.2083.

1-Benzyl-N-(tert-butyl)-3-(4-chlorophenyl)-2-ethoxy-5-oxo-2,5-dihydro-1H-pyrrole-2-

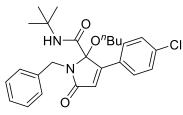

carboxamide (6v):



Colorless oil, 52.0 mg, 61% yield; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta = 7.52$  (d, J = 8.6 Hz, 2H), 7.36 – 7.34 (m, 4H), 7.31 – 7.27 (m, 3H), 6.95 (br, 1H), 6.61 (s, 1H), 4.78 (d, J = 15.4 Hz, 1H), 4.13 (d, J = 15.4 Hz, 1H), 2.97 (q, J = 7.0 Hz, 2H), 1.29 (s, 9H), 0.73 (t, J = 7.0 Hz, 3H). <sup>13</sup>C

NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  = 170.3, 164.4, 153.2, 137.2, 136.6, 129.2, 128.5, 128.4(8), 127.9, 127.5, 123.6, 95.9, 59.6, 51.9, 43.3, 28.5, 14.4. HRMS (ESI-TOF) m/z: [M+Na]<sup>+</sup> calcd for C<sub>24</sub>H<sub>27</sub>ClN<sub>2</sub>NaO<sub>3</sub> 449.1602, found: 449.1607.

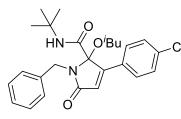
1-Benzyl-*N*-(tert-butyl)-3-(4-chlorophenyl)-5-oxo-2-propoxy-2,5-dihydro-1*H*-pyrrole-2carboxamide (6w):




Yellow oil, 47.5 mg, 54% yield; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.45 (d, *J* = 8.6 Hz, 2H), 7.28 (s, 1H), 7.25 – 7.23 (m, 2H), 7.21 – 7.14 (m, 4H), 6.86 (br, 1H), 6.54 (s, 1H), 4.67 (d, *J* = 15.4 Hz, 1H), 4.08 (d, *J* = 15.4 Hz, 1H), 2.85 – 2.72 (m, 2H), 1.24 – 1.22 (s, 2H), 1.20 (s, 9H),

0.55 (t, J = 7.4 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta = 170.4$ , 164.4, 153.1, 137.2, 136.6, 129.2, 128.7, 128.5, 128.4(6), 127.9, 127.5, 123.6, 95.8, 65.4, 51.8, 43.3, 28.5, 22.1, 10.3. HRMS (ESI-TOF) m/z: [M+Na]<sup>+</sup> calcd for C<sub>25</sub>H<sub>29</sub>ClN<sub>2</sub>NaO<sub>3</sub> 463.1759, found: 463.1771.

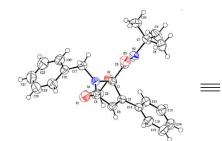
### 1-Benzyl-2-butoxy-N-(tert-butyl)-3-(4-chlorophenyl)-5-oxo-2,5-dihydro-1H-pyrrole-2-

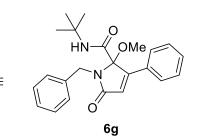

carboxamide (6x):



Yellow oil, 47.2 mg, 52% yield; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.47 - 7.45 (m, 2H), 7.29 - 7.26 (m, 4H), 7.24 - 7.17 (m, 3H), 6.86 (br, 1H), 6.56 (s, 1H), 4.69 (d, *J* = 15.4 Hz, 1H), 4.08 (d, *J* = 15.4 Hz, 1H), 2.88 - 2.78 (m, 2H), 1.21 (s, 9H), 1.08 - 0.83 (m, 4H), 0.65 (t, *J* = 7.0 Hz,

3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  = 170.4, 164.5, 153.2, 137.4, 136.6, 129.2, 128.7, 128.6, 128.5, 128.0, 127.5, 123.6, 95.9, 63.8, 51.8, 43.4, 30.9, 28.5, 19.2, 13.9. HRMS (ESI-TOF) m/z: [M+Na]+ calcd for C<sub>26</sub>H<sub>31</sub>ClN<sub>2</sub>NaO<sub>3</sub> 477.1915, found: 477.1921.


1-Benzyl-*N*-(tert-butyl)-3-(4-chlorophenyl)-2-isobutoxy-5-oxo-2,5-dihydro-1*H*-pyrrole-2carboxamide (6y):

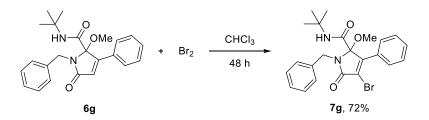



Yellow oil, 45.4 mg, 50% yield; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.53 (d, *J* = 8.6 Hz, 2H), 7.36 – 7.32 (m, 4H), 7.31 – 7.25 (m, 3H), 6.93 (br, 1H), 6.65 (s, 1H), 4.73 (d, *J* = 15.4 Hz, 1H), 4.19 (d, *J* = 15.5 Hz, 1H), 2.79–2.75 (m, 1H), 2.63 (t, *J* = 7.7 Hz, 1H), 1.83 – 1.70 (m, 1H), 1.28

(s, 9H), 0.68 (d, J = 6.6 Hz, 3H), 0.58 (d, J = 6.8 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta = 170.4$ , 164.5, 153.1, 137.3, 136.7, 129.2, 128.7, 128.5, 128.5(1), 128.0, 127.5, 123.6, 95.7, 70.0, 51.8, 43.4, 28.5, 27.8, 19.4, 19.0. HRMS (ESI-TOF) m/z: [M+Na]<sup>+</sup> calcd for C<sub>26</sub>H<sub>31</sub>ClN<sub>2</sub>NaO<sub>3</sub> 477.1915, found: 477.1917.

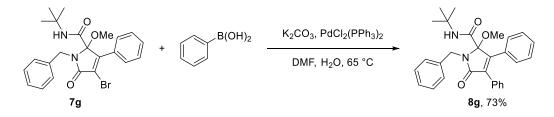
# 5. Crystal Structure of 6g





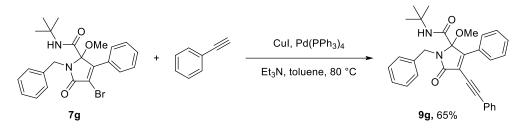

| CCDC number                          | 2304061                                                |
|--------------------------------------|--------------------------------------------------------|
| Identification code                  | 6g                                                     |
| Empirical formula                    | $C_{23}H_{26}N_2O_3$                                   |
| Formula weight                       | 378.46                                                 |
| e                                    |                                                        |
| Temperature/K                        | 293.79(13)                                             |
| Crystal system                       | monoclinic                                             |
| Space group                          | P2 <sub>1</sub> /c                                     |
| a/Å                                  | 11.8456(3)                                             |
| b/Å                                  | 16.4853(4)                                             |
| c/Å                                  | 10.8302(3)                                             |
| $\alpha/^{\circ}$                    | 90                                                     |
| β/°                                  | 94.704(2)                                              |
| γ/°                                  | 90                                                     |
| Volume/Å <sup>3</sup>                | 2107.78(9)                                             |
| Z                                    | 4                                                      |
| $\rho_{calc}g/cm^3$                  | 1.193                                                  |
| $\mu/mm^{-1}$                        | 0.634                                                  |
| F(000)                               | 808.0                                                  |
| Crystal size/mm <sup>3</sup>         | 0.12 	imes 0.11 	imes 0.1                              |
| Radiation                            | Cu Ka ( $\lambda = 1.54184$ )                          |
| $2\Theta$ range for data collection. | <sup>/°</sup> 9.214 to 148.904                         |
| Index ranges                         | $-13 \le h \le 14, -19 \le k \le 20, -13 \le l \le 10$ |
| Reflections collected                | 11225                                                  |
| Independent reflections              | 4172 [ $R_{int} = 0.0493$ , $R_{sigma} = 0.0474$ ]     |
| Data/restraints/parameters           | 4172/0/257                                             |
| Goodness-of-fit on F <sup>2</sup>    | 1.082                                                  |
| Final R indexes [I>= $2\sigma$ (I)]  | $R_1 = 0.0596, wR_2 = 0.1656$                          |
| Final R indexes [all data]           | $R_1 = 0.0656, wR_2 = 0.1733$                          |
| Largest diff. peak/hole / e Å        | -3 0.23/-0.38                                          |
|                                      |                                                        |

#### 6. Synthetic Application of the Reaction


#### 6.1 Derivatization of the 6g, 7g and 16g

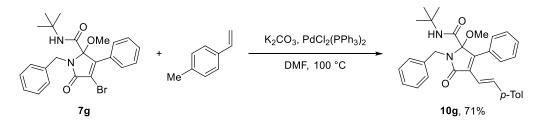
1) Synthesis of 1-benzyl-4-bromo-*N*-(tert-butyl)-2-methoxy-5-oxo-3-phenyl-2,5-dihydro-1*H*-pyrrole-2-carboxamide (7g)




To a mixture of **6g** (0.2 mmol, 75.4 mg) in CHCl<sub>3</sub> (2 mL) was added liquid bromine (0.6 mmol, 31  $\mu$ L). Under the nitrogen atmosphere, the obtained mixture was stirred at room temperature for 48 h. Then the mixture was concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) to give **7g** (65.7 mg, 72% yield).

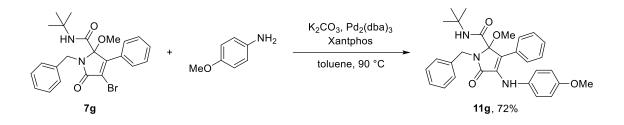
# 2) Synthesis of 1-benzyl-*N*-(tert-butyl)-2-methoxy-5-oxo-3,4-diphenyl-2,5-dihydro-1*H*-pyrrole-2-carboxamide (8g)<sup>[3a]</sup>




To a mixture of **7g** (0.2 mmol, 91.2 mg) and PhB(OH)<sub>2</sub> (0.4 mmol, 48.8 mg) in DMF (4 mL) was added PdCl<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub> (0.01 mmol, 7.0 mg). Under the nitrogen atmosphere, the obtained mixture was stirred for 30 min at room temperature. Then K<sub>2</sub>CO<sub>3</sub> (0.4 mmol, 55.3 mg) in H<sub>2</sub>O (1 mL) was added to the mixture, and the obtained mixture was placed in a preheated oil bath at 65 °C, and stirred at 65 °C for 12 h. Water (5 mL) was added to the reaction mixture, and the product was extracted with CH<sub>2</sub>Cl<sub>2</sub> (15 mL × 3), and washed with brine (15 mL × 2). The organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 40:1) to give **8g** (66.3 mg, 73% yield).

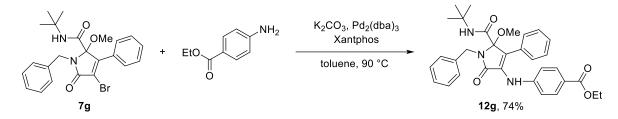
3) Synthesis of 1-benzyl-*N*-(tert-butyl)-2-methoxy-5-oxo-3-phenyl-4-(phenylethynyl)-2,5-dihy dro-1*H*-pyrrole-2-carboxamide (9g)<sup>[3b]</sup>




To a mixture of **7g** (0.2 mmol, 91.2 mg), CuI (0.004 mmol, 7.6 mg), Pd(PPh<sub>3</sub>)<sub>4</sub> (0.010 mmol, 11.6 mg) in Et<sub>3</sub>N (1 mL) and toluene (1.5 mL) was added ethynylbenzene (0.24 mmol, 24.6  $\mu$ L). Under nitrogen atmosphere, the obtained mixture was placed in a preheated oil bath at 80 °C, and stirred at 80 °C for 12 h. Water (2.5 mL) was added to the reaction mixture, and the product was extracted with EtOAc (15 mL × 3), and washed with brine (15 mL). The organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 40:1) to give **9g** (62.2 mg, 65% yield).

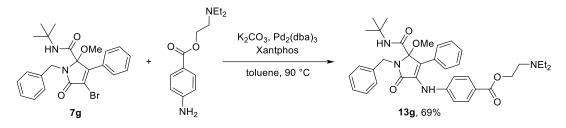
### 4) Synthesis of (*E*)-1-benzyl-*N*-(tert-butyl)-2-methoxy-4-(4-methylstyryl)-5-oxo-3-phenyl-2,5dihydro-1*H*-pyrrole-2-carboxamide (10g)<sup>[3b]</sup>




To a mixture of **7g** (0.2 mmol, 91.2 mg), K<sub>2</sub>CO<sub>3</sub> (0.4 mmol, 55.3 mg) and PdCl<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub> (0.010 mmol, 7.0 mg) in DMF (2.0 mL) was added 4-methylstyrene (0.4 mmol, 53  $\mu$ L). Under nitrogen atmosphere, the obtained mixture was placed in a preheated oil bath at 100 °C, and stirred at 100 °C for 12 h. Saturated NaHCO<sub>3</sub> aqueous solution (5.0 mL) was added to the reaction mixture, and the product was extracted with EtOAc (15 mL × 3), and washed with brine (15 mL). The organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 40:1) to give **10g** (70.2 mg, 71% yield).

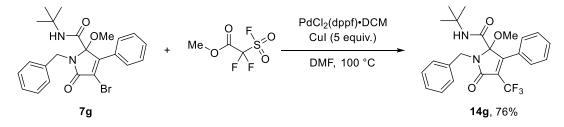
5) Synthesis of 1-benzyl-*N*-(tert-butyl)-2-methoxy-4-((4-methoxyphenyl)amino)-5-oxo-3-phen yl-2,5-dihydro-1*H*-pyrrole-2-carboxamide (11g)<sup>[3b]</sup>




To a mixture of **7g** (0.2 mmol, 91.2 mg), K<sub>2</sub>CO<sub>3</sub> (0.4 mmol, 55.3 mg), Pd<sub>2</sub>(dba)<sub>3</sub> (0.005 mmol, 4.6 mg) and Xantphos (0.010 mmol, 5.8 mg) in toluene (2.0 mL) was added *p*-methoxybenzamide (0.24 mmol, 29.5 mg). Under nitrogen atmosphere, the obtained mixture was placed in a preheated oil bath at 90 °C, and stirred at 90 °C for 12 h. Saturated NaHCO<sub>3</sub> aqueous solution (5.0 mL) was added to the reaction mixture, and the product was extracted with CH<sub>2</sub>Cl<sub>2</sub> (15 mL × 3). The organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 40:1) to give **11g** (71.9 mg, 72% yield).

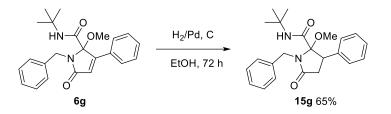
# 6) Synthesis of Ethyl 4-((1-benzyl-5-(tert-butylcarbamoyl)-5-methoxy-2-oxo-4-phenyl-2,5-dih ydro-1*H*-pyrrol-3-yl)amino)benzoate (12g)<sup>[3b]</sup>




To a mixture of **7g** (0.2 mmol, 91.2 mg), K<sub>2</sub>CO<sub>3</sub> (0.4 mmol, 55.3 mg), Pd<sub>2</sub>(dba)<sub>3</sub> (0.005 mmol, 4.6 mg) and Xantphos (0.010 mmol, 5.8 mg) in toluene (2.0 mL) was added ethyl 4-aminobenzoate (0.24 mmol, 39.6 mg). Under nitrogen atmosphere, the obtained mixture was placed in a preheated oil bath at 90°C, and stirred at 90 °C for 12 h. Saturated NaHCO<sub>3</sub> aqueous solution (5.0 mL) was added to the reaction mixture, and the product was extracted with CH<sub>2</sub>Cl<sub>2</sub> (15 mL × 3). The organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 40:1) to give **12g** (80.1 mg, 74% yield).

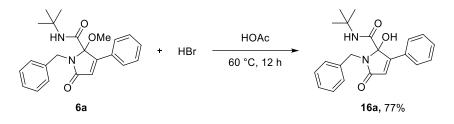
### 7) Synthesis of 2-(diethylamino)ethyl 4-((1-benzyl-5-(tert-butylcarbamoyl)-5-methoxy-2-oxo-4-phenyl-2,5-dihydro-1*H*-pyrrol-3-yl)amino)benzoate (13g)<sup>[3b]</sup>




To a mixture of **7g** (0.2 mmol, 91.2 mg),  $K_2CO_3$  (0.4 mmol, 55.3 mg),  $Pd_2(dba)_3$  (0.005 mmol, 4.6 mg) and Xantphos (0.010 mmol, 5.8 mg) in toluene (2.0 mL) was added 2-(diethylamino)ethyl 4-aminobenzoate (0.24 mmol, 56.7 mg). Under nitrogen atmosphere, the obtained mixture was placed in a preheated oil bath at 90 °C, and stirred at 90 °C for 12 h. Saturated NaHCO<sub>3</sub> aqueous solution (5.0 mL) was added to the reaction mixture, and the product was extracted with  $CH_2Cl_2$  (15 mL × 3). The organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 40:1) to give **13g** (84.5 mg, 69% yield).

### 8) Synthesis of 1-benzyl-*N*-(tert-butyl)-2-methoxy-5-oxo-3-phenyl-4-(trifluoromethyl)-2,5dihydro-1*H*-pyrrole-2-carboxamide (14g)<sup>[4]</sup>




To a mixture of **7g** (0.2 mmol, 91.2 mg), CuI (1.18 mmol, 226 mg) and Pd (dppf)Cl<sub>2</sub>·DCM (0.001 mmol, 8 mg) in DMF (2.0 mL) was added methyl 2,2-difluoro-2-(fluorosulfonyl)acetate (1.18 mmol, 227 mg). Under nitrogen atmosphere, the obtained mixture was placed in a preheated oil bath at 100 °C, and stirred at 100 °C for 24 h. Saturated NaHCO<sub>3</sub> aqueous solution (5.0 mL) was added to the reaction mixture, and the product was extracted with EtOAc (15 mL × 3), and washed with brine (15 mL). The organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) to give **14g** (67.8 mg, 76% yield).

# 9) Synthesis of 2-(diethylamino)ethyl 4-((1-benzyl-5-(tert-butylcarbamoyl)-5-methoxy-2-oxo-4-phenyl-2,5-dihydro-1*H*-pyrrol-3-yl)amino)benzoate (15g)<sup>[5]</sup>



To a mixture of **6g** (0.2 mmol, 75.6 mg) in ethanol (2 mL) was added Pd/C 10% (10 mg). The mixture is placed under hydrogen at a pressure of two bars for 72 h. Then the mixture was concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate =2:1) to give **15g** (49.4 mg, 65% yield).

# 10) Synthesis of 1-benzyl-*N*-(tert-butyl)-2-hydroxy-5-oxo-3-phenyl-2,5-dihydro-1*H*-pyrrole-2-carboxamide (16g)



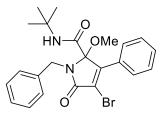
To a mixture of **6g** (0.2 mmol, 75.6 mg) in glacial acetic acid (2 mL) was added hydrogen bromide (48% in water, 2 mmol, 0.34 mL). Under the nitrogen atmosphere, the obtained mixture was stirred at 60 °C for 12 h. Then the product was extracted with DCM (15 mL  $\times$  3), and washed with brine (15 mL). The organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>, and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) to give **16g** (56.0 mg, 77% yield).

# 11) Synthesis of 1-benzyl-2-(benzyloxy)-*N*-(tert-butyl)-5-oxo-3-phenyl-2,5-dihydro-1*H*-pyrrol e-2-carboxamide (16g)



To a mixture of **16g** (0.2 mmol, 72.8 mg), Bu<sub>4</sub>NBr (0.002 mmol, 7 mg) and NaOH (8 mmol, 4M, aq.) in DCM (2.0 mL) was added benzyl bromide (0.6 mmol, 102 mg). Under nitrogen atmosphere, the obtained mixture was placed in a preheated oil bath at 80 °C, and stirred at 80 °C for 12 h. Then the product was extracted with DCM (15 mL  $\times$  3), and washed with brine (15 mL). The organic layer

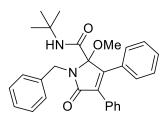
was dried over Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) to give **17g** (64.5 mg, 71% yield).


12) Synthesis of 1-benzyl-2-(tert-butylcarbamoyl)-5-oxo-3-phenyl-2,5-dihydro-1*H*-pyrrol-2-yl acetate (18g)<sup>[6]</sup>



To a mixture of **16g** (0.2 mmol, 72.8 mg) in DCM (2 mL) at 0 °C was added DMAP (0.02 mmol, 3.2 mg), triethylamine (0.3 mmol, 43  $\mu$ L) and Ac<sub>2</sub>O (0.3 mmol, 28  $\mu$ L). The reaction mixture was stirred at room temperature for 2 h. After addition of anappropriate volume of aqueous water, the product was extracted with DCM (15 mL × 3), and washed with brine (15 mL). The organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) to give **18g** (58.5 mg, 72% yield).

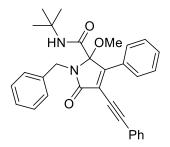
#### 6.2 Characterization Data of Products 7g-18g


## 1-Benzyl-4-bromo-*N*-(tert-butyl)-2-methoxy-5-oxo-3-phenyl-2,5-dihydro-1*H*-pyrrole-2carboxamide (7g):



White solid, 65.7 mg, 72% yield; mp 148.1 – 150.1 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta = 7.69 - 7.67$  (m, 2H), 7.42 – 7.37 (m, 5H), 7.32 – 7.25 (m, 3H), 6.80 (br, 1H), 4.80 (d, J = 15.2 Hz, 1H), 4.20 (d, J = 15.2 Hz, 1H), 2.84 (s, 3H), 1.23 (s, 9H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta = 166.6$ , 163.5, 149.1,

136.5, 130.3, 123.0, 129.0, 128.7, 128.5, 128.1, 127.7, 118.9, 96.9, 52.0, 51.2, 44.7, 28.41. HRMS (ESI-TOF) m/z: [M+Na]<sup>+</sup> calcd for C<sub>23</sub>H<sub>25</sub>BrN<sub>2</sub>NaO<sub>3</sub> 479.0941, found: 479.0946.

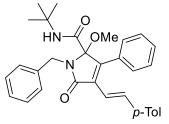

1-Benzyl-*N*-(tert-butyl)-2-methoxy-5-oxo-3,4-diphenyl-2,5-dihydro-1*H*-pyrrole-2-carboxamide (8g):



Colorless oil, 66.3 mg, 73% yield; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta = 7.40 - 7.34$  (m, 4H), 7.24 – 7.17 (m, 11H), 6.77 (br, 1H), 4.73 (d, J = 15.1 Hz, 1H), 4.18 (d, J = 15.1 Hz, 1H), 2.85 (s, 3H), 1.13 (s, 9H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta = 170.6$ , 164.5, 147.5, 137.1, 135.9, 131.5, 130.6, 130.0, 129.2,

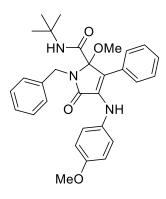
129.0, 128.8, 128.6, 128.4, 128.3, 127.5, 115.5, 95.9, 51.8, 50.8, 44.2, 28.4. HRMS (ESI-TOF) m/z: [M+Na]<sup>+</sup> calcd for C<sub>29</sub>H<sub>30</sub>N<sub>2</sub>NaO<sub>3</sub> 477.2149, found: 477.2158.

1-Benzyl-*N*-(tert-butyl)-2-methoxy-5-oxo-3-phenyl-4-(phenylethynyl)-2,5-dihydro-1*H*-pyrrole-2-carboxamide (9g):




Colorless oil, 62.2 mg, 65% yield; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta = 8.10 - 8.07$  (m, 2H), 7.60 – 7.57 (m, 2H), 7.42 – 7.40 (m, 4H), 7.38 – 7.35 (m, 3H), 7.32 – 7.23 (m, 4H), 6.88 (br, 1H), 4.78 (d, J = 15.3 Hz, 1H), 4.26 (d, J = 15.3 Hz, 1H), 2.82 (s, 3H), 1.25 (s, 9H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta = 168.4$ , 164.4, 151.3, 136.9, 132.2, 130.8, 130.7, 129.3, 128.8, 128.7, 128.5,

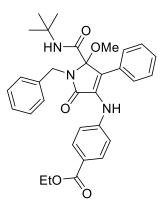
128.4(6), 127.8, 127.6, 122.5, 119.1, 101.2, 95.9, 82.0, 51.9, 51.1, 43.9, 28.5. HRMS (ESI-TOF) m/z:  $[M+Na]^+$  calcd for  $C_{31}H_{30}N_2NaO_3$  501.2149, found: 501.2157.


(E)-1-benzyl-N-(tert-butyl)-2-methoxy-4-(4-methylstyryl)-5-oxo-3-phenyl-2,5-dihydro-1H-

pyrrole-2-carboxamide (10g):



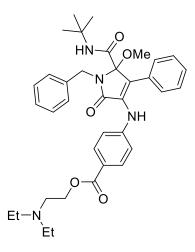
Colorless oil, 70.2 mg, 71% yield; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta = 8.08$ (d, J = 16.3 Hz, 1H), 7.36 – 7.33 (m, 6H), 7.27 – 7.17 (m, 6H), 7.04 (d, J = 7.9 Hz, 2H), 6.79 (d, J = 16.4 Hz, 2H), 4.72 (d, J = 15.1 Hz, 1H), 4.11 (d, J = 15.1 Hz, 1H), 2.76 (s, 3H), 2.25 (s, 3H), 1.15 (s, 9H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta = 170.6$ , 164.7, 146.1, 138.5, 137.2, 136.7, 134.7,


132.1, 131.7, 129.4, 129.2, 129.0, 129.0(0), 128.7, 128.4, 127.5, 127.1, 116.9, 95.8, 51.8, 50.9, 44.0, 28.4, 21.4. HRMS (ESI-TOF) m/z: [M+Na]<sup>+</sup> calcd for C<sub>32</sub>H<sub>34</sub>N<sub>2</sub>NaO<sub>3</sub> 517.2462, found: 517.2462. **1-Benzyl-***N***-(tert-butyl)-2-methoxy-4-((4-methoxyphenyl)amino)-5-oxo-3-phenyl-2,5-dihydro-***1H***-pyrrole-2-carboxamide (11g):** 



White solid, 71.9 mg, 72% yield; mp 182.1 – 184.1 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.34 (d, *J* = 7.1 Hz, 2H), 7.26 – 7.16 (m, 3H), 7.99 – 6.95 (m, 3H), 6.92 – 6.90 (m, 2H), 6.80 (s, 1H), 6.59 (s, 1H), 6.50 – 6.43 (m, 4H), 4.72 (d, *J* = 15.2 Hz, 1H), 4.17 (d, *J* = 15.2 Hz, 1H), 3.59 (s, 3H), 2.75 (s, 3H), 1.15 (s, 9H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  = 168.8, 165.6, 155.1, 136.9, 132.1, 132.0(9), 131.6, 129.0, 128.4, 128.2, 127.5, 127.5(0), 127.0,

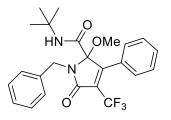
121.5, 113.5, 113.2, 96.3, 55.6, 51.6, 50.5, 44.3, 28.4. HRMS (ESI-TOF) m/z:  $[M+Na]^+$  calcd for  $C_{30}H_{33}N_3NaO_4$  522.2363, found: 522.2375.


# Ethyl-4-((1-benzyl-5-(tert-butylcarbamoyl)-5-methoxy-2-oxo-4-phenyl-2,5-dihydro-1*H*-pyrrol-3-yl)amino)benzoate (12g):



White solid, 80.1 mg, 74% yield; mp 211.6 – 213.3 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta = 7.59$  (d, J = 8.7 Hz, 2H), 7.34 – 7.32 (m, 2H), 7.26 – 7.16 (m, 3H), 7.07 – 7.01 (m, 6H), 6.81 (s, 1H), 6.51 – 6.47 (m, 2H), 4.72 (d, J = 15.2 Hz, 1H), 4.22 – 4.16 (m, 3H), 2.79 (s, 3H), 1.24 (t, J = 7.1 Hz, 3H), 1.14 (s, 9H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta = 168.4$ , 166.4, 165.0, 143.1, 136.6, 131.3, 130.6, 130.2, 128.9, 128.4, 128.1, 128.0, 127.9(7), 127.6, 123.1, 119.2, 117.8, 96.2, 60.6, 51.7, 50.8, 44.3, 28.4, 14.4. HRMS (ESI-TOF) m/z:

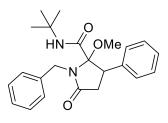
 $[M+Na]^+$  calcd for  $C_{32}H_{35}N_3NaO_5$  564.2469, found: 564.2477.


2-(Diethylamino)ethyl 4-((1-benzyl-5-(tert-butylcarbamoyl)-5-methoxy-2-oxo-4-phenyl-2,5dihydro-1*H*-pyrrol-3-yl)amino)benzoate (13g):



Yellow solid, 84.5 mg, 69% yield; mp 150.3 – 152.2 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta = 7.77 - 7.57$  (m, 2H), 7.59 – 7.57 (m, 2H), 7.34 – 7.32 (m, 2H), 7.25 – 7.18 (m, 5H), 6.82 (s, 1H), 7.55 – 6.47 (m, 2H), 4.72 (d, J = 15.2 Hz, 1H), 4.29 – 4.23 (m, 2H), 4.21 (d, J = 3.0 Hz, 1H), 2.79 (s, 3H), 2.73 (t, J = 6.2 Hz, 2H), 2.57 – 2.51 (m, 3H), 1.14 (s, 9H), 1.02 – 0.95 (m, 6H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta = 168.4$ , 166.4, 165.0, 143.1, 136.6, 131.3, 130.6, 130.2, 128.9, 128.4, 128.1, 128.0, 127.9(6), 127.6, 123.1, 119.2, 117.8, 96.2, 60.6, 51.7, 50.8, 44.3, 28.4, 14.4.

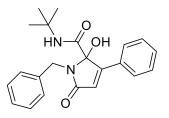
HRMS (ESI-TOF) m/z: [M+H]<sup>+</sup> calcd for C<sub>36</sub>H<sub>45</sub>N<sub>4</sub>O<sub>5</sub> 613.3384, found: 613.3392.


### 1-Benzyl-N-(tert-butyl)-2-methoxy-5-oxo-3-phenyl-4-(trifluoromethyl)-2,5-dihydro-1H-pyrrole-2-carboxamide (14g):



Colorless oil, 67.8 mg, 76% yield; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$ = 7.38 – 7.34 (m, 2H), 7.32 – 7.29 (m, 3H), 7.25 – 7.19 (m, 5H), 6.64 (br, 1H), 4.69 (d, *J* = 15.1 Hz, 1H), 4.07 (d, *J* = 15.1 Hz, 1H), 2.80 (s, 3H), 1.13 (s, 9H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  = 165.6 (m), 162.8, 157.6 (m), 136.2, 130.5,

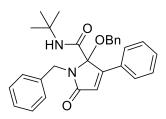
129.2, 129.0, 128.6, 128.5, 128.4 (d, J = 1.7 Hz), 127.9, 126.5 (q, J = 33.8 Hz), 120.5 (d, J = 272.4 Hz), 96.2, 52.1, 51.4, 44.4, 28.4. <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta = -59.8$  (s, 3F). HRMS (ESI-TOF) m/z: [M+Na]<sup>+</sup> calcd for C<sub>24</sub>H<sub>25</sub>F<sub>3</sub>N<sub>2</sub>NaO<sub>3</sub> 469.1709, found: 469.1718.


#### 1-Benzyl-N-(tert-butyl)-2-methoxy-5-oxo-3-phenylpyrroiline-2-carboxamide (15g):



Colorless oil, 49.4 mg, 65% yield; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.37 (d, J = 7.1 Hz, 2H), 7.28 – 7.26 (m, 4H), 7.24 – 7.21 (m, 4H), 6.20 (br, 1H), 4.59 (d, J = 14.8 Hz, 1H), 4.02 (d, J = 14.8 Hz, 1H), 3.76 – 3.71 (m, 1H), 3.35 – 3.28 (m, 1H) , 3.12 (s, 3H), 2.77 – 2.71 (m, 1H), 0.86 (s, 9H). <sup>13</sup>C

NMR (101 MHz, CDCl<sub>3</sub>) δ = 174.9, 166.1, 137.2, 135.2, 129.4, 128.6, 128.4, 128.3, 127.6, 127.4, 98.9, 50.8, 50.2, 45.0, 41.6, 34.5, 28.2. HRMS (ESI-TOF) m/z: [M+Na]<sup>+</sup> calcd for C<sub>23</sub>H<sub>28</sub>N<sub>2</sub>NaO<sub>3</sub> 403.1992, found: 403.2001.


1-Benzyl-*N*-(tert-butyl)-2-hydroxy-5-oxo-3-phenyl-2,5-dihydro-1*H*-pyrrole-2-carboxamide (16g):



White solid, 56.0 mg, 77% yield; mp 182.0 – 184.0 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta = 7.50 - 7.48$  (m, 2H), 7.31 – 7.30 (m, 3H), 7.27 – 7.19 (m, 6H), 6.41 (s, 1H), 5.01 (d, J = 14.9 Hz, 1H), 4.74 (s, 1H), 4.12 (d, J = 14.9 Hz, 1H), 1.05 (s, 9H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta = 171.5$ , 165.4, 155.9,

136.7, 130.7, 130.6, 129.0, 128.9, 128.7, 128.0, 127.1, 120.7, 68.8, 51.7, 45.2, 28.3. HRMS (ESI-TOF) m/z:  $[M+Na]^+$  calcd for  $C_{22}H_{24}N_2NaO_3$  387.1679, found: 387.1682.


1-Benzyl-2-(benzyloxy)-*N*-(tert-butyl)-5-oxo-3-phenyl-2,5-dihydro-1*H*-pyrrole-2-carboxamide (17g):

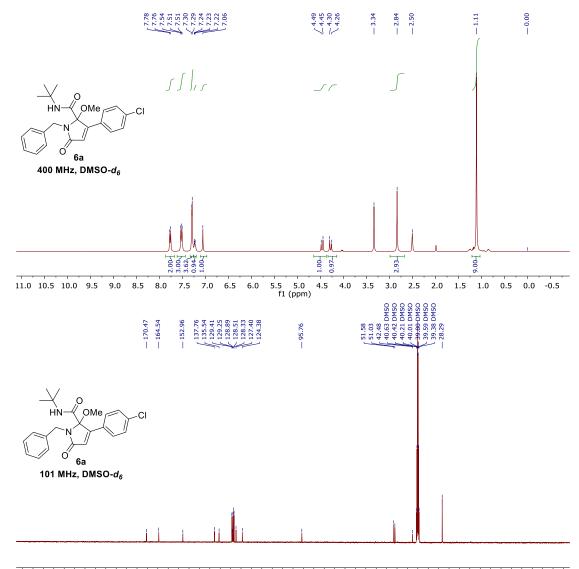


Colorless oil, 64.5 mg, 71% yield; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta = 7.59 - 7.56$  (m, 2H), 7.32– 7.29 (m, 5H), 7.23 – 7.09 (m, 6H), 6.88 (br, 1H), 6.66 (s, 1H), 6.62 (d, J = 6.7 Hz, 2H), 4.79 (d, J = 15.4 Hz, 1H), 4.10 (d, J = 15.4 Hz, 1H), 3.89 (dd, J = 25.0, 10.3 Hz, 2H), 1.20 (s, 9H). <sup>13</sup>C NMR (101 MHz,

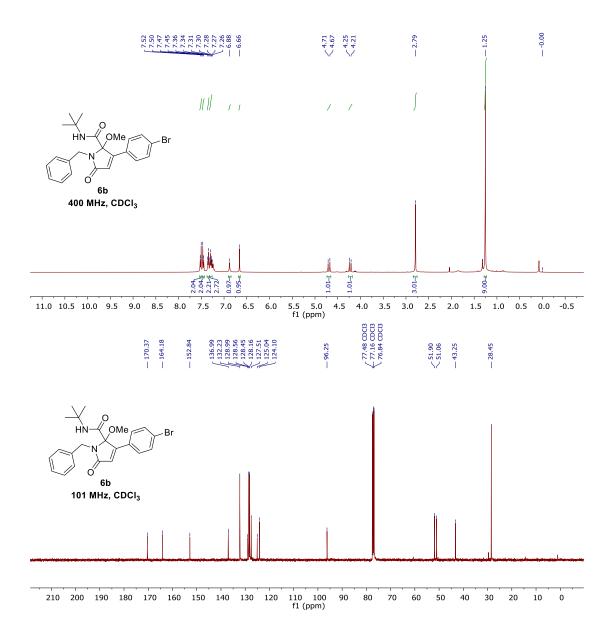
CDCl<sub>3</sub>)  $\delta = 170.8$ , 164.4, 154.4, 137.4, 135.9, 130.7, 130.1, 129.0, 128.7, 128.6, 128.4, 128.3, 128.2, 127.6, 126.9, 123.5, 96.4, 66.3, 51.9, 43.6, 28.5. HRMS (ESI-TOF) m/z: [M+Na]<sup>+</sup> calcd for C<sub>29</sub>H<sub>30</sub>N<sub>2</sub>NaO<sub>3</sub> 477.2149, found: 477.2160.

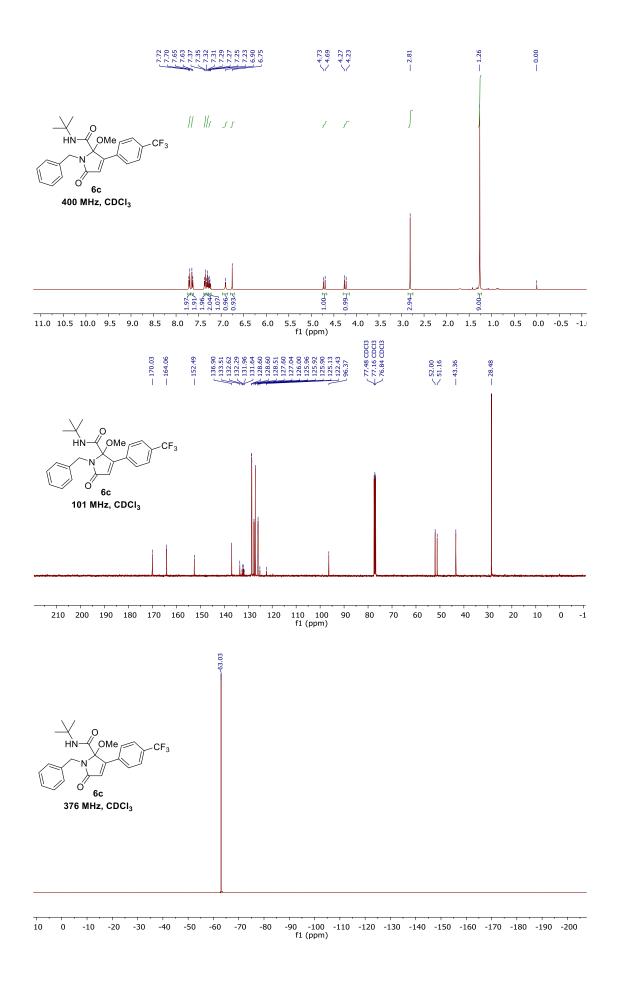
1-benzyl-2-(tert-butylcarbamoyl)-5-oxo-3-phenyl-2,5-dihydro-1*H*-pyrrol-2-yl acetate (18g):

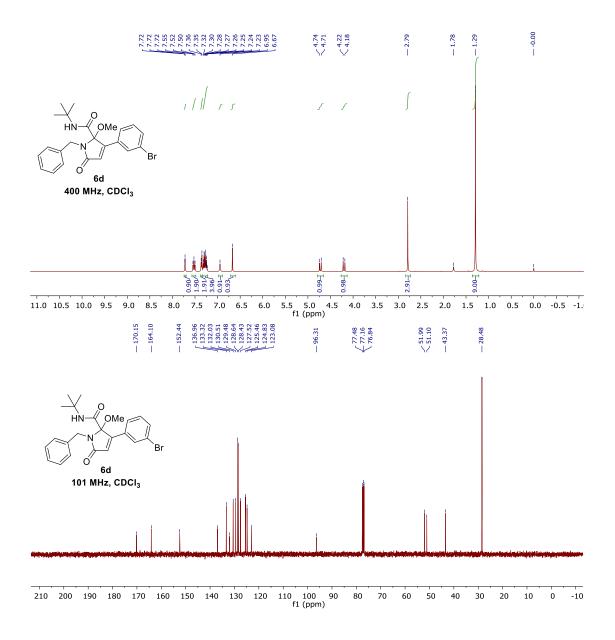


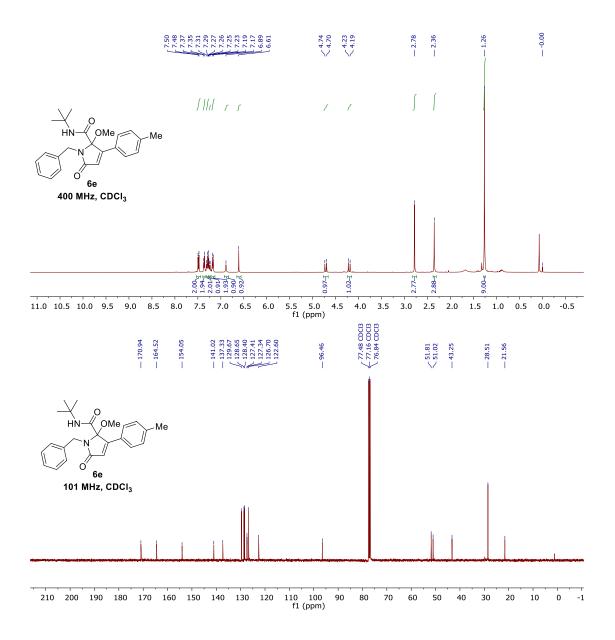

White solid, 58.5 mg, 72% yield; mp 182.0 – 183.2 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta = 7.40 - 7.37$  (m, 2H), 7.30 – 7.27 (m, 3H), 7.25 – 7.24 (m, 4H), 7.20 – 7.18 (m, 1H), 6.57 (s, 1H), 6.34 (br, 1H), 5.10 (d, J = 15.5 Hz, 1H), 3.86 (d, J = 15.5 Hz, 1H), 1.31 (s, 9H), 1.28 (s, 3H). <sup>13</sup>C NMR (101 MHz,

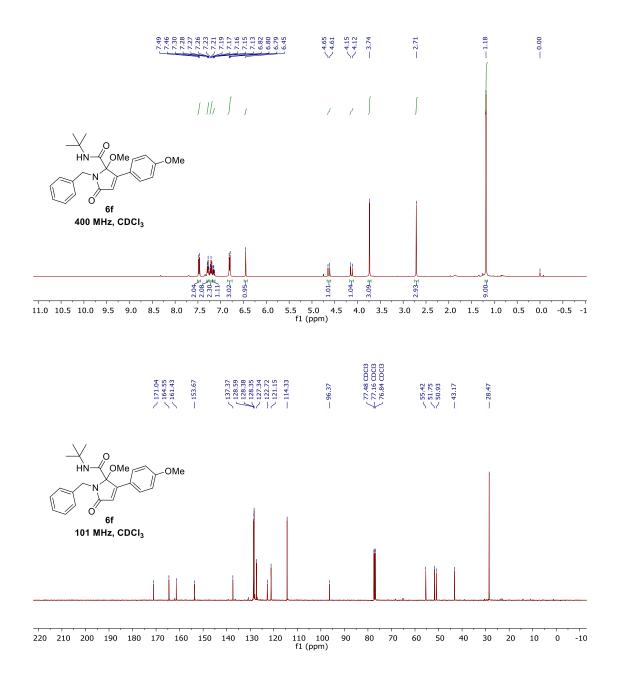
CDCl<sub>3</sub>)  $\delta$  = 170.5, 166.3, 163.0, 155.3, 137.2, 130.5, 129.9, 129.0, 128.7, 128.6(8), 127.6, 126.9, 122.6, 94.2, 52.4, 43.7, 28.5, 20.8. HRMS (ESI-TOF) m/z: [M+Na]<sup>+</sup> calcd for C<sub>24</sub>H<sub>26</sub>N<sub>2</sub>NaO<sub>4</sub> 429.1785, found: 429.1796.

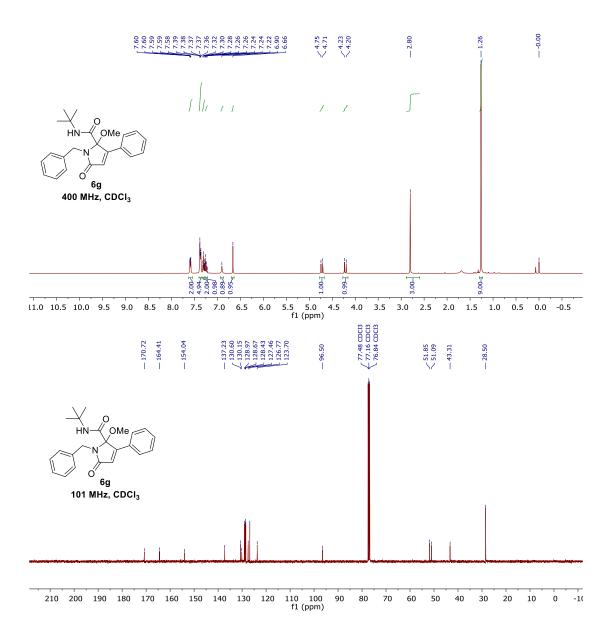

### 7. Reference

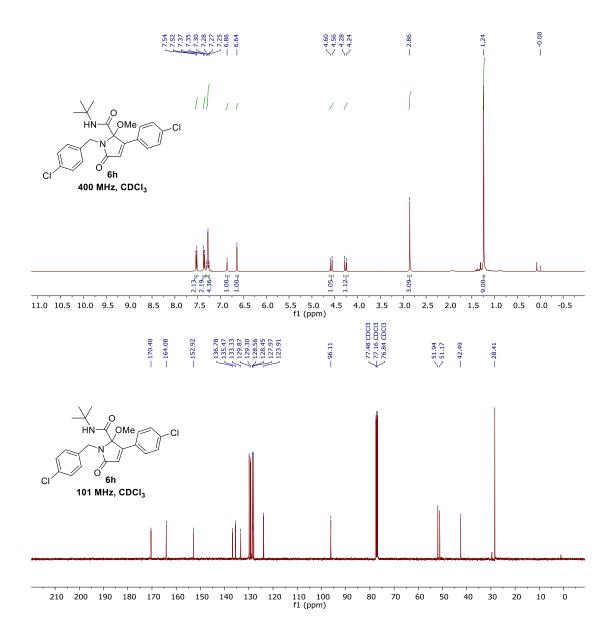

- [1] Y. V. Bakhtiyarovaa, D. I. Bakhtiyarova, K. A. Ivshina, I. V. Galkinaa, I. I. Krasnyukb, A. V. Gerasimova, O. N. Kataevaa and V. I. Galkina, Synthesis, Structure, and Antimicrobial Activity of (Carboxyalkyl)dimethylsulfonium Halides, *Russ. J. Gen. Chem.*, 2017, **87**, 1903–1907.
- [2] P. Wang, W.-J. Tao, X.-L. Sun, S. Liao and Y. Tang, A Highly Efficient and Enantioselective Intramolecular Cannizzaro Reaction under TOX/Cu(II) Catalysis, J. Am. Chem. Soc., 2013, 135, 16849–16852.
- [3] (a) L. Zhang, T. Meng, R. Fan and J. Wu, General and efficient route for the synthesis of 3,4-disubstituted coumarins via Pd-catalyzed site-selective cross-coupling reactions, *J. Org. Chem.*, 2007, 72, 7279–7286; (b) T. Sasaki, K. Moriyama and H. Togo, One-pot preparation of 4-aryl-3-bromocoumarins from 4-aryl-2-propynoic acids with diaryliodonium salts, TBAB, and Na<sub>2</sub>S<sub>2</sub>O<sub>8</sub>, *Beilstein J. Org. Chem.*, 2018, 14, 345–353.
- [4] (a) Q.-Y. Chen and S.-W. Wu, Methyl Fluorosulphonyldifluoroacetate; a New Trifluoromethylating Agent, J. Chem. Soc., Chem. Commun., 1989, 11, 705–706; (b) Q. Xie and J. Hu, Chen's Reagent: A Versatile Reagent for Trifluoromethylation, Difluoromethylenation, and Difluoroalkylation in Organic Synthesis, Chin. J. Chem., 2020, 38, 202–212.
- [5] S. Intagliata, M. A. Helal, L. Materia, V. Pittala, L. Salerno, A. Marrazzo, A. Cagnotto, M. Salmona,
   M. N. Modica and G. Romeo, Synthesis and Molecular Modelling Studies of New 1,3-Diaryl-5 Oxo-Proline Derivatives as Endothelin Receptor Ligands, *Molecules*, 2020, 25, 1581.
- [6] M. Bhanuchandra, M. R. Kuram and A. K. Sahoo, Silver(I)-Catalyzed Reaction between Pyrazole and Propargyl Acetates: Stereoselective Synthesis of the Scorpionate Ligands (*E*)-Allyl-gemdipyrazoles (ADPs), *J. Org. Chem.*, 2013, 78, 11824–11834.

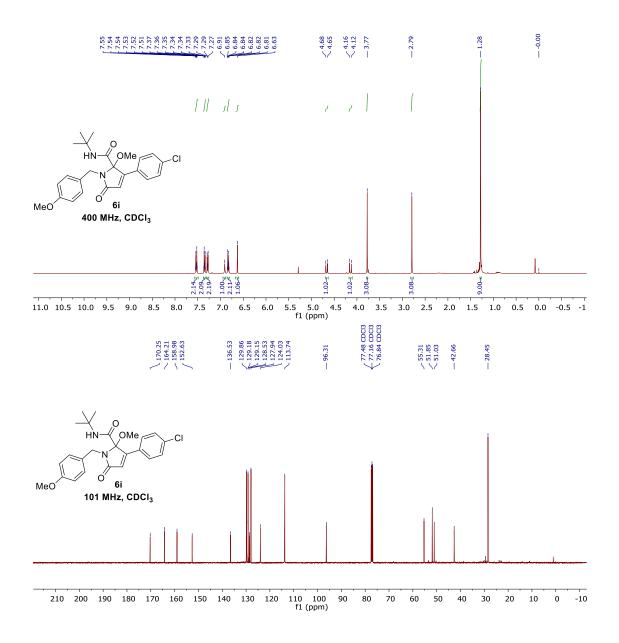

# 8. Copies of NMR Spectras of Compounds 6a-6x, 7g-18g.

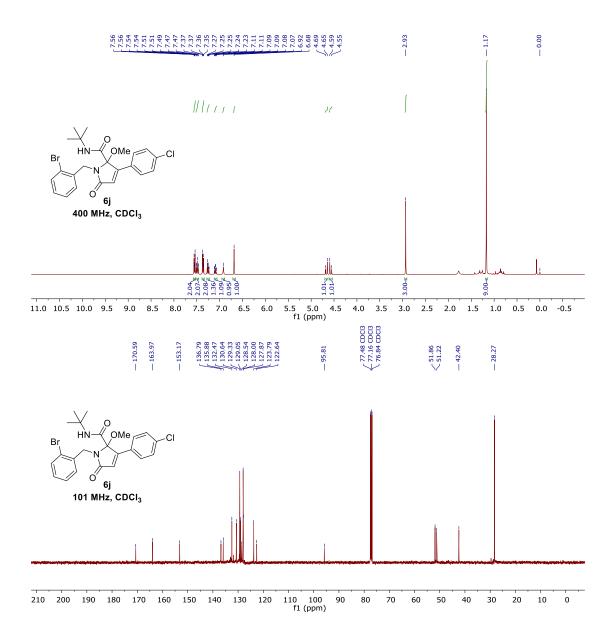


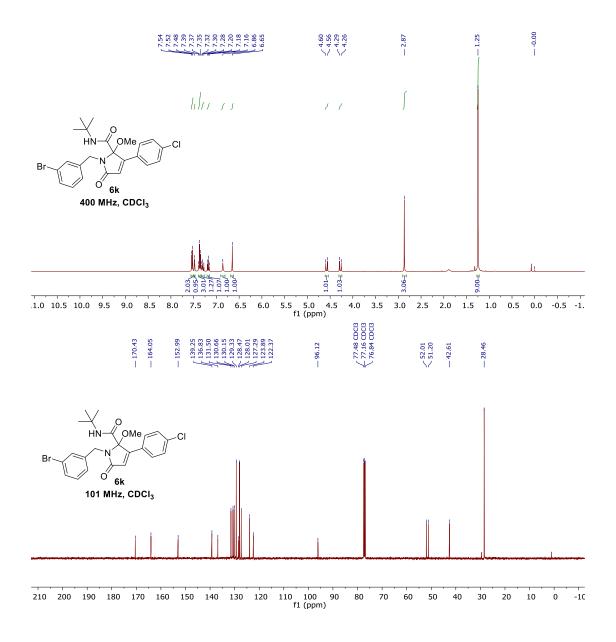


230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -3C f1 (ppm)

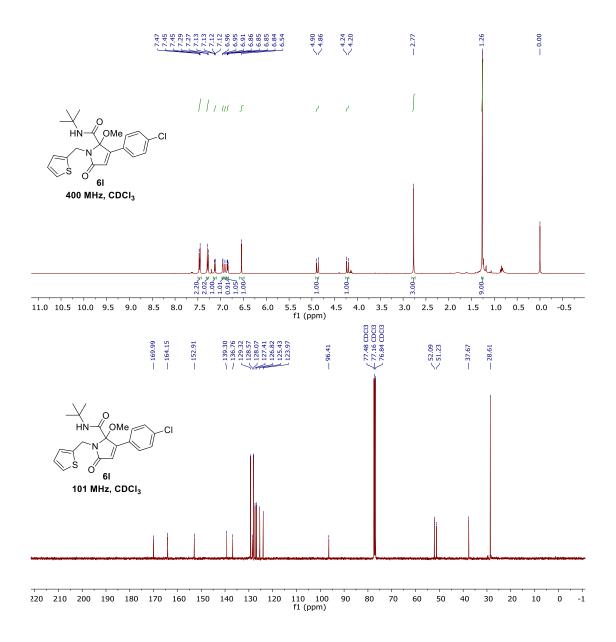


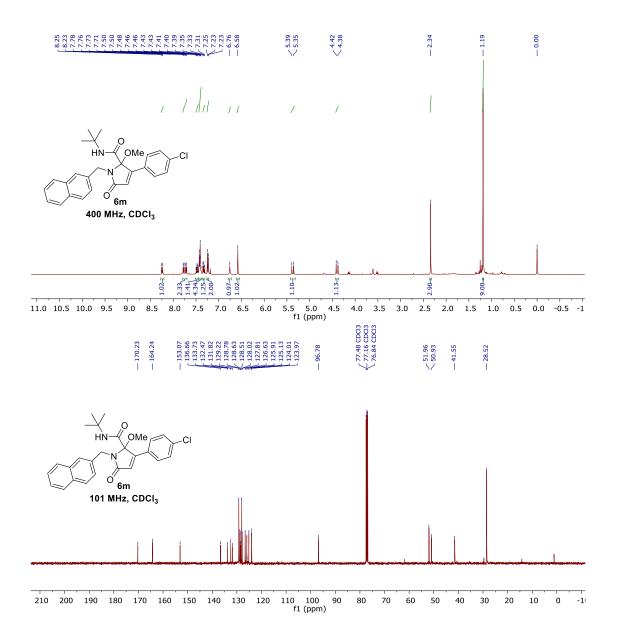



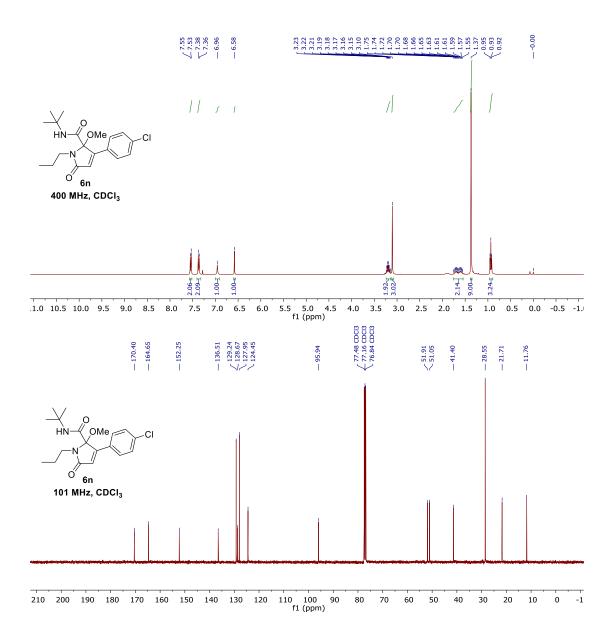



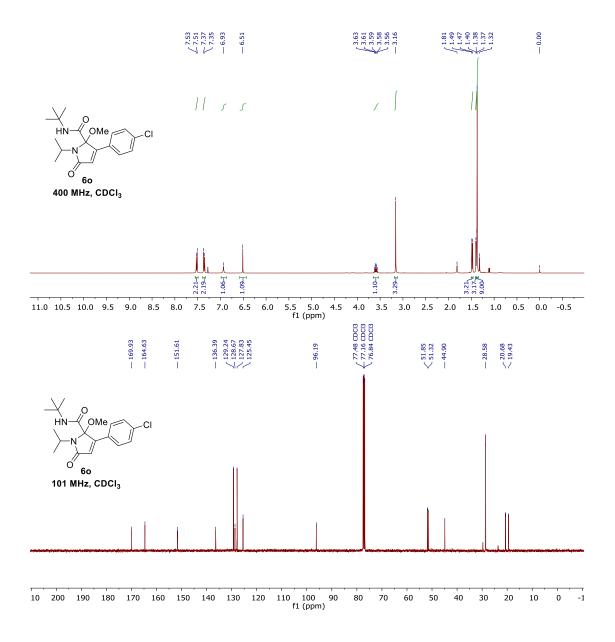



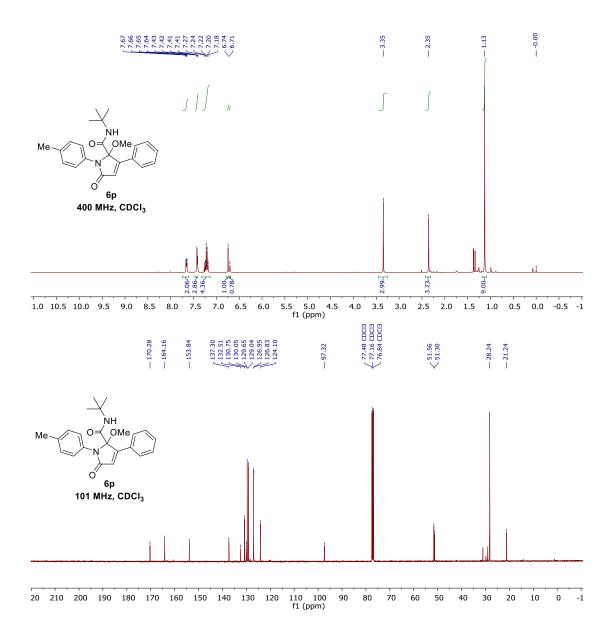



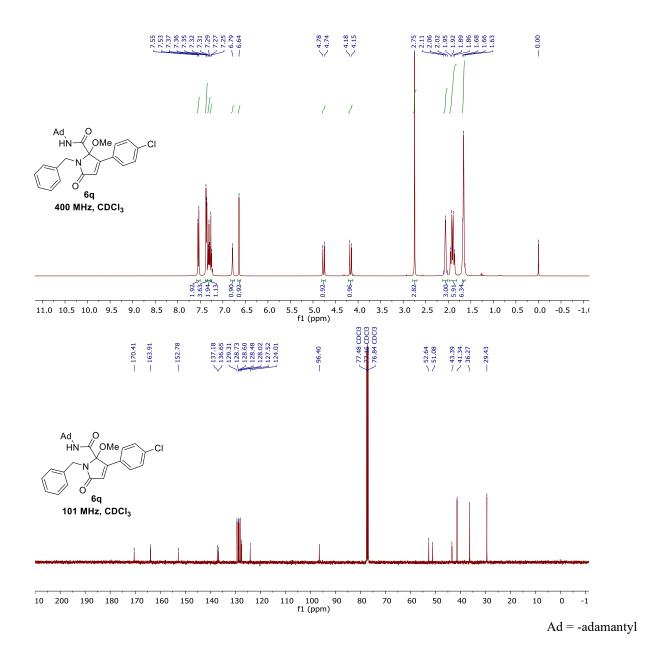



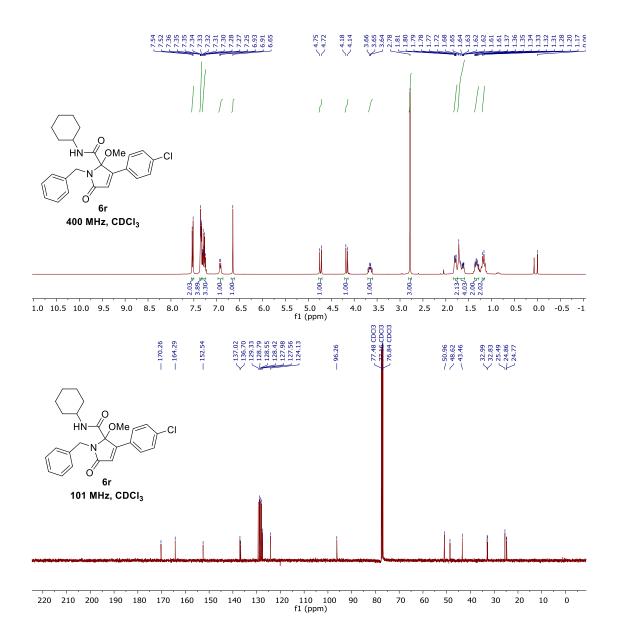



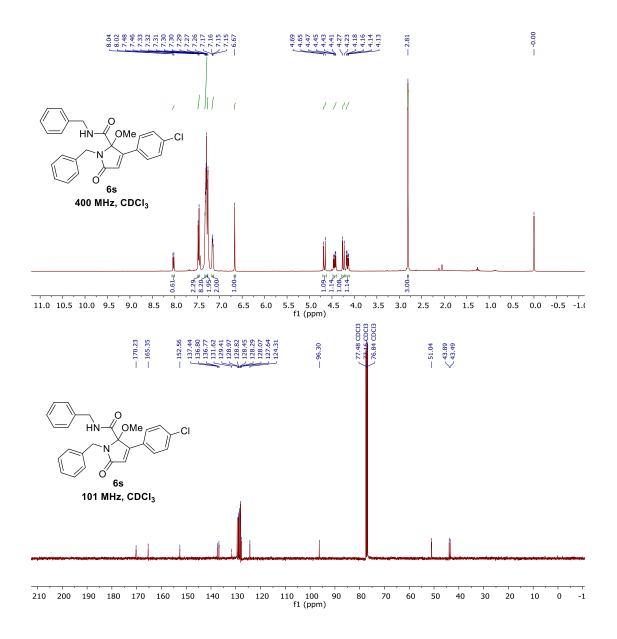



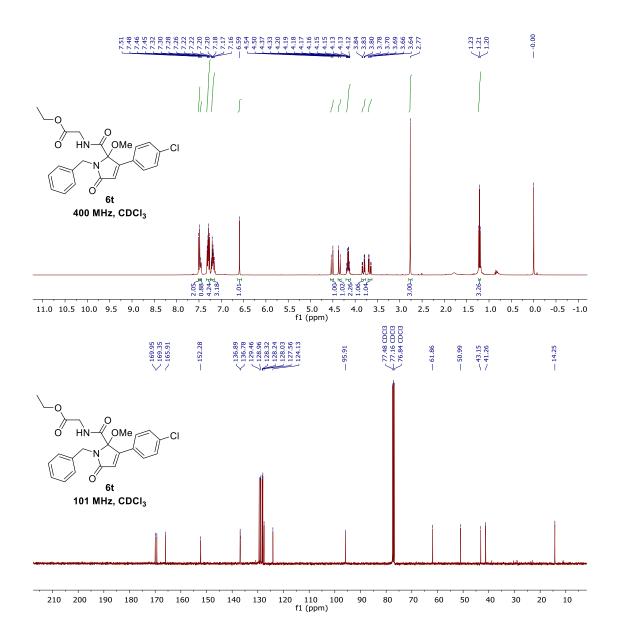



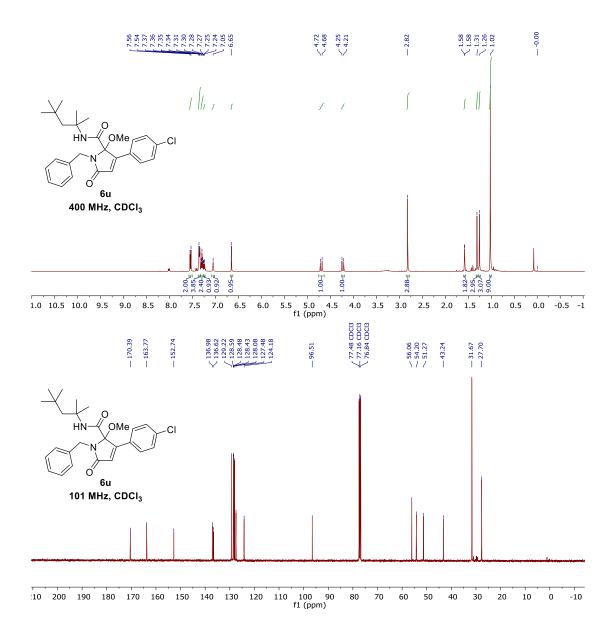



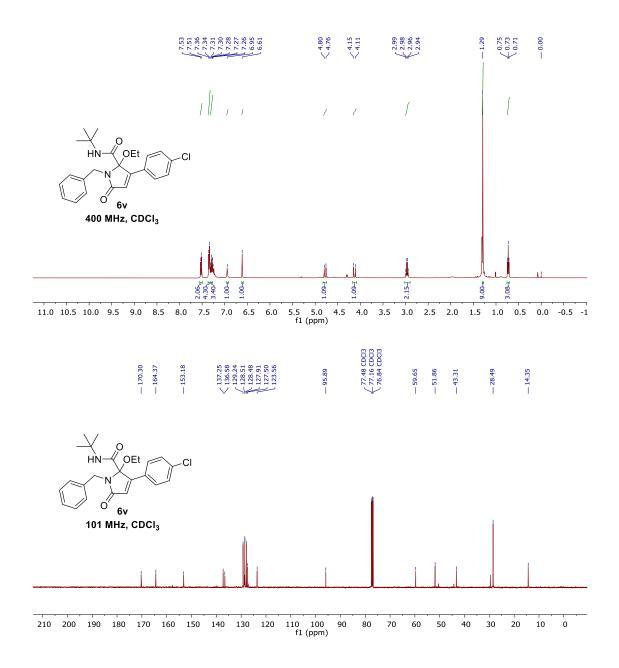



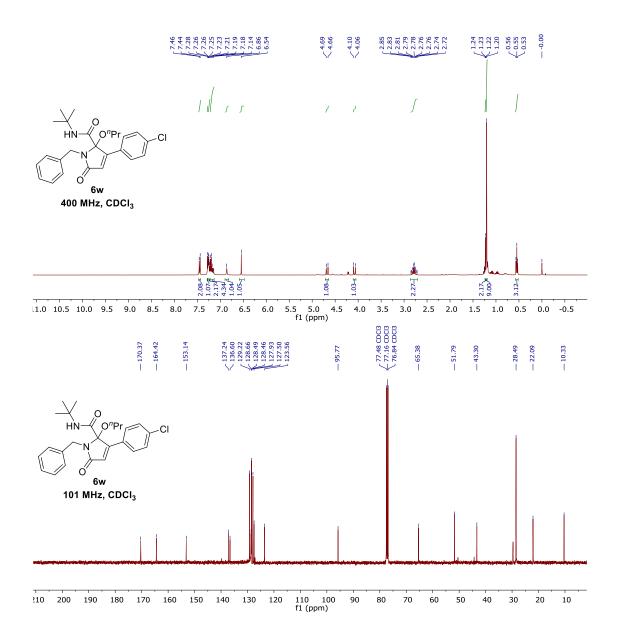



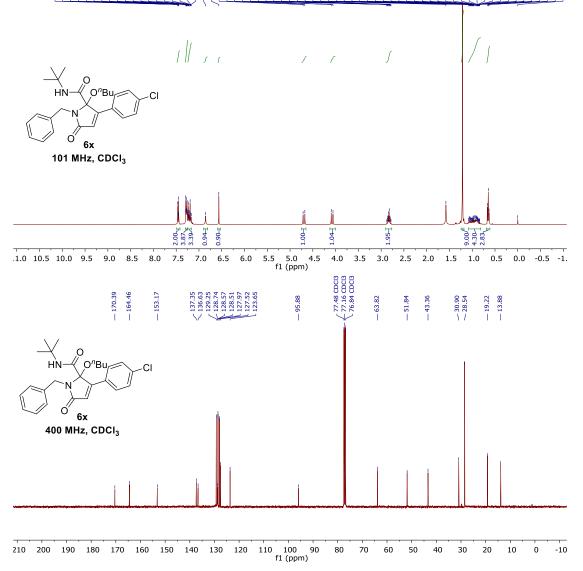



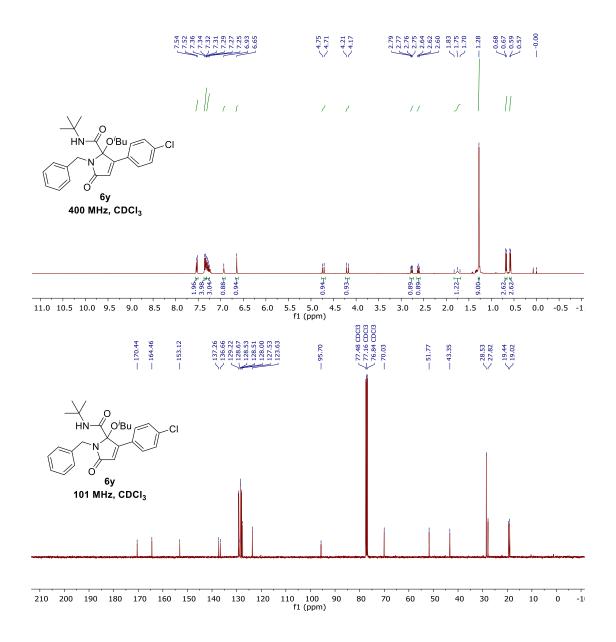



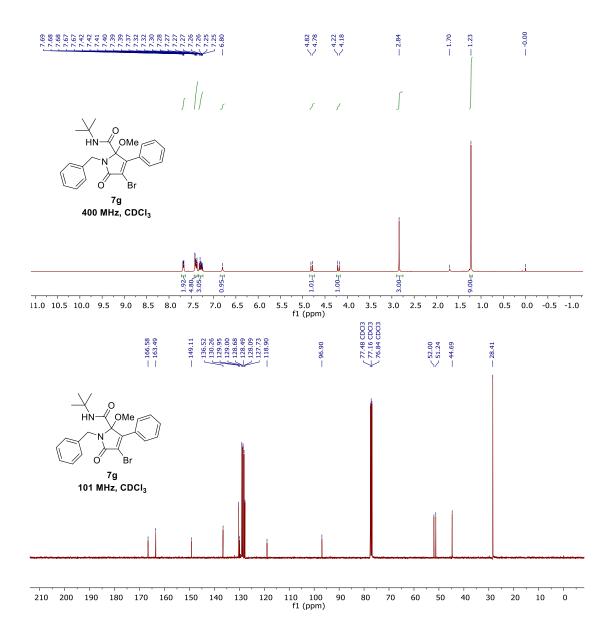



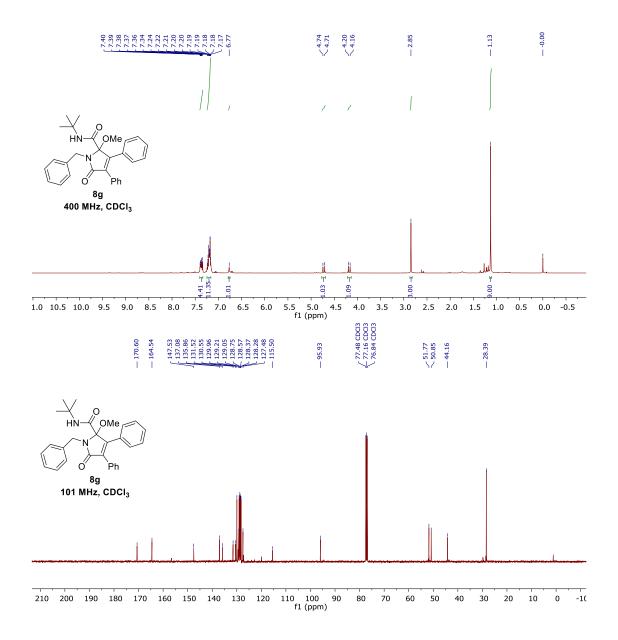



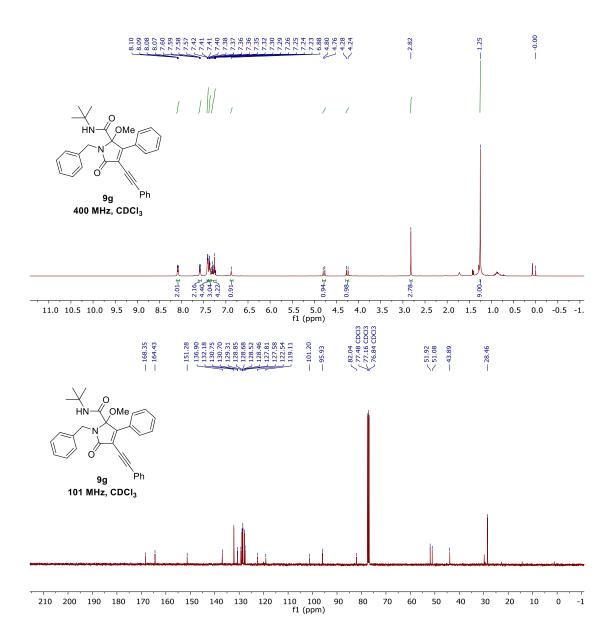



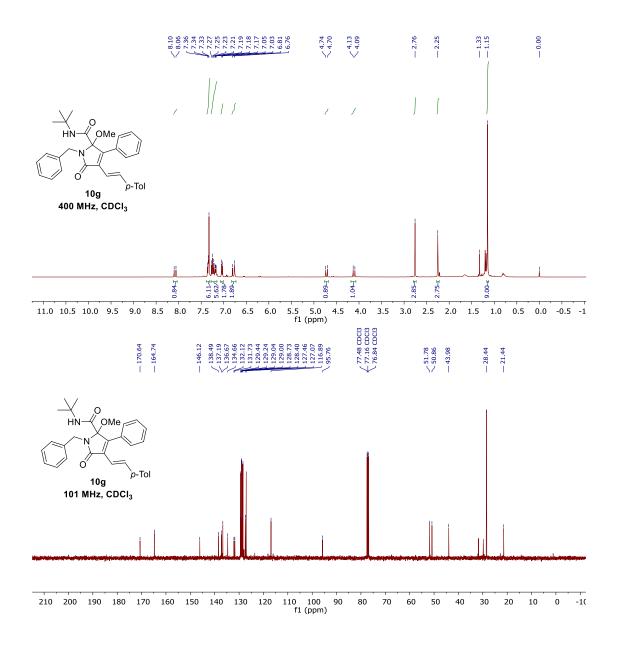


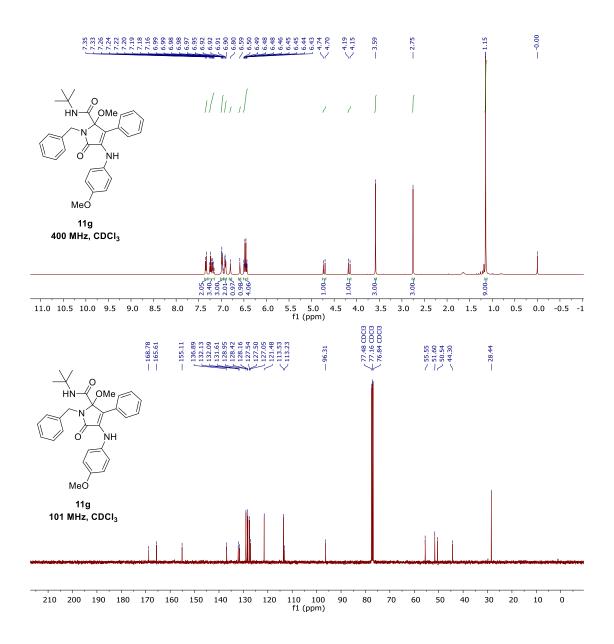



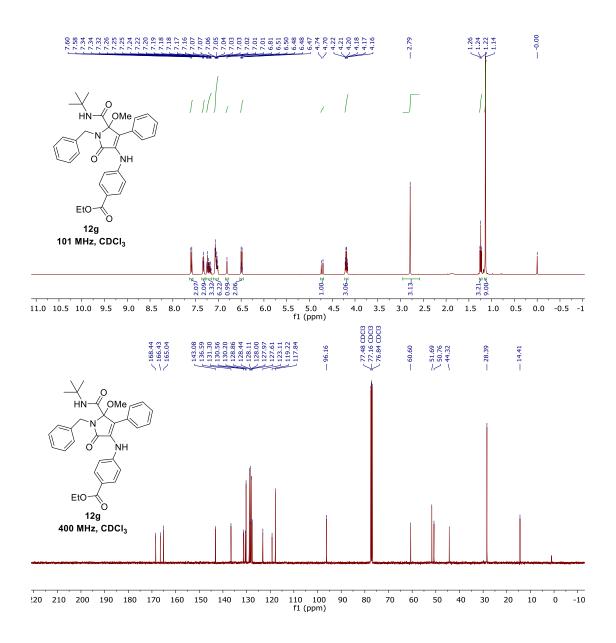



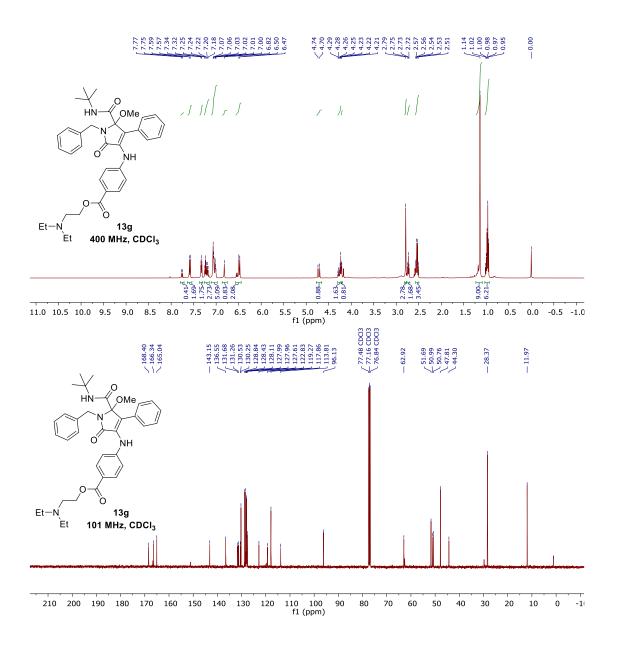



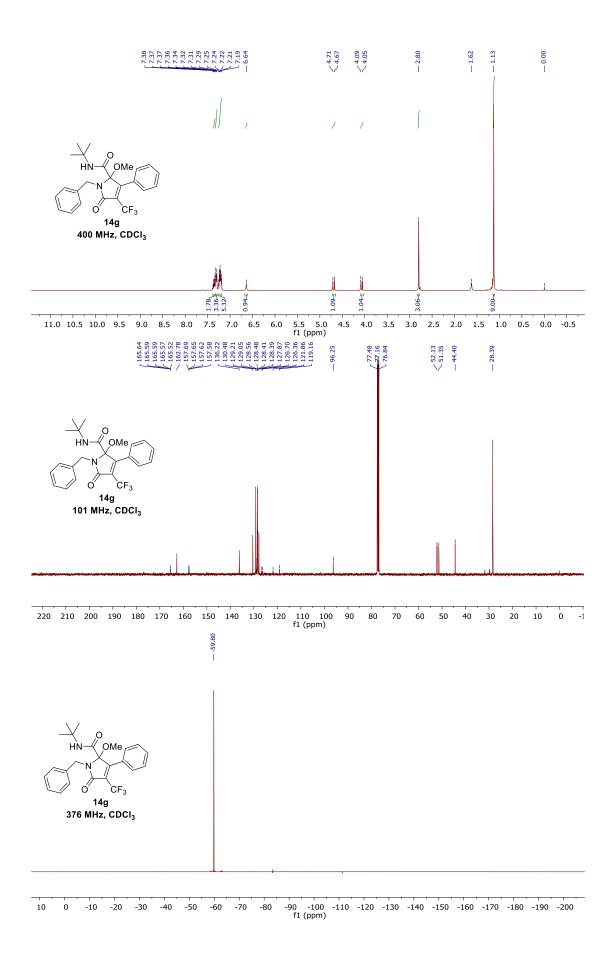





## 

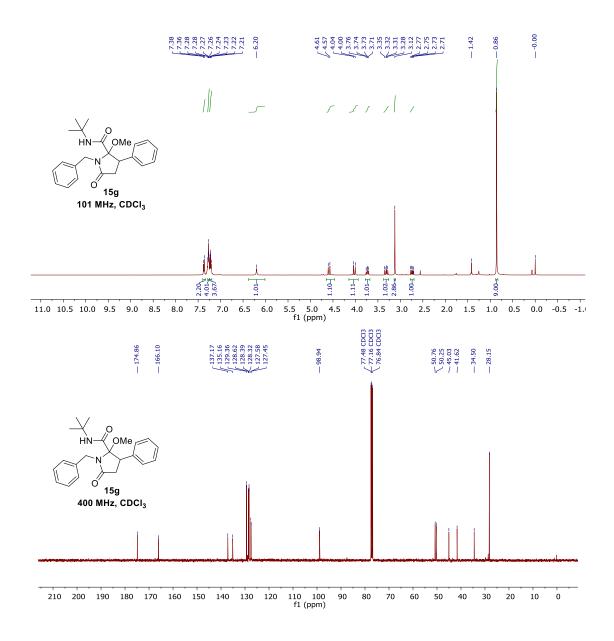


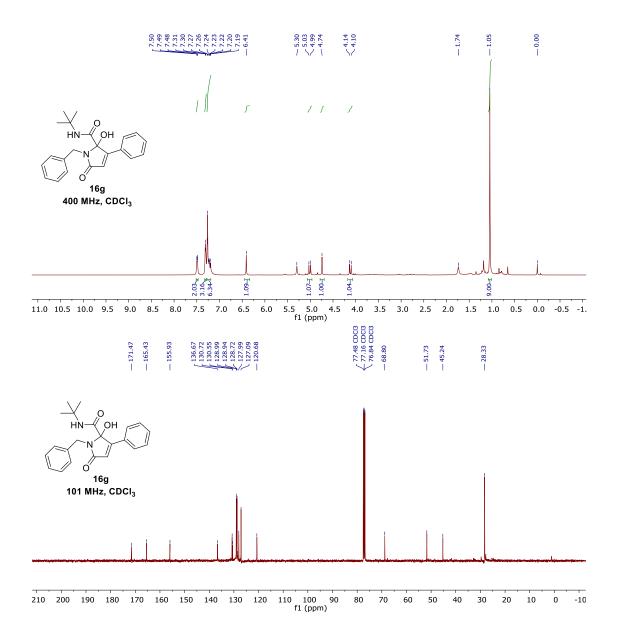



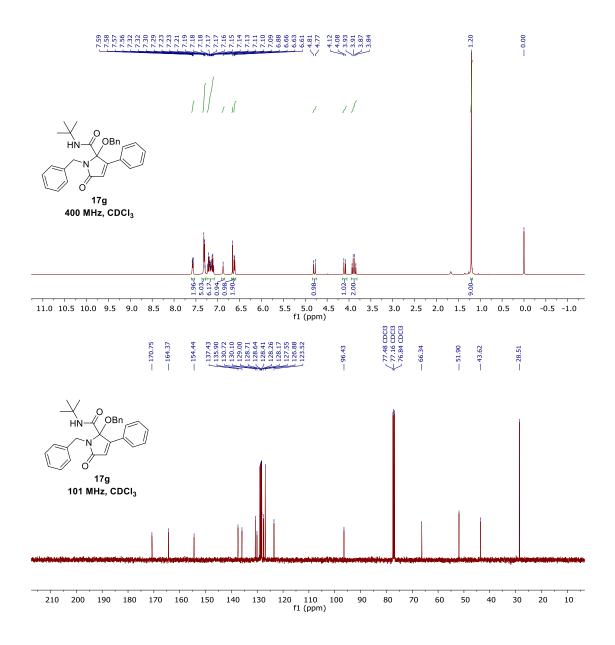



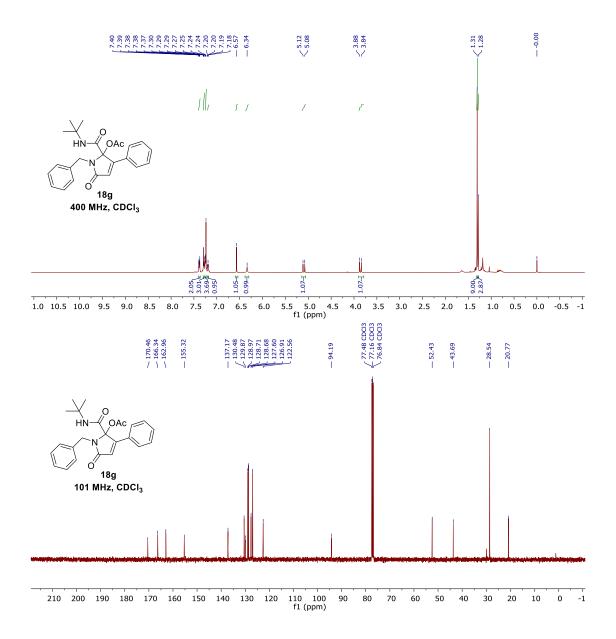






**S61** 









## 9. Copies of HRMS Analysis

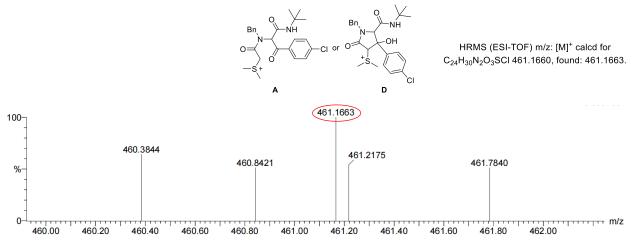



Figure S1. HRMS of A or D