Supporting Information for

An Eight-Membered Ring Formed by the Scholl Reaction of *o*-Quateraryls

Xinhe Yang,^{#, 1, 3} Man Gao,^{#, 2} Han Chen,² Qi Gong,² Qian Miao*,^{2, 3}

 ¹ State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China.
²Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong

Kong, China

³ Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, Shanghai, 230032, China

[#] equal contribution

* email: miaoqian@cuhk.edu.hk

Table of Contents

- 1. Synthesis
- 2. NMR spectra
- 3. Mass spectra
- 4. Single crystal structures
- 5. UV/Vis absorption and fluorescent spectra
- 6. Chiral resolution and circular dichroism spectrum of 2g
- 7. Density functional theory (DFT) calculations
- 8. Cyclic voltammetry
- 9. Fabrication and characterization of organic field effect transistors
- 10. References

1. Synthesis

General information: The reagents and starting materials employed were commercially available and used without further purification or otherwise prepared following the reported methods as indicated. Anhydrous and O₂-free toluene were purified with sodium. Anhydrous and O₂-free CH₂Cl₂ and CH₂ClCH₂Cl was purified with calcium hydride. Super dry DMF was purchased from J&K Scientific compony. NMR spectra were recorded on Agilent, Varian and Bruker 400 MHz spectrometers (¹H NMR: 400 MHz, ¹³C NMR: 100 MHz), and Agilent 600 MHz spectrometer (¹H NMR: 600 MHz, ¹³C NMR: 150 MHz). The chemical shift was recorded in ppm and the following abbreviations were used to indicate multiplicities: s = singlet, d =doublet, t = triplet, m = multiplet, br = broad. Chemical shift values (δ) are expressed in parts per million using residual solvent protons (¹H NMR, $\delta H = 7.26$ for CDCl₃, $\delta H = 5.32$ for CD_2Cl_2 , and $\delta H = 2.50$ ppm for DMSO-d6, $\delta H = 2.05$ for $(CD_3)_2CO$; ¹³C NMR, $\delta C = 77.16$ for CDCl₃, $\delta C = 53.84$ for CD₂Cl₂, and $\delta C = 39.52$ ppm for DMSO-d6, $\delta C = 29.84$ and 206.26 for (CD₃)₂CO) as internal standard. Mass spectra were recorded on a AccuTOF LC-plus 4G spectrometer and Bruker Autoflex speed MALDI-TOFMS. Melting points, without correction, were measured using an Automatic melting point apparatus SGW X-4A from Shanghai INESA Physico-Optical Instrument Co., Ltd.

Scheme S1. Synthesis of 1c-1i.

Dibenzo[b,d]iodol-5-ium triflate, 1g and 1l were prepared according to the reported procedures.¹

General Procedure for the Synthesis of compounds 1c-i¹ Dibenzo[b,d]iodol-5-ium triflate (0.342 g, 0.80 mmol, 1.0 equiv.), arylboronic acid (2.0 mmol, 2.5 equiv.), Pd(dba)₂ (0.008 mmol, 0.01 equiv.), and K₃PO₄ (4 mmol, 5.0 equiv.) were added into a 100 ml Schlenk flask. The flask was charged with nitrogen atmosphere. Then, 20 ml of CH₂Cl₂ that had been pre-bubbled with nitrogen for 30 min was added into the Schlenk flask with continuous stirring. The color of reaction suspension changed from purple to brown within a few minutes. The reaction was kept stirring for 12 hours at room temperature. The solvent was then removed under reduced pressure. The residue was further purified by column chromatography on silica gel using the eluent as indicated below, affording the desired products.

Compound 1c: The crude product was purified by column chromatography on silica gel using hexane as eluent to obtain 1c as white solid (0.086 g, 31% yield). Melting point: 67-70 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.31-7.30 (m, 8H), δ = 6.27 (s, 2H), δ = 6.15 (s, 2H), δ = 2.30 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ = 141.3, 140.2, 137.9, 136.2, 131.2, 129.1, 127.5, 127.0, 126.7, 120.4, 15.2; MS (APCI): calcd. for C₂₂H₁₈S₂ ([M+H]⁺): 347.09227, found: 347.09172.

Compound **1d**: The crude product was purified by column chromatography on silica gel using ethyl acetate/hexane 1:2 (V/V) as eluent to obtain **1d** as white solid (0.276 g, 81% yield). Melting point: 110-114 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.48 (d, *J* = 7.2 Hz, 2H), δ = 7.38 (t, *J* = 7.2 Hz, 2H), δ = 7.33 (t, *J* = 7.2 Hz, 2H), δ = 7.17 (d, *J* = 7.2 Hz, 2H), δ = 6.53 (d, *J* = 8 Hz, 2H), δ = 6.14 (d, *J* = 8 Hz, 2H), δ = 6.09 (s, 2H), δ = 3.82 (s, 6H), δ = 3.45 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ = 147.6, 147.1, 140.5, 140.1, 133.5, 131.3, 129.4, 127.5, 126.9, 121.2, 112.2, 110.1, 55.8, 55.2; MS (APCI): calcd. for C₂₈H₂₆O₄ ([M+H]⁺): 427.19039, found: 427.19009.

Compound **1e**: The crude product was purified by column chromatography on silica gel using ethyl acetate/hexane 1:5 (V/V) as eluent to obtain **1e** as white solid (0.159 g, 47% yield). Melting point: 175-176 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.32 (d, *J* = 7.6 Hz, 2H), δ = 7.20 (d, *J* = 7.6 Hz, 2H), δ = 7.17-7.09 (m, 4H), δ = 6.85-6.84 (m, 2H), δ = 6.80-6.78 (m, 2H), δ = 6.65-6.64 (m, 2H), δ = 3.85 (s, 6H), δ = 3.53 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ = 152.8, 146.8, 140.1, 137.1, 136.1, 131.5, 131.0, 126.6, 126.3, 124.1, 123.1, 111.2, 60.3, 55.9; MS (APCI): calcd. for C₂₈H₂₆O₄ ([M+H]⁺): 427.19039, found: 427.18994.

Compound **1f**: The crude product was purified by column chromatography on silica gel using ethyl acetate/hexane 1:3 (V/V) as eluent to obtain **1f** as yellow oil (0.334 g, 98% yield). ¹H NMR (400 MHz, CDCl₃): δ = 7.51 (d, *J* = 7.6 Hz, 2H), δ = 7.42 (t, *J* = 7.2 Hz, 2H), δ = 7.36 (t, *J* = 7.2 Hz, 2H), δ = 7.24 (d, *J* = 7.6 Hz, 2H), δ = 6.24 (s, 2H), δ = 5.79 (s, 4H), δ = 3.50 (s, 12H); ¹³C NMR (100 MHz, CDCl₃): δ = 159.9, 142.7, 141.1, 140.4, 131.4, 129.6, 127.7, 127.4, 107.0, 99.7, 55.0; MS (APCI): calcd. for C₂₈H₂₆O₄ ([M+H]⁺): 427.19039, found: 427.19008.

Compound **1h**: The crude product was purified by column chromatography on silica gel using CH₂Cl₂/hexane 1:1 (V/V) as eluent to obtain **1h** as white solid (0.429 g, 90% yield). Melting point: 108-112 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.01$ (d, J = 7.6 Hz, 2H), $\delta = 7.62$ -7.60 (m, 4H), $\delta = 7.48$ -7.42 (m, 4H), $\delta = 7.41$ -7.38 (t, J = 8 Hz, 2H), $\delta = 7.24$ -7.19 (m, 6H), $\delta = 6.39$ (d, J = 8 Hz, 2H), $\delta = 6.28$ (s, 2H), $\delta = 3.35$ -3.21 (m, 4H), $\delta = 1.41$ -1.34 (m, 4H), $\delta = 1.10$ -1.04 (m, 4H), $\delta = 0.77$ (t, J = 7.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 142.0$, 140.7, 140.1, 138.7, 132.0, 130.3, 127.6, 127.2, 125.3, 122.8, 120.51, 120.47, 120.3, 118.9, 118.6, 109.6, 108.5, 41.9, 30.7, 20.3, 13.7; MS (APCI): calcd. for C₄₄H₄₀N₂ ([M+H]⁺): 597.32643, found: 597.32582.

Compound **1i**: The crude product was purified by column chromatography on silica gel using ethyl acetate/hexane 1:50 (V/V) as eluent to obtain **1i** as colorless oil (0.152 g, 52% yield). ¹H NMR (400 MHz, CDCl₃): δ = 7.47 (d, *J* = 7.6 Hz, 2H), δ = 7.40-7.35 (m, 4H), δ = 7.21 (d, *J* = 7.2 Hz, 2H), δ = 6.91 (t, *J* = 8 Hz, 2H), δ = 6.66 (d, *J* = 8.4 Hz, 2H), δ = 6.23 (d, *J* = 7.6 Hz, 2H), δ = 6.13 (s, 2H), δ = 3.52 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ = 158.9, 142.3, 141.0, 140.3, 131.6, 129.9, 128.4, 127.7, 127.4, 121.9, 113.9, 112.9, 54.9; MS (APCI): calcd. for C₂₆H₂₂O₂ ([M+H]⁺): 367.16926, found: 367.16855.

Scheme S2. Synthesis of 1j-1k.

2,2'-Diiodo-4,4'-dinitrobiphenyl was prepared according to the reported procedures.^{2, 3}

General Procedure for the synthesis of compounds **1j**, **1k**: 2,2'-Diiodo-4,4'-dinitrobiphenyl (1 eq), arylboronic acid (5 eq), Na₂CO₃ (5 eq), Pd(PPh₃)₄ (0.1 eq) were dissolved in a degassed mixture of toluene: ethanol: $H_2O = 2$: 1: 1 (0.1 M) under a N₂ atmosphere. The mixture was stirred at 80 °C overnight. Thereafter, the mixture was extracted with CH₂Cl₂, dried over Na₂SO₄, and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel using the eluent indicated below, affording the desired products.

Compound **1j**: The crude product was purified by column chromatography on silica gel using CH₂Cl₂/hexane 1:3 (V/V) as eluent to give **1j** as yellow solid (187 mg, 41% yield). Melting point: 168-169 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.25 (dd, *J* = 8.4, 2.4 Hz, 2H), 8.08 (d, *J* = 2.4 Hz, 2H), 7.60 (d, *J* = 8.4 Hz, 2H), 6.97 (t, *J* = 8.0 Hz, 2H), 6.76 – 6.73 (m, 2H), 6.18 (d, *J* = 7.6 Hz, 2H), 6.09 (t, *J* = 2.4 Hz, 2H), 3.61 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 159.6, 147.9, 144.8, 142.5, 139.3, 132.3, 129.2, 125.2, 122.3, 121.6, 114.2, 113.8, 55.1. MS (DART): calcd. for C₂₆H₂₁O₆N₂ ([M+H]⁺): 457.1394, found: 457.1393.

Compound **1k**: The crude product was purified by column chromatography on silica gel using CH₂Cl₂/hexane 1:5 (V/V) as eluent to obtain **1k** as yellow solid (335 mg, 21% yield). Melting point: 209-210 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.24 (dd, *J* = 8.8, 2.4 Hz, 2H), 8.08 (d, J = 2.4 Hz, 2H), 7.58 (d, J = 8.4 Hz, 2H), 7.22 – 7.18 (m, 2H), 7.08 (t, J = 7.6 Hz, 4H), 6.59 (d, J = 8.0 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 148.0, 144.6, 142.7, 138.0, 132.4, 129.0, 128.4, 127.8, 125.3, 122.2. The molecular peak of **1k** was not found in the mass spectrum using different ionization methods. Instead, the structure of 1k was identified with single crystal crystallography (Figure S45).

Scheme S3. Synthesis of 1m.

Compound 6 and 2-(phenylethynyl)benzaldehyde were prepared according to the reported procedures.^{4,6}

Compound 7: Under an atmosphere of N₂, compound 6 (1.74 g, 5.49 mmol, 1 eq), 3,4dimethoxyphenylboronic acid (1.20 g, 6.59 mmol, 1.2 eq), K₂CO₃ (1.90 g, 13.7 mmol, 2.5 eq), and Pd(PPh₃)₄ (634 mg, 0.55 mmol, 0.1 eq) were dissolved in a mixed solvent of 25 mL of toluene, 12.5 mL of ethanol and 12.5 mL of H₂O, which was pre-bubbled with a flow of N₂. The mixture was stirred at 80 °C overnight. Thereafter, the mixture was extracted with CH₂Cl₂, dried over Na₂SO₄, and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel with hexane/EA 5:1 (V/V) as eluent. 1.94 g (5.19 mmol, 94% yield) of **7** collected as white solid.

Melting point: 98-99 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, *J* = 7.6 Hz, 1H), 7.43 – 7.28 (m, 4H), 7.17 (d, *J* = 8.0 Hz, 1H), 6.97 – 6.93 (m, 2H), 6.82 (s, 1H), 6.78 (d, *J* = 8.4 Hz, 1H), 3.93 (s, 3H), 3.87 (s, 6H), 3.85 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 149.6, 148.8, 148.6, 148.3, 143.6, 133.7, 132.8, 129.4, 128.4, 126.9, 124.7, 121.8, 115.8, 114.2, 113.2, 111.2, 110.9, 92.8, 88.4, 56.1, 56.0, 55.9. MS (DART): calcd. for C₂₄H₂₃O₄ ([M+H]⁺): 375.1591, found: 375.1588.

Compound **1m**: Under a nitrogen atmosphere, Cu(OTf)₂ (72 mg, 0.2 mmol, 0.2 eq) was added into a 50 ml Schlenk flask. The flask was then charged with a solution of 2-(phenylethynyl)benzaldehyde (412 mg, 2.0 mmol, 2 eq) in CH₂ClCH₂Cl (5.0 mL) via syringe and the mixture was stirred at rt for 30 min. Thereafter, a solution of **7** (374 mg, 1.0 mmol, 1 eq) in CH₂ClCH₂Cl (5.0 mL) and CF₃CO₂H (0.15 mL, 2.0 mmol, 2 eq) was immediately added. The mixture was heated in an oil bath to 80 °C for 3 hours. The reaction mixture was extracted with CH₂Cl₂, the combined organic phases were dried and concentrated. Purification by column chromatography on silica gel using hexane/EA 10:1 (V/V) as eluent to obtain **1m** as light yellow solid (252 mg, 53% yield).⁷

Melting point: 142-144 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.00 (s, 1H), 7.90 – 7.88 (m, 1H), 7.82 – 7.80 (m, 1H), 7.63 – 7.60 (m, 2H), 7.51 – 7.36 (m, 4H), 7.18 (d, *J* = 7.6 Hz, 1H), 6.55 (d, *J* = 8.4 Hz, 1H), 6.45 (d, *J* = 8.4 Hz, 1H), 6.20 (dd, *J* = 8.0, 1.6 Hz, 1H), 6.16 – 6.13 (m, 2H), 6.05 (d, *J* = 1.2 Hz, 1H), 3.84 (s, 3H), 3.78 (s, 3H), 3.47 (s, 3H), 3.29 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 147.9, 147.8, 147.5, 147.4, 140.9, 140.3, 139.6, 139.3, 133.64, 133.61, 133.0, 132.6, 131.8, 130.3, 129.7, 128.2, 127.9, 127.8, 127.6, 127.1, 126.3, 126.1, 121.7, 121.6, 112.5, 112.4, 110.34, 110.28, 55.91, 55.86, 55.4, 55.1. MS (EI): calcd. for C₃₂H₂₈O₄ (M⁺): 476.1982, found: 476.2001.

Scheme S4. Synthesis of 1n.

Compound 8 and 2-(phenylethynyl)benzaldehyde were prepared according to the reported procedures.^{5, 6}

Compound **1n**: Under a nitrogen atmosphere, Cu(OTf)₂ (72mg, 0.2 mmol, 0.2 eq) were added into a Schlenk flask. The flask was then charged with a solution of 2-(Phenylethynyl)benzaldehyde (618 mg, 3 mmol, 3 eq) in CH₂ClCH₂Cl (10 mL) via syringe and the mixture was stirred at rt for 30 min. Thereafter, the solution of **8** (1.0 mmol, 1 eq) in CH₂ClCH₂Cl (10 mL) and CF₃CO₂H (0.23 mL, 3 mmol, 3 eq) was added immediately. The mixture was heated with an oil bath to 80 °C for 1 hours. The reaction mixture was extracted with CH₂Cl₂, and the combined organic phases were dried and concentrated. The crude product was purified by column chromatography on silica gel using EA/hexane 1:30 (V/V) as eluent to obtain **1n** as yellow solid (364 mg, 57% yield).

Melting point: 98-100 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.11 (s, 2H), 7.93 – 7.91 (m, 2H), 7.83 – 7.81 (m, 2H), 7.63 (s, 2H), 7.53 – 7.48 (m, 4H), 6.51 (d, *J* = 8.0 Hz, 2H), 6.22 – 6.19 (m, 4H), 3.88 (t, *J* = 6.8 Hz, 4H), 3.34 (q, *J* = 7.2 Hz, 2H), 3.06 (q, *J* = 7.2 Hz, 2H), 1.85 – 1.76 (m, 4H), 1.50 – 1.39 (m, 4H), 1.02 (t, *J* = 7.6 Hz, 6H), 0.71 (t, *J* = 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 148.2, 147.6, 139.7, 139.6, 133.8, 133.2, 132.7, 130.4, 128.3, 127.8, 127.6, 126.2, 126.1, 121.8, 115.1, 113. 6, 71.0, 70.1, 22.8, 22.4, 10.6, 10.1. MS (DART): calcd. for C₄₄H₄₇O₄ ([M+H]⁺): 639.3469, found: 639.3463.

Compound **2c** Method A: To a solution of **1c** (0.0069 g, 0.02 mmol) in 18 ml of anhydrous CH_2Cl_2 , 0.0324 g

(0.2 mmol, 10 equiv.) of FeCl₃ in 1.8 ml CH₃NO₂ was added under nitrogen atmosphere. The reaction mixture turned to red brown immediately, which was kept stirred at room temperature for 1.5 hours. The solution was quenched with 8 ml of MeOH, and then washed with water. The resulting solution was extracted with CH_2Cl_2 . The organic layers were combined and dried over anhydrous Na₂SO₄. The solution was concentrated under a reduced pressure. The residue was further purified by plate chromatography on silica gel with CH_2Cl_2 /hexane 1:10 (V/V) as eluent to afford 4.8 mg of **2c** as white solid in a yield of 70%.

Method B: To a solution of **1c** (13.8 mg, 0.04 mmol) and DDQ (27.2mg, 0.12 mmol) in 36 ml of anhydrous CH_2Cl_2 at room temperature, 3.6 ml of CH_3SO_3H was added slowly. The yellow reaction system became dark immediately. The reaction was stirred for 30 minutes. Triethylamine was added to quench this reaction and the color changed to dark brown. The resulting solution was washed with water and the organic layer was collected, dried with anhydrous Na₂SO₄. After the solution being concentrated by rotary evaporation, CH_2Cl_2 /hexane 1:10 (V/V) was used as eluent to further purify the crude product by plate chromatography on silica gel, yielding 8.7 mg (63%) of **2c** as white solid.

Melting point: 245-247 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.32-7.30 (m, 4H), δ = 7.20-7.17 (m, 2H), δ = 7.14-7.11 (m, 2H), δ = 6.71 (s, 2H), δ = 2.44 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ = 142.6, 141.7, 140.4, 137.2, 131.7, 129.74, 129.70, 127.9, 127.5, 127.1, 15.5; MS (APCI): calcd. for C₂₂H₁₆S₂ ([M+H]⁺): 345.07662, found: 345.07654.

Compound 2d

Method A: To a solution of **1d** (0.0085 g, 0.02 mmol) in 18 ml of anhydrous CH_2Cl_2 , 0.0324 g (0.2 mmol, 10 equiv.) of FeCl₃ in 1.8 ml CH_3NO_2 was added under a nitrogen atmosphere. The reaction mixture, which turned red brown immediately, was kept stirred at room temperature for 1 hour. The solution was quenched with 8 ml of MeOH, and then washed with water. The resulting solution was extracted with CH_2Cl_2 . The organic layer was combined together and dried over anhydrous Na₂SO₄. The solution was concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel with ethyl acetate/hexane 1:2 (V/V) as eluent to afford 0.0076 g of **2d** as white solid in a yield of 90%.

Method B: To a solution of **1d** (0.0607 g, 0.142 mmol) and DDQ (0.0484 g, 0.213 mmol) in 65 ml of anhydrous CH_2Cl_2 at room temperature, 6.5 ml of CH_3SO_3H was added slowly. The reaction mixture, which turned dark blue immediately, was stirred for at room temperature for 30 minutes. After triethylamine was added to the mixture to quench this reaction, the resulting dark brown solution was washed with water, and then dried with anhydrous Na_2SO_4 . The solution was concentrated under a reduced pressure, and the residue was purified by column chromatography on silica gel using ethyl acetate/hexane 1:2 (V/V) as eluent to afford 0.0530 g (88%) of **2d** as white solid.

The ¹H NMR spectrum is consistent with the reported one.⁸

Compound 2e

Method A: To a solution of **1e** (0.0213 g, 0.05 mmol) in 4 ml of anhydrous CH_2Cl_2 , 0.0811 g (0.5 mmol, 10 equiv.) of FeCl₃ in 0.4 ml of CH_3NO_2 was added under a nitrogen atmosphere. The reaction mixture was kept stirred at room temperature for 20 min. The solution was quenched with MeOH, and then washed with water, and the aqueous layer was extracted with CH_2Cl_2 . The organic layers were combined and dried over anhydrous Na_2SO_4 . The solution was concentrated under a reduced pressure. The residue was purified by plate chromatography on silica gel with ethyl acetate/hexane 1:5 (V/V) as eluent to afford 0.0123 g of **2e** as white solid in a yield of 58%.

Method B: To a solution of **1e** (0.0212 g, 0.050 mmol) and DDQ (0.0170 g, 0.075 mmol) in 44 ml of anhydrous CH_2Cl_2 at room temperature, 4.4 ml of CH_3SO_3H was added slowly. The yellow reaction mixture, which became dark gradually, was stirred at room temperature for 30 minutes. After triethylamine was added to the mixture to quench this reaction, the resulting yellow solution was washed with water and the organic layer was dried with anhydrous Na₂SO₄. The solution was concentrated under a reduced pressure, and the residue was purified by column chromatography on silica gel using ethyl acetate/hexane 1:4 (V/V) as eluent, yielding 0.0148 g (72%) of **2e** as white solid.

Melting point: 167-169 °C. ¹H NMR (400 MHz, CD₂Cl₂): δ = 7.31-7.28 (m, 4H), δ = 7.21 (d, J = 6.8 Hz, 2H), δ = 7.14 (d, J = 6.8 Hz, 2H), δ = 6.89-6.83 (m, 4H), δ = 3.81 (s, 6H), δ = 3.35 (s, 6H); ¹³C NMR (100 MHz, CD₂Cl₂): δ = 151.8, 145.7, 142.0, 136.9, 135.6, 135.3, 130.2, 128.5, 127.4, 126.8, 124.4, 111.2, 60.0, 55.8; MS (APCI): calcd. for C₂₈H₂₄O₄ ([M+H]⁺): 425.17474, found: 425.17433.

Compound 2g

To a solution of 1g (40.6 mg, 0.1 mmol) in 8 ml of anhydrous CH₂Cl₂, 162.2 mg (1.0 mmol, 10 equiv.) of FeCl₃ in 0.8 ml CH₃NO₂ was added under Ar. The reaction was stirred at room temperature for 10 minutes. The reaction mixture was quenched with H₂O, and then extracted with CH₂Cl₂. The organic layers were combined and dried over anhydrous Na₂SO₄. The solution was concentrated under a reduced pressure, and the residue was purified by thin layer chromatography on silica gel using ethyl acetate/hexane 1:30 (V/V) as eluent, yielding 16.2 mg (40%) of 2g as white solid.

Melting point: 280-281 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.85 – 7.81 (m, 4H), 7.43 – 7.35 (m, 4H), 7.33 – 7.30 (m, 2H), 7.24 – 7.20 (m, 4H), 7.19 – 7.14 (m, 4H), 6.98 (d, J = 8.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 142.3, 141.8, 139.9, 135.3, 132.5, 132.4, 129.1, 128.1, 128.0,

127.9, 127.5, 127.4, 127.2, 127.0, 126.3, 125.6. MS (DART): calcd. for $C_{32}H_{24}N$ ([M+NH₄]⁺):422.1903, found: 422.1901.

Compound 2h

Method A: To a solution of **1h** (0.0117 g, 0.02 mmol) in 20 ml of anhydrous CH_2Cl_2 , 0.0128 g (0.08 mmol, 4 equiv.) of FeCl₃ in 2 ml CH_3NO_2 was added dropwise under a nitrogen atmosphere. The reaction mixture which turned green immediately, was stirred at room temperature for 1 minute. The resulting solution was quenched with 4 ml of MeOH, and washed with water. The aqueous layer was extracted with CH_2Cl_2 , and the organic layers were combined and dried over anhydrous Na_2SO_4 . The solution was concentrated under a reduced pressure, and the residue was purified by column chromatography on silica gel using CH_2Cl_2 /hexane 1:4 (V/V) as eluent to afford 0.0090 g of **2h** as white solid in a yield of 77%.

Method B: To a solution of **1h** (0.0045 g, 0.0075 mmol) and DDQ (0.0026 g, 0.0113 mmol) in 7 ml of anhydrous CH_2Cl_2 at room temperature, 0.7 ml of CH_3SO_3H was added slowly. The yellow reaction mixture, which became deep green immediately, was stirred at room temperature for 30 minutes. After triethylamine was added to the mixture to quench this reaction, the resulting yellow solution was washed with water and the organic layer was dried with anhydrous Na_2SO_4 . The solution was concentrated under a reduced pressure, and the residue was purified by column chromatography on silica gel using CH_2Cl_2 /hexane 1:4 (V/V) as eluent, yielding 0.0004 g (9%) of **2h** as white solid.

Melting point: 330-332 °C. ¹H NMR (400 MHz, CD₂Cl₂): $\delta = 8.03$ (d, J = 8 Hz, 2H), $\delta = 7.97$ (s, 2H), $\delta = 7.45$ -7.41 (m, 4H), $\delta = 7.35$ -7.30 (m, 6H), $\delta = 7.25$ (s, 2H), $\delta = 7.23$ -7.18 (m, 4H), $\delta = 4.29$ (t, J = 8 Hz, 4H), $\delta = 1.88$ -1.83 (m, 4H), $\delta = 1.44$ -1.39 (m, 4H), $\delta = 0.95$ (t, J = 7.6 Hz, 6H); ¹³C NMR (100 MHz, CD₂Cl₂): $\delta = 143.3$, 142.4, 141.4, 140.3, 140.0, 134.0, 129.7, 129.4, 127.7, 127.5, 126.0, 122.9, 122.3, 121.7, 120.7, 119.2, 109.3, 109.2, 43.4, 31.5, 20.9, 14.1; MS (APCI): calcd. for C₄₄H₃₈N₂ ([M+H]⁺): 595.31078, found: 595.31032.

Compound 2j

To a solution of 1j (11.4 mg, 0.025 mmol) and DDQ (17 mg, 0.075 mmol) in 2 ml of anhydrous CH₂Cl₂ under an atmosphere of argon, 0.066 ml of TfOH was added. After being stirred at room temperature for 5 minutes, the reaction mixture was quenched with a saturated aqueous

solution of Na_2CO_3 and extracted with CH_2Cl_2 . The combined organic phases were dried over anhydrous Na_2SO_4 and concentrated under a reduced pressure. The residue was purified by thin layer chromatography on silica gel using ethyl acetate/hexane 1:7 (V/V) as eluent, yielding 4.7 mg (41%) of **2j** as yellow solid.

Melting point: 278-279 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.18 (dd, J = 8.4, 2.4 Hz, 2H), 8.09 (d, J = 2.4 Hz, 2H), 7.33 (d, J = 8.4 Hz, 2H), 7.11 (d, J = 8.4 Hz, 2H), 6.89 (dd, J = 6.0, 2.4 Hz, 2H), 6.70 (d, J = 2.4 Hz, 2H), 3.79 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 159.1, 147.8, 146.0, 143.2, 139.8, 132.9, 131.1, 129.9, 124.3, 122.6, 114.4, 114.3, 55.5. MS (DART): calcd. for C₂₆H₁₈O₆N₂ (M⁺):454.1159, found: 454.1162.

Compound **2m**

Method B: To a solution of 1m (11.9 mg, 0.025 mmol) and DDQ (17 mg, 0.075 mmol) in 5 ml of anhydrous CH₂Cl₂ under an atmosphere of argon, 0.049 ml of CH₃SO₃H was added. The reaction mixture, which was cooled with an ice-salt bath, was stirred for 2 minutes. It was quenched with a saturated aqueous solution of Na₂CO₃ and extracted with CH₂Cl₂. The combined organic phases were dried over anhydrous Na₂SO₄, and concentrated under a reduced pressure. The residue was purified by thin layer chromatography on silica gel using ethyl acetate/hexane 1:3 (V/V) as eluent, yielding 4.8 mg (41%) of 2m as white solid and 2.4 mg (21%) of 3m as yellow solid.

Melting point: 153-154 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.82 – 7.80 (m, 2H), 7.65 (d, J = 8.4 Hz, 2H), 7.47 – 7.44 (m, 2H), 7.35 – 7.31 (m, 2H), 7.28 – 7.27 (m, 1H), 7.23 – 7.21 (m, 1H), 6.78 (s, 1H), 6.71 (s, 1H), 6.69 (s, 1H), 6.68 (s, 1H), 3.87 (s, 3H), 3.86 (s, 3H), 3.82 (s, 3H), 3.81 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 148.21, 148.19, 148.1, 148.0, 142.02, 141.96, 141.0, 140.6, 134.1, 134.0, 133.6, 132.7, 132.6, 129.7, 129.3, 128.1, 127.9, 127.8, 127.7, 127.5, 127.3, 126.2, 126.1, 112.8, 112.4, 56.2, 56.12, 56.10, 56.06. MS (DART): calcd. for C₃₂H₂₇O₄ ([M+H]⁺): 475.1904, found: 475.1905.

Compound 3m

Method A: To a solution of **1m** (11.9 mg, 0.025 mmol) in 10 ml of anhydrous CH_2Cl_2 , 41 mg (0.25 mmol, 10 equiv.) of FeCl₃ in 0.2 ml CH_3NO_2 was added under an atmosphere of argon. After being stirred at 0 °C for 5 minutes, the reaction mixture was quenched with H_2O and extracted with CH_2Cl_2 . The organic layers were combined together and dried over anhydrous

Na₂SO₄. The solution was concentrated under a reduced pressure. The residue was purified by thin layer chromatography on silica gel using CH_2Cl_2 /hexane 2:1 (V/V), yielding 9.2 mg (78%) of **3m** as off-white solid.

Melting point: 185-186 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.17 (d, J = 8.0 Hz, 1H), 8.95 (s, 1H), 8.70 (d, J = 8.0 Hz, 1H), 8.59 (d, J = 8.0 Hz, 1H), 8.51 (s, 1H), 8.30 (d, J = 7.6 Hz, 1H), 8.20 – 8.19 (m, 2H), 8.04 (s, 1H), 7.99 (t, J = 8.0 Hz, 1H), 7.72 – 7.64 (m, 2H), 4.23 (s, 3H), 4.22 (s, 3H), 4.18 (s, 3H), 4.12 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 149.7, 149.6, 149.0, 148.4, 132.4, 129.4, 129.1, 128.7, 127.5, 127.3, 127.0, 126.2, 126.1, 125.8, 125.6, 124.8, 124.33, 124.30, 124.1, 123.0, 122.2, 119.9, 119.8, 119.5, 111.4, 105.1, 105.0, 104.8, 56.2, 56.14, 56.12, 56.0 MS (DART): calcd. for C₃₂H₂₅O₄ ([M+H]+):473.1747, found: 473.1749.

Compound 2n

Method B: To a solution of **1n** (16mg, 0.025 mmol) and DDQ (17 mg, 0.075 mmol) in 5 ml of anhydrous CH_2Cl_2 under an atmosphere of argon, 0.049 ml of CH_3SO_3H was added. The reaction mixture, which was cooled with an ice-salt bath, was stirred for 2 minutes. It was quenched with a saturated aqueous solution of Na₂CO₃ and extracted with CH_2Cl_2 . The combined organic phases were combined, dried over anhydrous Na₂SO₄, and concentrated under a reduced pressure. The residue was purified by thin layer chromatography on silica gel using CH_2Cl_2 /hexane 1:1 (V/V) as eluent, yielding 12.8 mg (81%) of **2n** as white solid.

Melting point: 117-118 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.85 - 7.81 (m, 4H), 7.72 (s, 2H), 7.66 (s, 2H), 7.49 - 7.44 (m, 4H), 6.78 (s, 2H), 6.72 (s, 2H), 3.99 - 3.94 (m, 4H), 3.91 - 3.83 (m, 4H), 1.84 - 1.74 (m, 8H), 0.99 (q, J = 7.2 Hz, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 148.4, 148.2, 141.0, 140.9, 134.15, 134.07, 132.8, 132.6, 128.2, 127.9, 127.8, 127.7, 126.1, 126.0, 115.2, 115.0, 71.0, 70.9, 22.82, 22.78, 10.63, 10.62. MS (DART): calcd. for C₄₄H₄₄O₄ (M⁺): 636.3234, found: 636.3237.

Compounds 3n and 3n-Cl

Method A: To a solution of **1n** (16 mg, 0.025 mmol) in 10 ml of anhydrous CH_2Cl_2 under an atmosphere of argon, 41 mg (0.25 mmol, 10 equiv.) of FeCl₃ in 0.2 ml CH_3NO_2 was added. After being stirred at 0 °C for 5 minutes, the reaction mixture was quenched with H_2O . The

resulting solution was extracted with CH_2Cl_2 . The organic layers were combined and dried over anhydrous Na_2SO_4 . The solution was then concentrated under a reduced pressure. The residue was purified by thin layer chromatography on silica gel using CH_2Cl_2 /hexane 1:1 (V/V) as eluent, yielding 6.6 mg (41%) of **3n** as yellow solid and 4.2 mg (25%) of **3n-Cl** as yellow solid.

Compound **3n**

Melting point: 257-258 °C. ¹H NMR (600 MHz, CDCl₃) δ 9.03 (d, J = 8.4 Hz, 2H), 8.91 (s, 2H), 8.29 – 8.26 (m, 6H), 7.65 – 7.59 (m, 4H), 4.36 (t, J = 6.6 Hz, 4H), 4.18 (t, J = 6.6 Hz, 4H), 2.10 – 2.04 (m, 4H), 2.02 – 1.96 (m, 4H), 1.22 (t, J = 7.2 Hz, 6H), 1.15(t, J = 7.2 Hz, 6H).1 ¹³C NMR (150 MHz, CDCl₃) δ 149.4, 148.8, 133.0, 128.9, 127.6, 127.3, 127.2, 126.0, 125.7, 125.6, 125.2, 124.7, 123.5, 119.5, 114.3, 108.3, 71.2, 71.1, 23.0, 22.9, 10.9, 10.7. MS (MALDI): calcd. for C₄₄H₄₂O₄ (M+): 634.3078, found: 634.3075.

Compound 3n-Cl

Melting point: 227-229 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.06 (d, J = 8.4 Hz, 1H), 9.00 – 8.96 (m, 2H), 8.86 – 8.83 (m, 2H), 8.23 (dd, J = 6.4, 3.2 Hz, 1H), 8.16 (s, 1H), 8.15 (s, 2H), 7.75 (t, J = 7.6 Hz, 1H), 7.67 – 7.62 (m, 3H), 4.34 (t, J = 6.4 Hz, 2H), 4.27 (t, J = 6.4 Hz, 2H), 4.16 (t, J = 6.4 Hz, 4H), 2.10 – 1.92 (m, 8H), 1.23 – 1.10 (m, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 149.5, 148.64, 148.62, 146.9, 133.2, 130.8, 128.8, 128.6, 127.2, 127.1, 126.85, 126.80, 126.6, 126.4, 126.1, 125.9, 125.8, 125.7, 125.5, 125.4, 125.3, 125.25, 125.23, 124.3, 123.7, 123.6, 123.5, 119.6, 114.4, 114.3, 113.4, 108.1, 71.02, 70.97, 70.9, 70.8, 22.9, 22.8, 22.72, 22.71, 10.9, 10.8, 10.72, 10.71. MS (MALDI): calcd. for C₄₄H₄₁O₄Cl (M⁺): 668.2688, found: 668.2685.

Compound 41

To a solution of **11** (7.7 mg, 0.025 mmol) and DDQ (17 mg, 0.075 mmol) in 2 ml of anhydrous CH_2Cl_2 under an atmosphere of argon, 0.066 ml of TfOH was added. After being stirred at room temperature for 10 minutes, the reaction mixture was quenched with a saturated aqueous solution of Na₂CO₃ and extracted with CH_2Cl_2 . The combined organic phases were dried over anhydrous Na₂SO₄ and concentrated under a reduced pressure. The residue was purified by thin layer chromatography on silica gel using hexane as eluent, yielding 0.8 mg (11%) of **4l** as white solid.

The ¹H NMR spectrum is consistent with the reported one.⁹

Compound 5

To a solution of **1f** (0.0355 g, 0.08 mmol) in 5 ml of anhydrous CH_2Cl_2 , 0.063 g (0.2 3mmol, 2.7 equiv.) of MoCl₅ was added under a nitrogen atmosphere. The reaction mixture, which turned dark gradually, was stirred at room temperature for 40 min. After being quenched with a saturated NaHCO₃ aqueous solution, the reaction mixture was washed with water. The aqueous layer was extracted with CH_2Cl_2 , and the organic layers were combined and dried over anhydrous Na₂SO₄. The solution was concentrated under a reduced pressure. The residue was further purified by column chromatography on silica gel with ethyl acetate /hexane 1:1 (V/V) as eluent to afford 0.0092 g of **5** as white solid in a yield of 26%.

Melting point: 334-336 °C. ¹H NMR (400 MHz, CD₂Cl₂): δ = 7.36-7.31 (m, 4H), δ = 7.28-7.23 (m, 4H), δ = 7.06 (t, *J* = 7.2 Hz, 2H), δ = 7.02-6.97 (m, 4H), δ = 6.87 (t, *J* = 7.6 Hz, 2H), δ = 6.42 (d, *J* = 2.4 Hz, 2H), δ = 6.29 (d, *J* = 2.4 Hz, 2H), δ = 6.04 (s, 2H), δ = 3.76 (s, 12H), δ = 3.55 (s, 6H), δ = 3.31 (s, 6H); ¹³C NMR (100 MHz, CD₂Cl₂): δ =159.7, 158.5, 157.9, 156.9, 143.9, 143.0, 142.8, 142.7, 142.6, 139.7, 129.9, 129.8, 128.1, 127.7, 127.4, 127.2, 126.1, 125.6, 120.1, 119.3, 117.5, 105.1, 97.9, 95.9, 56.8, 56.5, 55.9, 55.6; MS (APCI): calcd. for C₅₆H₄₆O₈ ([M+H]⁺): 847.32654, found: 847.32618.

2. NMR spectra

Figure S2 ¹³C NMR spectrum of 1c (100 MHz, CDCl₃)

OCH₃

Figure S4¹³C NMR spectrum of 1d (100 MHz, CDCl₃)

Figure S5 ¹H NMR spectrum of 1e (400 MHz, CDCl₃)

Figure S6¹³C NMR spectrum of 1e (100 MHz, CDCl₃)

Figure S7 ¹H NMR spectrum of 1f (400 MHz, CDCl₃)

Figure S8 ¹³C NMR spectrum of 1f (100 MHz, CDCl₃)

Figure S10¹³C NMR spectrum of 1h (100 MHz, CDCl₃)

Figure S11 ¹H NMR spectrum of 1i (400 MHz, CDCl₃)

Figure S12 ¹³C NMR spectrum of 1i (100 MHz, CDCl₃)

Figure S13 ¹H NMR spectrum of 1j (400 MHz, CDCl₃)

Figure S14 ¹³C NMR spectrum of 1j (100 MHz, CDCl₃)

Figure S15 ¹H NMR spectrum of 1k (400 MHz, CDCl₃)

Figure S16¹³C NMR spectrum of 1k (100 MHz, CDCl₃)

Figure S18¹H NMR spectrum of 7 (100 MHz, CDCl₃)

-0.00

Figure S19 ¹H NMR spectrum of 1m (400 MHz, CDCl₃)

Figure S20¹³C NMR spectrum of 1m (100 MHz, CDCl₃)

Figure S21 ¹H NMR spectrum of 1n (400 MHz, CDCl₃)

Figure S22 ¹³C NMR spectrum of 1n (100 MHz, CDCl₃)

Figure S23 ¹H NMR spectrum of 2c (400 MHz, CDCl₃)

Figure S24¹³C NMR spectrum of 2c (100 MHz, CDCl₃)

Figure S25 ¹H NMR spectrum of 2e (400 MHz, CD₂Cl₂)

Figure S26¹³C NMR spectrum of 2e (100 MHz, CDCl₃)

-0.02

Figure S27 ¹H NMR spectrum of 2g (400 MHz, CDCl₃)

Figure S28¹³C NMR spectrum of 2g (100 MHz, CDCl₃)

Figure S29 ¹H NMR spectrum of 2h (400 MHz, CD₂Cl₂)

Figure S30 ¹³C NMR spectrum of 2h (100 MHz, CD₂Cl₂)

Figure S31 ¹H NMR spectrum of 2j (400 MHz, CDCl₃)

Figure S32 ¹³C NMR spectrum of 2j (100 MHz, CDCl₃)

Figure S33 ¹H NMR spectrum of 2m (600 MHz, CDCl₃)

Figure S34 ¹³C NMR spectrum of 2m (150 MHz, CDCl₃)

Figure S35 ¹H NMR spectrum of 3m (400 MHz, CDCl₃)

Figure S36¹³C NMR spectrum of 3m (100 MHz, CDCl₃)

Figure S38 ¹³C NMR spectrum of 2n (100 MHz, CDCl₃)

Figure S39 ¹H NMR spectrum of 3n (600 MHz, CDCl₃)

Figure S40¹³C NMR spectrum of 3n (150 MHz, CDCl₃)

Figure S41 ¹H NMR spectrum of **3n-Cl** (400 MHz, CDCl₃)

$\begin{array}{c} 149.5 \\ 148.6 \\ 148.6 \\ 133.3 \\ 133.3 \\ 133.3 \\ 127.1 \\ 128.8 \\ 127.1 \\ 128.8 \\ 127.1 \\ 127.1 \\ 127.1 \\ 127.1 \\ 127.1 \\ 125.5 \\ 127.1 \\ 125.5$

Figure S42 ¹³C NMR spectrum of 3n-Cl (100 MHz, CDCl₃)

Figure S43 ¹H NMR spectrum of 5 (400 MHz, CD₂Cl₂)

Figure S44 ¹³C NMR spectrum of 5 (100 MHz, CD₂Cl₂)

3. Mass spectra

<u>Accurate Mass Measurement</u>⇔

Molecular formula :↩	C ₂₂ H ₁₆ S ₂ ←	Ę
Experimental Mass [M+H]⁺:←	345.07654↩	÷
Theoretical Mass [M+H]⁺:←	345.07662↩	÷
Error (ppm) :↩	-0.2<	Ę

Figure S45 Mass spectrum (APCI) of 2c

Accurate Mass Measurement

Molecular formula :←	C ₂₈ H ₂₄ O ₄ ←
Experimental Mass [M+H] ⁺ :←	425.17433<-⊐
Theoretical Mass [M+H] ⁺ :←	425.17474<⊐
Error (ppm) :↩	-1.0←

Figure S46 Mass spectrum (APCI) of 2e

Figure S47 Mass spectrum (DART) of 2g

<u>Ac</u>	<u>curate Mass Measurement</u> ↩		
	Molecular formula :←	C ₄₄ H ₃₈ N ₂ ←	Ę
	Experimental Mass [M+H] ⁺ :←	595.31032↩	Ę
	Theoretical Mass [M+H] ⁺ :←	595.31078←	Ę
	Error (ppm) :↩	-0.8<□	Ę

Figure S48 Mass spectrum (APCI) of 2h

Figure S49 Mass spectrum (DART) of 2j

Figure S50 Mass spectrum (DART) of 2m

Figure S51 Mass spectrum (DART) of 3m

Figure S52 Mass spectrum (DART) of 2n

Theoretical mass of $C_{44}H_{42}O_4$ is 634.3078, and theoretical mass of $C_{44}H_{41}O_4Cl$ is 668.2688.

Figure S53 Mass spectra (MALDI) of 3n and 3n-Cl.

Ac	<u>curate Mass Measurement</u> ⇔		
	Molecular formula :↩	C ₅₆ H ₄₆ O ₈ ←	Ē
	Experimental Mass [M+H] ⁺ :←	847.32618↩	Ē
	Theoretical Mass [M+H] ⁺ :←	847.32654↩	Ē
	Error (ppm) :↩	-0.4	Ē
- 1			

Figure S54 Mass spectrum (APCI) of 5

4. Single crystal structures

X-ray crystallography data were collected on a Bruker D8 Venture Diffractometer.

Χ.			
C24 H16 N2 O4			
396.39			
213.00 K			
1.34139 Å			
Monoclinic			
C 1 2/c 1			
a = 19.9133(3) Å	$\alpha = 90^{\circ}$.		
b = 8.79260(10) Å	$\beta = 129.2540(10)^{\circ}.$		
c = 13.9176(2) Å	$\gamma = 90^{\circ}$.		
1886.95(5) Å ³			
4			
1.395 Mg/m ³			
0.503 mm ⁻¹			
824			
0.07 x 0.07 x 0.05 mm	3		
4.991 to 54.898°.			
-24<=h<=24, -10<=k<=10, -16<=l<=16			
Reflections collected 8005			
1761 [R(int) = 0.0289]]		
97.8 %			
Semi-empirical from e	equivalents		
0.7508 and 0.6358			
Full-matrix least-square	res on F^2		
1761 / 0 / 136			
1.070			
R1 = 0.0390, wR2 = 0	.1112		
R1 = 0.0414, wR2 = 0	.1136		
n/a			
0.214 and -0.193 e.Å ⁻³			
	X. C24 H16 N2 O4 396.39 213.00 K 1.34139 Å Monoclinic C 1 2/c 1 a = 19.9133(3) Å b = 8.79260(10) Å c = 13.9176(2) Å 1886.95(5) Å ³ 4 1.395 Mg/m ³ 0.503 mm ⁻¹ 824 0.07 x 0.07 x 0.05 mm 4.991 to 54.898°. -24<=h<=24, -10<=k< 8005 1761 [R(int) = 0.0289] 97.8 % Semi-empirical from e 0.7508 and 0.6358 Full-matrix least-squar 1761 / 0 / 136 1.070 R1 = 0.0390, wR2 = 0 R1 = 0.0414, wR2 = 0 n/a 0.214 and -0.193 e.Å ⁻³		

Figure S55 Structure of **1k** in the crystal (Carbon, oxygen and chlorine atoms are shown as ellipsoids at 50% probability level.)

Crystal data and structure refinement for 2g	ξ.			
Empirical formula	C32 H20			
Formula weight	404.48			
Temperature	213.00 K			
Wavelength	1.34139 Å			
Crystal system	Monoclinic			
Space group	P 1 21/n 1			
Unit cell dimensions	a = 10.9132(3) Å	$\alpha = 90^{\circ}$.		
	b = 9.3178(2) Å	$\beta = 102.4290(10)^{\circ}.$		
	c = 21.1891(5) Å	$\gamma = 90^{\circ}$.		
Volume	2104.16(9) Å ³			
Z	4			
Density (calculated)	1.277 Mg/m ³			
Absorption coefficient	0.350 mm ⁻¹			
F(000)	848			
Crystal size	0.07 x 0.07 x 0.05 mm	1 ³		
Theta range for data collection	3.686 to 54.983°.			
ndex ranges -13<=h<=12, -11<=k<=11, -25<=l<		<=11, -25<=l<=25		
Reflections collected	20561			
Independent reflections	3988 [R(int) = 0.0625]]		
Completeness to theta = 53.594°	99.3 %			
Absorption correction	Semi-empirical from e	equivalents		
Max. and min. transmission	0.7508 and 0.5953			
Refinement method	Full-matrix least-square	res on F ²		
Data / restraints / parameters	3988 / 0 / 289			
Goodness-of-fit on F ²	1.058			
Final R indices [I>2sigma(I)]	R1 = 0.0512, wR2 = 0	.1165		
R indices (all data)	R1 = 0.0874, wR2 = 0.1373			
Extinction coefficient	n/a			
Largest diff. peak and hole	0.208 and -0.241 e.Å ⁻³).208 and -0.241 e.Å ⁻³		

Crystal data and structure refinement for 2j.				
Empirical formula	C26 H18 N2 O6			
Formula weight	454.42			
Temperature	213(2) K			
Wavelength	0.71073 Å			
Crystal system	Monoclinic			
Space group	P 21/c			
Unit cell dimensions	a = 10.7120(6) Å	$\alpha = 90^{\circ}$.		
	b = 14.6556(7) Å	$\beta = 107.758(2)^{\circ}.$		
	c = 14.1174(8) Å	$\gamma = 90^{\circ}.$		
Volume	2110.7(2) Å ³			
Ζ	4			
Density (calculated)	1.430 Mg/m ³			
Absorption coefficient	0.103 mm ⁻¹			
F(000)	944			
Crystal size	0.180 x 0.150 x 0.120 r	nm ³		
Theta range for data collection2.523 to 25.999°.				
Index ranges	-11<=h<=13, -18<=k<=18, -17<=l<=16			
Reflections collected	24873			
Independent reflections	4123 [R(int) = 0.0651]			
Completeness to theta = 25.242°	99.5 %			
Absorption correction	Semi-empirical from eq	luivalents		
Max. and min. transmission	0.7456 and 0.5074			
Refinement method	Full-matrix least-square	es on F^2		
Data / restraints / parameters	4123 / 0 / 310			
Goodness-of-fit on F ²	1.017			
Final R indices [I>2sigma(I)]	R1 = 0.0414, wR2 = 0.2	1038		
R indices (all data)	R1 = 0.0516, wR2 = 0.1131			
Extinction coefficient	0.018(3)			
Largest diff. peak and hole	0.229 and -0.196 e.Å ⁻³			

Crystal data and structure refinement for 2r	n.		
Empirical formula	C32 H26 O4		
Formula weight	474.53		
Temperature	213(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P -1		
Unit cell dimensions	a = 13.048(4) Å	$\alpha = 81.328(8)^{\circ}.$	
	b = 13.076(3) Å	$\beta = 73.961(8)^{\circ}.$	
	c = 15.272(4) Å	$\gamma = 88.817(7)^{\circ}.$	
Volume	2474.9(12) Å ³		
Z	4		
Density (calculated)	1.274 Mg/m^3		
Absorption coefficient	0.083 mm ⁻¹		
F(000)	1000		
Crystal size $0.180 \ge 0.150 \ge 0.120 \text{ mm}^3$			
Theta range for data collection	2.752 to 24.995°.		
Index ranges	-15<=h<=15, -15<=k<=15	5, -18<=l<=18	
Reflections collected	46602		
Independent reflections	8697 [R(int) = 0.1122]		
Completeness to theta = 25.242°	97.1 %		
Absorption correction	Semi-empirical from equi	valents	
Max. and min. transmission	0.7456 and 0.3980		
Refinement method	Full-matrix least-squares	on F^2	
Data / restraints / parameters	8697 / 0 / 657		
Goodness-of-fit on F ²	1.026		
Final R indices [I>2sigma(I)]	R1 = 0.0794, wR2 = 0.208	32	
R indices (all data)	R1 = 0.1358, $wR2 = 0.2583$		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.252 and -0.293 e.Å ⁻³		

Crystal data and structure refinement for 2n	l.		
Empirical formula	C44 H44 O4		
Formula weight	636.79		
Temperature	213(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	C 2/c		
Unit cell dimensions	a = 25.2475(12) Å	$\alpha = 90^{\circ}$.	
	b = 16.4517(9) Å	$\beta = 91.9950(10)^{\circ}.$	
	c = 17.0389(8) Å	$\gamma = 90^{\circ}.$	
Volume	7073.1(6) Å ³		
Z	8		
Density (calculated)	1.196 Mg/m ³		
Absorption coefficient	0.075 mm ⁻¹		
F(000)	2720		
Crystal size	0.120 x 0.090 x 0.060 mm ³		
Theta range for data collection	2.392 to 24.998°.		
Index ranges	-30<=h<=30, -19<=k<=17, -20<=l<=20		
Reflections collected	31370		
Independent reflections	6206 [R(int) = 0.0952]		
Completeness to theta = 25.242°	96.8 %		
Absorption correction	Semi-empirical from ec	quivalents	
Max. and min. transmission	0.7456 and 0.5542		
Refinement method	Full-matrix least-square	es on F ²	
Data / restraints / parameters	6206 / 0 / 437		
Goodness-of-fit on F ²	1.051		
Final R indices [I>2sigma(I)]	R1 = 0.0768, wR2 = 0.	1718	
R indices (all data)	R1 = 0.1298, wR2 = 0.2	2072	
Extinction coefficient	n/a		
Largest diff. peak and hole	0.440 and -0.301 e.Å $^{\text{-3}}$		

Crystal data and structure refinement for $3n$	-Cl.		
Empirical formula	C44 H41 Cl O4		
Formula weight	669.22		
Temperature	213.00 K		
Wavelength	1.34139 Å		
Crystal system	Orthorhombic		
Space group	Pbca		
Unit cell dimensions	a = 24.4083(11) Å	$\alpha = 90^{\circ}$.	
	b = 7.5812(3) Å	$\beta = 90^{\circ}$.	
	c = 36.9842(15) Å	$\gamma = 90^{\circ}$.	
Volume	6843.7(5) Å ³		
Z	8		
Density (calculated)	1.299 Mg/m ³		
Absorption coefficient	0.874 mm ⁻¹		
F(000)	2832		
Crystal size	$0.07 \text{ x } 0.07 \text{ x } 0.05 \text{ mm}^3$		
Theta range for data collection	3.775 to 54.976°.		
Index ranges	-29<=h<=29, -8<=k<=9, -45<=l<=45		
Reflections collected	69449		
Independent reflections	6429 [R(int) = 0.0874]		
Completeness to theta = 53.594°	98.7 %		
Absorption correction	Semi-empirical from equi	valents	
Max. and min. transmission	0.7508 and 0.6063		
Refinement method	Full-matrix least-squares	on F ²	
Data / restraints / parameters	6429 / 0 / 446		
Goodness-of-fit on F ²	1.169		
Final R indices [I>2sigma(I)]	R1 = 0.0974, wR2 = 0.257	70	
R indices (all data)	R1 = 0.1383, wR2 = 0.3152		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.578 and -0.917 e.Å ⁻³		

Crystal data and structure refinement for 5 .		
Empirical formula	C114 H96 Cl4 O16	
Formula weight	1863.70	
Temperature	173(2) K	
Wavelength	1.54178 Å	
Crystal system	Monoclinic	
Space group	P21/n	
Unit cell dimensions	a = 16.5308(18) Å	$\alpha = 90^{\circ}$.
	b = 34.980(4) Å	$\beta = 111.110(6)^{\circ}.$
	c = 19.638(3) Å	$\gamma = 90^{\circ}$.
Volume	10594(2) Å ³	
Z	4	
Density (calculated)	1.169 Mg/m^3	
Absorption coefficient	1.515 mm ⁻¹	
F(000)	3904	
Crystal size	0.400 x 0.300 x 0.200 m	m ³
Theta range for data collection	2.526 to 72.249°.	
Index ranges	-19<=h<=18, -42<=k<=4	42, -23<=l<=23
Reflections collected	165706	
Independent reflections	19503 [R(int) = 0.1523]	
Completeness to theta = 67.679°	99.3 %	
Absorption correction	multi-scan	
Max. and min. transmission	0.7531 and 0.3706	
Refinement method	Full-matrix least-squares	s on F^2
Data / restraints / parameters	19503 / 3 / 1234	
Goodness-of-fit on F ²	1.567	
Final R indices [I>2sigma(I)]	$R1 = 0.1377, wR2 = 0.3^{\circ}$	774
R indices (all data)	R1 = 0.1881, wR2 = 0.43	310
Extinction coefficient	n/a	
Largest diff. peak and hole	2.960 and -0.519 e.Å ⁻³	

5. UV/Vis absorption and fluorescent spectra

UV-vis absorption spectra were recorded on a Hitachi U-3310 UV-vis spectrophotometer. Fluorescence spectra were taken on a Hitachi F-2700 spectrofluorometer.

Figure S56 Absorption (full line) and Fluorescence (dashed line, excited at 306 nm) spectra of **2c** in CH₂Cl₂ (1×10^{-5} mol/L).

Figure S57 Absorption (full line) and Fluorescence (dashed line, excited at 289 nm) spectra of **2e** in CH₂Cl₂ (1×10^{-5} mol/L).

Figure S58 Absorption (full line) and Fluorescence (dashed line, excited at 290 nm) spectra of **2g** in CH₂Cl₂ (1×10^{-5} mol/L).

Figure S59 Absorption (full line) and Fluorescence (dashed line, excited at 308 nm) spectra of **2h** in CH₂Cl₂ (1×10^{-5} mol/L).

Figure S60 Absorption (full line) and Fluorescence (dashed line, excited at 288 nm) spectra of **2j** in CH₂Cl₂ (1×10^{-5} mol/L).

Figure S61 Absorption (full line) and Fluorescence (dashed line, excited at 288 nm) spectra of **2m** in CH₂Cl₂ (1×10^{-5} mol/L).

Figure S62 Absorption (full line) and Fluorescence (dashed line, excited at 301 nm) spectra of **3m** in CH₂Cl₂ (1×10^{-5} mol/L).

Figure S63 Absorption (full line) and Fluorescence (dashed line, excited at 242 nm) spectra of **2n** in CH₂Cl₂ (1×10^{-5} mol/L).

Figure S64 Absorption (full line) and Fluorescence (dashed line, excited at 320 nm) spectra of **3n** in CH₂Cl₂ (1×10^{-5} mol/L).

Figure S65 Absorption (full line) and Fluorescence (dashed line, excited at 334 nm) spectra of **3n-Cl** in CH₂Cl₂ (1×10^{-5} mol/L).

6. Chiral resolution and circular dichroism spectrum of 2g

Compound **2g** was resolved to two enantiomers by Daicel Chiral Technologies (China) Co., Ltd. with a Shimadzu LC-20AT CP-HPLC-06 on a CHIRALCEL OD-H(ODH0CE-KJ063) column using MeOH/ACN=90/10(V/V) as the eluent. From 143 mg of racemic Compound **2g**, 34 mg of one enantiomer (the first fraction) and 38 mg of the other enantiomer (the second fraction) were obtained. Circular dichroism (CD) spectra were recorded on an Applied Photophysics Chirascan TM Spectrometer.

Figure S66 Chiral HPLC trace for resolution of Compound 2g.

Peak#	Ret. Time	Area	Area%	T.Plate#	Tailing F.	Resolution
1	5.261	2040753	99.337	1.359	9701	15.463
2	8.205	13626	0.663	1.411	6214	24.141

Figure S67 Chiral HPLC analysis for the first fraction of Compound **2g**. $[\alpha]^{25}_{D} = -117$ (*c* = 1.5×10⁻³ g/ml in CH₃CN).

Figure S68 Chiral HPLC analysis for the second fraction of Compound **2g**. $[\alpha]^{25}_{D} = +100$ ($c = 1.5 \times 10^{-3}$ g/ml in CH₃CN).

Figure S69 Circular dichroism spectrum of 2g in CH₃CN (1.2×10⁻⁴ mol/L).

7. Density Functional Theory (DFT) Calculations

The Density Function Theory (DFT) calculations were conducted at the level of wB97XD/def2svp with CH_2Cl_2 solvation using Gaussian 16 program.¹⁰

Scheme S5. Proposed arenium cation (a) and radical cation (b) mechanisms for the Scholl reaction of **1m** with the relative Gibbs free energies (shown in the parenthesis).

8. Cyclic voltammetry

Cyclic voltammetry was performed in a solution of anhydrous CH_2Cl_2 with 0.1M tetrabutylammonium hexafluorophosphate (Bu₄NPF₆) as supporting electrolyte, at a scan rate of 30 mV s⁻¹. A platinum bead was used as a working electrode, a platinum wire was used as an auxiliary electrode, and a silver wire was used as a pseudo-reference. Ferrocenium/ferrocene (Fc⁺/Fc) was used as an internal standard.

Figure S70 Cyclic voltammogram of 3n-Cl

From the first half-wave potential of the first oxidation wave $E_{ox}^1 = 0.43$ V, the HOMO energy level of **3n-Cl** is estimated as -5.52 eV according to the equation

 $E_{HOMO} = E_{Fc^+/Fc} - E_{ox}$. Here, $E_{Fc^+/Fc}$, the formal potential of the redox couple of ferrocenium/ferrocene (Fc⁺/Fc) in the Fermi scale is -5.1 eV, which is calculated on the basis of an approximation neglecting solvent effects using a work function of 4.46 eV for the normal hydrogen electrode (NHE) and an electrochemical potential of 0.64 V for (Fc⁺/Fc) versus NHE.¹¹

9. Fabrication and characterization of organic field effect transistors

The organic field effect transistors (OFETs) of **3n-Cl** were fabricated on a silicon substrate, which was layered with silica, alumina, and 12-cyclohexyldodecylphosphonic acid (CDPA) to form a composite dielectric material. The CDPA-modified AlO_x/SiO₂ dielectric was prepared following the reported procedure.¹¹ Thin film of **3n-Cl** was formed by immersing the substrate into its solution (1.5 mg/mL) in a mixed solvent of CH₂Cl₂/Acetone (V/V=2/1) and then pulling it up with a constant speed of 50 um/min using a LongerPump TJ-3A syringe pump. The dipcoated films were placed in vacuum at room temperature for 3 h to remove the solvent residue. To complete the fabrication of OFETs, top contact drain and source gold electrodes (30 nm) were vacuum-deposited through a shadow mask onto the organic films using an Edward Auto 306 vacuum coating system with a Turbomolecular pump at a pressure of 4.0×10^{-6} torr or lower, with a deposition rate of ca. 2 nm/min to a thickness about 30 nm as measured by a quartz crystal sensor. The resulting semiconducting channels were 0.5 mm (W)×50 µm (L). The field effect mobility in the saturation regime was extracted from these curves using the equation: $I_{\rm DS} = (\mu W C_i/2L)(V_{\rm GS} - V_{th})^2$, where $I_{\rm DS}$ is the drain current, μ is field effect mobility, C_i (= 29.5±0.5 nF/cm²) is the capacitance per unit area for the CDPA-modified AlO_x/SiO₂,¹² W is the channel width, L is the channel length, and V_{GS} and V_{th} are the gate and threshold voltage, respectively. 3 films and 15 channels were tested.

Polarized light micrographs were obtained using a Nikon 50IPOL microscope. X-ray diffractions from thin films were recorded with a SmartLab X-Ray Refractometer. Current-voltage measurement of OFETs was conducted using a probe station and a Keithley 4200 Semiconductor Characterization System in air under ambient conditions.

Figure S71 Reflection polarized light micrograph from dip coated film of **3n-Cl** on CDPAmodified AlO_x/SiO_2 using CH₂Cl₂/Acetone as solvent.

Figure S72 XRD patterns of thin film of 3n-Cl on CDPA-modified AlO_x/SiO₂.

10. References

- Y. Zhang, J. Han and Z. J. Liu, Palladium-Catalyzed Double-Suzuki-Miyaura Reactions Using Cyclic Dibenziodoniums: Synthesis of o-tetraaryls, *J. Org. Chem.*, 2016, **81** (4), 1317-1323.
- D.-J. Liaw, F.-C. Chang, M. Leung, M.-Y. Chou and K. Muellen, High Thermal Stability and Rigid Rod of Novel Organosoluble Polyimides and Polyamides Based on Bulky and Noncoplanar Naphthalene-Biphenyldiamine, *Macromolecules*, 2005, 38, 4024-4029.
- C.-C. Lee, M. Leung, G.-H. Lee, Y.-H. Liu and S.-M. Peng, Revisit of the Dessy-White Intramolecular Acetylene-Acetylene [2 + 2] Cycloadditions, *J. Org. Chem.*, 2006, 71, 8417-8423.
- S. Arndt, M. M. Hansmann, F. Rominger, M. Rudolph and A. S. K. Hashmi, Direct Access to π-Extended Phosphindolium Salts by Simple Proton-Induced Cyclization of (*o*-Alkynylphenyl)phosphanes, *Chem. Eur. J.*, 2017, 23, 5429-5433.
- L. Feng, T. Hu, S. Zhang, H.-Y. Xiong and G. Zhang, Copper-Mediated Deacylative Coupling of Ynones via C–C Bond Activation under Mild Conditions, *Org. Lett.*, 2019, 21, 9487-9492.
- 6) M.-H. Huang, H.-N. Shi, C.-F. Zhu, C.-L. He, W.-J. Hao, S.-J. Tu and B. Jiang, Stereospecific Synthesis of (Z,Z)-Isobenzofurans via Radical-Enabled Cleavage of C(sp³)-C(sp³) and C(sp²)-Halogen Bonds, *Adv. Synth. Catal.*, 2019, **361**, 5340-5345.
- 7) D. Lehnherr, C. Chen, Z. Pedramrazi, C. R. DeBlase, J. M. Alzola, I. Keresztes, E.B. Lobkovsky, M. F. Crommie and W. R. Dichtel, Sequence-defined oligo(*ortho*-arylene) foldamers derived from the benzannulation of ortho(arylene ethynylene)s, *Chem. Sci.*, 2016, 7, 6357-6364.
- J.-F. Cui, C. Chen, X. Gao, Z.-W. Cai, J.-W. Han, H. N. C. Wong, 2,3,10,11-Tetrahydroxytetraphenylene and its application in molecular recognition, *Helv. Chim. Acta*, 2012, **95** (12), 2604-2620.

- 9) M. Iwasaki, Y. Araki, S. Iino, and Y. Nishihara, Synthesis of Multisubstituted Triphenylenes and Phenanthrenes by Cascade Reaction of o-Iodobiphenyls or (Z)-β-Halostyrenes with o-Bromobenzyl Alcohols through Two Sequential C–C Bond Formations Catalyzed by a Palladium Complex, *J. Org. Chem.*, 2015, **80**, 9247–9263.
- Frisch, M.. Trucks. G. W. Schlegel H B. Scuseria. G. E., Robb. M. A., Cheeseman, J. R., Scalmani, G.Barone, V: Mennucci, B., Petersson, G. A., Nakatsuji, H. Li, X: Caricato, M. Marenich A. V.: Bloino, J.anesko, B. G.: GompertsR., Mennucci, B., Hratchian, H. P. Ortiz, J. V; Izmaylov, A. F. Sonnenberg, J. L.Williams-Young, D.: Ding, F: Lipparini, F.: Egidi, F.: Goings, J.: Peng, B.: Petrone, A.: Henderson, T.: RanasingheD., Zakrzewski, V. G., Gao, ... Rega, N. Zheng, G., Liang, W. Hada, M. Ehara, M: Toyota, K.: Fukuda, R.Hasegawa, J., Ishida, M., Nakaima, T. Honda, Y.: Kitao, O., Nakai, H., Vreven, T., Throssell, K., MontgomerJ., J. A.: Peralta, J. E., Ogliaro, F: Bearpark, M. J. Hevd, J. Brothers, E. N., Kudin, K. N. Staroverov, V. N.Keith, T. A., Kobavashi, R., Normand, J., Raghavachari, K., Rendell, A. P: Burant, J. C., yengar, S. S., TomasiJ.: Cossi, M: Millam, J. M. Klene, M: Adamo, C., Cammi, ... Ochterski, . W: Martin, R, L., Morokuma, KFarkas, O., Foresman, J. B., Fox, D. J. Gaussian, Inc., Gaussian 16. Revision C .01. Wallingford CI. 2016.
- 11) C. M. Cardona, W. Li, A. E. Kaifer, D. Stockdale and G. C. Bazan, Electrochemical considerations for determining absolute frontier orbital energy levels of conjugated polymers for solar cell applications, *Adv. Mater.*, 2011, **23**, 2367–2371.
- 12) S. H. Pun, Y. Wang, M. Chu, C. K. Chan, Y. Li, Z. Liu and Q. Miao, Synthesis, Structures and Properties of Heptabenzo[7]circulene and Octabenzo[8]circulene", *Journal of the American Chemical Society*, 2019, **141**, 9680–9686.