Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2024

Table of Contents

1.	General information	S2
2.	General procedure	S2
3.	Characterization data	S3
4.	Scaled-up reaction	S15
5.	Follow-up transformations	S17
6.	Mechanism study	S18
7.	Unsuccessful substrates	S20
8.	Synthesis of substrates	S20
9.	Copies of NMR spectra	S30
10	.Theoretical calculations	S66
11	.References	S74

1. General information

All reagents and solvents were commercially available and used as received. The electrochemical instrument is HONGSHENGFENG DPS-305BM. Column chromatography was performed on silica gel (200-300 mesh). NMR spectra were recorded in CDCl₃ on Bruker AV-500 MHz spectrometers. The chemical shifts (δ) are reported in parts per million (ppm) relative to the residue signal of CDCl₃ (δ /ppm = 7.26 for ¹H NMR and δ /ppm = 77.16 for ¹³C NMR). The following abbreviations are used for multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, m = multiplet. The coupling constants *J* have been given in Hertz (Hz). HRMS were obtained on an Ultima Global spectrometer with an ESI source. Cyclic voltammograms (CV) were performed with a CS electrochemical workstation (CS300H, CorrTest).

2. General procedure

$$R^{1}_{N} \xrightarrow{R^{2}}_{R^{3}} \xrightarrow{R^{6}}_{R^{5}} + TMSNCS \xrightarrow{C(+) | Pt(-), 10 \text{ mA}}_{HCOOH, TBAOAc, HFIP, rt, N_{2}} \xrightarrow{R^{1}_{N} \xrightarrow{R^{2}}_{H} \xrightarrow{R^{4}}_{R^{3}} SCN}$$

Procedure: To a 10 mL three-necked flask equipped with a carbon plate anode (3 cm x 1 cm x 0.3 cm, about 1.5 cm immersion depth in solution) and a platinum plate cathode (1 cm x 1 cm x 0.1 mm) was charged with substrate (0.2 mmol, 1.0 equiv.), TMSNCS (0.3 mmol, 1.5 equiv.), HCOOH (0.4 mmol, 2.0 equiv.), TBAOAc (0.1 mmol, 0.5 equiv.) and HFIP (5 mL). The electrolysis was carried out at room temperature using a constant current of 10 mA under N₂ for 2-8 h (3.7-14.9 F/mol). After completion of the reaction, the mixture was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel eluting with petroleum ether/ethyl acetate to give the product.

At the beginning of the reaction

At the end of the reaction

Figure S1. Electrolysis cell for small scale reaction

3. Characterization data

The reaction was conducted following the general procedure in a 0.2 mmol scale for 4.5 h (8.4 F/mol). The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (3:1) to afford **3** (38 mg, 63% yield) as a yellow oil. The spectra matched with the previous report.^[1]

¹**H NMR** (500 MHz, CDCl₃) δ 7.74 (d, *J* = 7.9 Hz, 2H), 7.33 (d, *J* = 7.9 Hz, 2H), 4.48 (t, *J* = 6.5 Hz, 1H), 3.23 – 3.16 (m, 1H), 2.98 (q, *J* = 6.6 Hz, 2H), 2.44 (s, 3H), 1.79 – 1.71 (m, 2H), 1.69 – 1.61 (m, 2H), 1.48 (d, *J* = 6.7 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 143.8, 136.9, 130.0, 127.2, 111.1, 45.2, 42.6, 34.0, 27.3, 22.1, 21.7.

The reaction was conducted following the general procedure in a 0.2 mmol scale for 6 h (11.2 F/mol). The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (5:1) to afford 4 (37 mg, 51% yield) as a yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 7.72 (d, *J* = 8.6 Hz, 2H), 7.67 (d, *J* = 8.6 Hz, 2H), 4.85 (t, *J* = 6.3 Hz, 1H), 3.24 – 3.17 (m, 1H), 2.98 (q, *J* = 6.6 Hz, 2H), 1.77 – 1.72 (m, 2H), 1.68 – 1.60 (m, 2H), 1.49 (d, *J* = 6.8 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 138.9, 132.7, 128.7, 128.0, 111.1, 45.1, 42.7, 34.0, 27.3, 22.1.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ calcd for $C_{12}H_{15}BrN_2O_2S_2Na$, 384.9651, found 384.9651.

The reaction was conducted following the general procedure in a 0.2 mmol scale for 5 h (9.3 F/mol). The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (3:1) to afford 5 (41 mg, 65% yield) as a yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 7.79 (d, *J* = 8.9 Hz, 2H), 6.99 (d, *J* = 8.8 Hz, 2H), 4.71 (s, 1H), 3.87 (s, 3H), 3.23 – 3.16 (m, 1H), 2.95 (q, *J* = 6.6 Hz, 2H), 1.78 – 1.70 (m, 2H), 1.67 – 1.62 (m, 2H), 1.48 (d, *J* = 6.8 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 163.2, 131.4, 129.3, 114.5, 111.2, 55.8, 45.2, 42.6, 34.0, 27.2, 22.1.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ calcd for $C_{13}H_{18}N_2O_3S_2Na$, 337.0651, found 337.0652.

The reaction was conducted following the general procedure in a 0.2 mmol scale for 4.5 h (8.4 F/mol). The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (3:1) to afford **6** (35 mg, 61% yield) as a yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 7.86 (d, *J* = 7.2 Hz, 2H), 7.59 (t, *J* = 7.4 Hz, 1H), 7.53 (t, *J* = 7.6 Hz, 2H), 5.04 (s, 1H), 3.22 – 3.15 (m, 1H), 2.97 (t, *J* = 6.7 Hz, 2H), 1.75 – 1.69 (m, 2H), 1.66 – 1.56 (m, 2H), 1.46 (d, *J* = 6.8 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 139.8, 132.9, 129.4, 127.1, 111.2, 45.1, 42.6, 33.9, 27.2, 22.1. HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₁₂H₁₆N₂O₂S₂Na, 307.0545, found 307.0554.

The reaction was conducted following the general procedure in a 0.2 mmol scale for 8 h (14.9 F/mol). The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (5:1) to afford 7 (24 mg, 34% yield) as a yellow oil.

¹**H** NMR (500 MHz, CDCl₃) δ 8.00 (d, J = 8.1 Hz, 2H), 7.81 (d, J = 8.1 Hz, 2H), 4.80 (s, 1H), 3.25 - 3.18 (m, 1H), 3.07 - 3.02 (m, 2H), 1.79 - 1.72 (m, 2H), 1.71 - 1.62 (m, 2H), 1.49 (d, J = 6.7 Hz, 3H).

¹³**C NMR** (125 MHz, CDCl₃) δ 143.7, 134.7 (q, J_{C-F} = 34.9 Hz), 127.7, 126.6 (d, J_{C-F} = 3.9 Hz), 123.3 (q, J_{C-F} = 272.9 Hz), 111.1, 45.1, 42.8, 34.0, 27.4, 22.0.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -63.14.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ calcd for $C_{13}H_{15}F_3N_2O_2S_2Na$, 375.0419, found 375.0421.

The reaction was conducted following the general procedure in a 0.2 mmol scale for 5 h (9.3 F/mol). The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (3:1) to afford **8** (31 mg, 52% yield) as a yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 7.94 (d, *J* = 7.9 Hz, 1H), 7.47 (t, *J* = 7.3 Hz, 1H), 7.32 (t, *J* = 6.9 Hz, 2H), 4.94 (s, 1H), 3.19 – 3.12 (m, 1H), 2.97 (q, *J* = 6.5 Hz, 2H), 2.64 (s, 3H), 1.75 – 1.68 (m, 2H), 1.65 – 1.57 (m, 2H), 1.45 (d, *J* = 6.8 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 137.9, 137.1, 133.0, 132.8, 129.5, 126.4, 111.1, 45.1, 42.4, 34.0, 27.4, 22.0, 20.4.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ calcd for $C_{13}H_{18}N_2O_2S_2Na$, 321.0702, found 321.0710.

The reaction was conducted following the general procedure in a 0.2 mmol scale for 5 h (9.3 F/mol). The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (3:1) to afford **9** (32 mg, 55% yield) as a yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 7.63 – 7.60 (m, 2H), 7.11 (t, *J* = 4.4 Hz, 1H), 4.85 (t, *J* = 6.4 Hz, 1H), 3.26 – 3.19 (m, 1H), 3.07 (q, *J* = 6.5 Hz, 2H), 1.80 – 1.73 (m, 2H), 1.70 – 1.62 (m, 2H), 1.50 (d, *J* = 6.8 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 140.8, 132.4, 132.2, 127.7, 111.2, 45.2, 42.9, 34.0, 27.2, 22.2. HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₁₉H₃₀N₃O₄S₂, 291.0290, found 291.0298.

The reaction was conducted following the general procedure in a 0.2 mmol scale for 5 h (9.3 F/mol). The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (3:1) to afford **10** (39 mg, 58% yield) as a colorless oil.

¹**H NMR** (500 MHz, CDCl₃) δ 7.74 (d, *J* = 7.9 Hz, 2H), 7.31 (d, *J* = 7.9 Hz, 2H), 4.98 (t, *J* = 6.3 Hz, 1H), 3.00 – 2.93 (m, 3H), 2.42 (s, 3H), 1.82 – 1.77 (m, 1H), 1.73 – 1.57 (m, 5H), 1.48 – 1.42 (m, 1H), 1.35 – 1.26 (m, 3H), 0.90 (t, *J* = 7.0 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 143.7, 136.8, 129.9, 127.2, 111.2, 51.2, 42.6, 35.2, 32.4, 29.0, 27.0, 22.3, 21.6, 14.0.

HRMS (ESI-TOF) m/z: $[M + H]^+$ calcd for $C_{16}H_{25}N_2O_2S_2$, 341.1352, found 341.1352.

The reaction was conducted following the general procedure in a 0.2 mmol scale for 5 h (9.3 F/mol). The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (3:1) to afford **11** (32 mg, 51% yield, dr = 1:1) as a yellow oil. The spectra matched with the previous report.^[1]

¹**H NMR** (500 MHz, CDCl₃) δ 7.75 (d, *J* = 8.3 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 4.86 (s, 1H), 3.38 – 3.28 (m, 1H), 3.05 – 2.97 (m, 1H), 2.95 – 2.90 (m, 1H), 2.43 (s, 3H), 1.95 – 1.88 (m, 1H), 1.69 – 1.62 (m, 1H), 1.44 – 1.37 (m, 4H), 0.95 (dd, *J* = 6.3, 3.3 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 143.8, 136.8, 130.0, 127.2, 112.2, 112.0, 51.2, 50.7, 41.0, 40.9, 35.8, 35.7, 33.6, 21.7, 19.2, 17.4, 15.33, 15.26.

The reaction was conducted following the general procedure in a 0.2 mmol scale for 3.5 h (6.5 F/mol). The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (5:1) to afford **12** (42 mg, 52% yield, dr = 3:2) as a yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 7.52 (d, *J* = 7.9 Hz, 2H), 7.14 – 7.10 (m, 4H), 6.95 – 6.93 (m, 1H), 6.83 (d, *J* = 5.6 Hz, 1H), 5.46 (s, 1H), 4.23 – 4.19 (m, 1H), 3.21 – 3.13 (m, 1H), 2.37 (s, 3H), 1.92 – 1.75 (m, 3H), 1.65 – 1.55 (m, 1H), 1.45 – 1.43 (m, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 143.8, 142.3, 142.2, 137.3, 134.7, 130.2, 130.1, 129.6, 128.0, 127.9, 127.1, 126.9, 126.8, 124.6, 111.0, 57.7, 57.3, 45.3, 45.0, 34.8, 34.7, 33.5, 33.3, 22.3, 22.1, 21.6.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ calcd for $C_{19}H_{21}CIN_2O_2S_2Na$, 431.0625, found 431.0631.

The reaction was conducted following the general procedure in a 0.2 mmol scale for 4 h (7.5 F/mol). The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (5:1) to afford **13** (59 mg, 82% yield) as a colorless oil. The spectra matched with the previous report. ^[1]

¹**H NMR** (500 MHz, CDCl₃) δ 7.72 (d, *J* = 7.9 Hz, 2H), 7.37 – 7.23 (m, 7H), 4.83 (s, 1H), 4.26 (t, *J* = 7.8 Hz, 1H), 2.93 (q, *J* = 6.2 Hz, 2H), 2.42 (s, 3H), 2.21 – 2.09 (m, 2H), 1.55 – 1.45 (m, 2H).

¹³C NMR (125 MHz, CDCl₃) δ 143.7, 137.9, 136.8, 129.9, 129.3, 129.2, 127.5, 127.2, 111.6, 53.0, 42.4, 32.7, 27.6, 21.7.

The reaction was conducted following the general procedure in a 0.2 mmol scale for 5 h (9.3 F/mol). The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (3:1) to afford **14** (41 mg, 52% yield) as a colorless oil. The spectra matched with the previous report. ^[1]

¹**H NMR** (500 MHz, CDCl₃) δ 7.75 (d, *J* = 8.0 Hz, 2H), 7.33 (d, *J* = 7.8 Hz, 2H), 4.83 (t, *J* = 6.4 Hz, 1H), 3.55 (t, *J* = 6.2 Hz, 2H), 3.00 – 2.97 (m, 1H), 2.99 (q, *J* = 6.4 Hz, 2H), 2.43 (s, 3H), 2.20 (q, *J* = 6.4 Hz, 2H), 1.91 – 1.70 (m, 3H), 1.69 – 1.56 (m, 1H).

¹³C NMR (125 MHz, CDCl₃) δ 143.8, 136.9, 130.0, 127.2, 109.9, 48.7, 42.5, 37.7, 32.2, 29.9, 27.2, 21.7.

The reaction was conducted following the general procedure with 12 mA in a 0.2 mmol scale for 6 h (13.4 F/mol). The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (2:1) to afford **15** (36 mg, 42% yield) as a yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 7.73 (d, *J* = 8.1 Hz, 2H), 7.30 (d, *J* = 8.0 Hz, 2H), 5.26 (s, 1H), 4.82 (s, 1H), 3.32 – 3.21 (m, 2H), 3.11 – 3.03 (m, 1H), 2.97 – 2.92 (m, 2H), 2.42 (s, 3H), 1.97 – 1.83 (m, 4H), 1.77 – 1.67 (m, 2H), 1.42 (s, 9H).

¹³C NMR (125 MHz, CDCl₃) δ 156.4, 143.7, 137.1, 129.9, 127.2, 110.8, 79.9, 47.9, 42.2, 38.0, 36.5, 31.9, 28.5, 27.0, 21.6.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ calcd for $C_{19}H_{29}N_3O_4S_2Na$, 450.1497, found 450.1503.

The reaction was conducted following the general procedure in a 0.2 mmol scale for 4 h (7.5 F/mol). The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (5:1) to afford **16** (59 mg, 79% yield) as a colorless oil.

¹**H** NMR (500 MHz, CDCl₃) δ 7.72 (d, J = 8.2 Hz, 2H), 7.40 – 7.26 (m, 7H), 4.90 (t, J = 6.2 Hz, 1H), 4.25 (t, J = 7.7 Hz, 1H), 2.87 (q, J = 6.7 Hz, 2H), 2.42 (s, 3H), 2.10 – 2.04 (m, 2H), 1.51 – 1.46 (m, 2H), 1.38 – 1.32 (m, 1H), 1.28 – 1.23 (m, 1H).

¹³C NMR (125 MHz, CDCl₃) δ 143.6, 138.1, 137.0, 129.8, 129.2, 129.1, 127.5, 127.2, 111.7, 53.4, 42.8, 35.2, 29.0, 24.5, 21.6.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ calcd for $C_{19}H_{22}N_2O_2S_2Na$, 397.1015, found 397.1022.

The reaction was conducted following the general procedure in a 0.2 mmol scale for 8 h (14.9 F/mol). The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (3:1) to afford **17** (35 mg, 53% yield, rr = 3:1) as a yellow oil. The spectra matched with the previous report.^[1]

¹**H NMR** (500 MHz, CDCl₃) δ 7.74 (d, J = 8.2 Hz, 2H), 7.31 (d, J = 7.9 Hz, 2H), 5.00 (t, J = 6.3 Hz, 0.74H), 4.93 (t, J = 6.2 Hz, 0.22H), 3.04 – 2.87 (m, 2.87H), 2.42 (s, 3H), 2.05 – 1.94 (m, 0.86H), 1.88 – 1.70 (m, 1.95H), 1.68 – 1.54 (m, 2.22H), 1.52 – 1.35 (m, 2.45H), 0.99 (dd, J = 19.4, 6.7 Hz, 4.77H).

¹³C NMR (125 MHz, CDCl₃) δ 143.70, 143.67, 136.9, 136.8, 129.93, 129.91, 127.2, 112.3, 112.2, 58.7, 55.78, 55.74, 42.9, 42.6, 42.3, 33.4, 29.7, 28.8, 27.5, 22.1, 21.64, 21.60, 20.1, 18.7.

The reaction was conducted following the general procedure in a 0.2 mmol scale for 5 h (9.3 F/mol). The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (8:1) to afford **18** (43 mg, 63% yield, dr = 1.2:1) as a colorless oil. The spectra matched with the previous report.^[1]

¹**H NMR** (500 MHz, CDCl₃) δ = 7.75 (dd, *J* = 8.3, 2.3 Hz, 2H), 7.33 (d, *J* = 7.9 Hz, 2H), 4.84 (t, *J* = 6.5 Hz, 0.47H), 4.76 (t, *J* = 6.3 Hz, 0.55H), 3.77 – 3.76 (m, 0.47H), 3.11 – 2.92 (m, 2H), 2.80 – 2.74 (m, 0.56H), 2.44 (s, 3H), 2.25 – 2.20 (m, 0.56H), 2.09 – 2.03 (m, 0.54H), 1.98 – 1.64 (m, 5H), 1.56 – 1.45 (m, 2.27H), 1.41 – 1.32 (m, 1H), 1.30 – 1.16 (m, 2.33H), 1.05 – 0.97 (m, 0.63H).

¹³C NMR (125 MHz, CDCl₃) δ 143.8, 143.7, 136.79, 136.76, 130.0, 129.9, 127.24, 127.20, 112.9, 111.3, 54.6, 54.0, 40.5, 40.4, 40.0, 37.5, 35.1, 33.9, 33.1, 31.8, 29.8, 27.6, 26.5, 24.9, 24.5, 21.7, 21.4.

The reaction was conducted following the general procedure in a 0.2 mmol scale for 5 h (9.3 F/mol). The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (10:1) to afford **19** (72 mg, 92% yield) as a yellow oil. The spectra matched with the previous report.^[1]

¹**H NMR** (500 MHz, CDCl₃) δ 7.75 (d, *J* = 8.3 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 4.70 (t, *J* = 6.1 Hz, 1H), 3.64 (s, 1H), 3.06 – 2.89 (m, 2H), 2.43 (s, 3H), 2.28 – 2.27 (m, 1H), 1.97 – 1.88 (m, 4H), 1.75 – 1.68 (m, 2H), 1.65 – 1.54 (m, 5H), 1.49 – 1.36 (m, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 143.7, 136.8, 129.9, 127.3, 113.1, 62.6, 42.0, 40.7, 37.8, 37.7, 36.54, 36.45, 34.5, 31.1, 27.64, 27.58, 21.7.

The reaction was conducted following the general procedure in a 0.2 mmol scale for 5 h (9.3 F/mol). The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (3:1) to afford **20** (30 mg, 53% yield) as a yellow oil.

¹**H** NMR (500 MHz, CDCl₃) δ 7.74 (d, *J* = 7.6 Hz, 2H), 7.32 (d, *J* = 7.8 Hz, 2H), 4.91 (s, 1H), 2.96 (q, *J* = 6.0 Hz, 2H), 2.90 (t, *J* = 7.0 Hz, 2H), 2.43 (s, 3H), 1.86 – 1.80 (m, 2H), 1.66 – 1.60 (m, 2H).

¹³C NMR (125 MHz, CDCl₃) δ 143.8, 136.8, 130.0, 127.2, 112.2, 42.4, 33.5, 27.9, 27.0, 21.7. HRMS (ESI-TOF) m/z: [M + Na]⁺ calcd for C₁₂H₁₆N₂O₂S₂Na, 307.0545, found 307.0551.

The reaction was conducted following the general procedure in a 0.2 mmol scale for 5 h (9.3 F/mol). The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (3:1) to afford **21** (29 mg, 48% yield) as a yellow oil.

¹**H** NMR (500 MHz, CDCl₃) δ 7.76 (d, J = 7.8 Hz, 2H), 7.32 (d, J = 7.8 Hz, 2H), 4.62 (d, J = 8.5 Hz, 1H), 3.34 – 3.29 (m, 1H), 2.86 (t, J = 8.6 Hz, 2H), 2.43 (s, 3H), 1.85 – 1.75 (m, 2H), 1.58 – 1.47 (m, 2H), 1.00 (d, J = 5.9 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 143.7, 138.0, 130.0, 127.1, 112.3, 49.3, 35.6, 33.6, 26.1, 21.8, 21.7.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ calcd for $C_{13}H_{18}N_2O_2S_2Na$, 321.0702, found 321.0708.

The reaction was conducted following the general procedure in a 0.2 mmol scale for 5 h (9.3 F/mol). The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (3:1) to afford **22** (35 mg, 59% yield) as a yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 7.74 (d, *J* = 8.4 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 4.94 (s, 1H),

3.00 – 2.94 (m, 1H), 2.90 – 2.85 (m, 1H), 2.82 (t, *J* = 5.2 Hz, 2H), 2.43 (s, 3H), 1.92 – 1.86 (m, 1H), 1.82 – 1.76 (m, 1H), 1.65 – 1.59 (m, 1H), 0.92 (d, *J* = 6.7 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 143.8, 136.8, 130.0, 127.1, 112.3, 48.4, 34.1, 32.1, 31.6, 21.7, 17.3.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ calcd for $C_{13}H_{18}N_2O_2S_2Na$, 321.0702, found 321.0712.

The reaction was conducted following the general procedure in a 0.2 mmol scale for 4.5 h (8.4 F/mol). The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (3:1) to afford **23** (24 mg, 41% yield) as a yellow oil.

¹**H** NMR (500 MHz, CDCl₃) δ 7.75 (d, *J* = 8.1 Hz, 2H), 7.32 (d, *J* = 7.9 Hz, 2H), 4.77 (t, *J* = 5.0 Hz, 1H), 3.04 – 2.98 (m, 1H), 2.97 – 2.90 (m, 2H), 2.83 – 2.79 (m, 1H), 2.43 (s, 3H), 2.01 – 1.94 (m, 1H), 1.71 – 1.64 (m, 1H), 1.46 – 1.39 (m, 1H), 1.02 (d, *J* = 6.4 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 143.8, 136.8, 130.0, 127.2, 112.7, 41.0, 40.8, 34.9, 31.4, 21.7, 18.3.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ calcd for $C_{13}H_{18}N_2O_2S_2Na$, 321.0702, found 321.0710.

The reaction was conducted following the general procedure in a 0.2 mmol scale for 5 h (9.3 F/mol). The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (5:1) to afford **24** (47 mg, 54% yield, dr = 1.7:1) as a yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 7.92 – 7.87 (m, 2H), 7.75 – 7.71 (m, 2H), 7.57 (t, *J* = 7.6 Hz, 1H), 7.43 – 7.39 (m, 2H), 7.21 – 7.15 (m, 2H), 5.26 (s, 1H), 4.23 – 4.03 (m, 2H), 3.73 – 3.63 (m, 1H), 3.00 – 2.82 (m, 2H), 2.34 (s, 1.09H), 2.31 (s, 1.87H), 2.20 – 2.02 (m, 1H), 1.78 – 1.72 (m, 1H), 1.60 – 1.54 (m, 1H), 1.10 (d, *J* = 6.7 Hz, 1.80H), 0.97 (d, *J* = 6.6 Hz, 1.05H).

¹³C NMR (125 MHz, CDCl₃) δ 166.5, 166.4, 143.8, 137.8, 137.6, 133.5, 130.0, 129.8, 129.4, 129.2, 128.6, 128.5, 127.0, 126.9, 112.9, 112.7, 66.8, 65.9, 51.1, 51.0, 41.5, 40.5, 38.4, 37.9, 30.7, 30.4, 21.7, 19.1, 18.2.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ calcd for $C_{21}H_{24}N_2O_4S_2Na$, 455.1070, found 455.1066.

The reaction was conducted following the general procedure in a 0.2 mmol scale for 4 h (7.5 F/mol). The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (5:1) to afford **25** (29 mg, 51% yield) as a yellow oil.

¹**H** NMR (500 MHz, CDCl₃) δ 8.06 (d, *J* = 7.8 Hz, 1H), 7.63 – 7.60 (m, 1H), 7.56 – 7.50 (m, 2H), 4.74 (s, 1H), 4.57 (s, 2H), 1.27 (s, 9H).

¹³C NMR (125 MHz, CDCl₃) δ 140.8, 133.8, 133.4, 132.3, 130.0, 129.4, 112.8, 55.9, 35.8, 30.3.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ calcd for $C_{12}H_{16}N_2O_2S_2Na$, 307.0551, found 307.0558.

The reaction was conducted following the general procedure in a 0.2 mmol scale for 3.5 h (6.5 F/mol). The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (5:1) to afford **26** (36 mg, 57% yield) as a white solid.

¹**H NMR** (500 MHz, CDCl₃) δ 7.15 (s, 1H), 7.08 (s, 1H), 4.64 (s, 1H), 4.52 (s, 2H), 2.68 (s, 3H), 2.37 (s, 3H), 1.24 (s, 9H).

¹³C NMR (125 MHz, CDCl₃) δ 143.1, 139.5, 136.2, 135.9, 135.1, 131.8, 113.9, 55.5, 39.2, 30.3, 22.1, 21.1.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ calcd for $C_{14}H_{20}N_2O_2S_2Na$, 335.0864, found 335.0874.

The reaction was conducted following the general procedure in a 0.2 mmol scale for 4 h (7.5 F/mol). The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (5:1) to afford **27** (24 mg, 38% yield) as a yellow oil. The spectra matched with the previous report.^[2]

¹**H NMR** (500 MHz, CDCl₃) δ 7.75 (d, *J* = 8.1 Hz, 2H), 7.32 (d, *J* = 8.4 Hz, 2H), 4.95 (t, *J* = 6.1 Hz, 1H), 2.95 (q, *J* = 6.6 Hz, 2H), 2.42 (s, 3H), 1.73 – 1.64 (m, 2H), 1.66 – 1.55 (m, 2H), 1.44 (s, 6H).

¹³C NMR (125 MHz, CDCl₃) δ 143.7, 136.9, 130.0, 127.2, 111.7, 55.4, 43.1, 39.8, 28.9, 25.4, 21.6.

The reaction was conducted following the general procedure in a 0.2 mmol scale for 4.5 h (8.4 F/mol). The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (3:1) to afford **28** (37 mg, 52% yield) as a yellow oil. The spectra matched with the previous report.^[1]

¹**H NMR** (400 MHz, CDCl₃) δ 7.75 (d, *J* = 8.2 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 4.78 (s, 1H), 2.97 (q, *J* = 6.4 Hz, 2H), 2.43 (s, 3H), 1.83 – 1.80 (m, 2H), 1.76 – 1.71 (m, 5H), 1.60 – 1.53 (m, 7H).

¹³C NMR (125 MHz, CDCl₃) δ 143.7, 137.0, 129.9, 127.2, 111.6, 61.0, 43.3, 38.9, 36.4, 25.4, 24.3, 22.3, 21.7.

The reaction was conducted following the general procedure in a 0.2 mmol scale for 4.5 h (8.4 F/mol). The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (3:1) to afford **29** (43 mg, 64% yield) as a yellow oil. The spectra matched with the previous report.^[1]

¹**H NMR** (500 MHz, CDCl₃) δ 7.75 (d, *J* = 8.2 Hz, 2H), 7.32 (d, *J* = 7.9 Hz, 2H), 4.67 (s, 1H), 2.98 (q, *J* = 6.6 Hz, 2H), 2.43 (s, 3H), 1.95 – 1.78 (m, 6H), 1.78 – 1.63 (m, 6H).

¹³C NMR (125 MHz, CDCl₃) δ 143.7, 136.9, 123.0, 127.2, 112.3, 66.8, 43.2, 39.2, 38.4, 26.5, 23.9, 21.7.

The reaction was conducted following the general procedure in a 0.2 mmol scale for 5 h (9.3 F/mol). The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (3:1) to afford **30** (60 mg, 68% yield) as a yellow oil.

¹**H** NMR (500 MHz, CDCl₃) δ 7.84 (d, *J* = 8.4 Hz, 2H), 7.49 – 7.29 (m, 7H), 4.91 (t, *J* = 6.5 Hz, 1H), 3.26 – 3.19 (m, 1H), 3.03 (q, *J* = 6.6 Hz, 2H), 2.49 (s, 3H), 1.97 – 1.73 (m, 2H), 1.72 – 1.61 (m, 2H), 1.49 (d, *J* = 6.6 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 167.4, 161.2, 139.2, 135.5, 130.5, 129.9, 128.9, 128.6, 127.5, 114.6, 111.1, 45.2, 42.7, 34.0, 27.4, 22.1, 11.9.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ calcd for $C_{22}H_{23}N_3O_3S_2Na$, 464.1073, found 464.1077.

The reaction was conducted following the general procedure with TFA (0.4 mmol, 2.0 equiv.) in a 0.2 mmol scale for 3 h (5.6 F/mol). The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (3:1) to afford **31** (43 mg, 42% yield) as a colorless oil.

¹**H** NMR (500 MHz, CDCl₃) δ 7.86 (d, *J* = 8.5 Hz, 2H), 7.47 (d, *J* = 8.5 Hz, 2H), 7.24 – 7.21 (m, 2H), 7.08 (t, *J* = 8.4 Hz, 2H), 6.76 (s, 1H), 4.90 (t, *J* = 6.3 Hz, 1H), 3.24 – 3.19 (m, 1H), 2.98 (q, *J* = 6.7 Hz, 2H), 1.77 – 1.66 (m, 4H), 1.49 (d, *J* = 6.8 Hz, 3H).

¹³**C NMR** (125 MHz, CDCl₃) δ 163.5 (d, $J_{C-F} = 251.3$ Hz), 144.4 (q, $J_{C-F} = 35.1$ Hz), 142.5, 139.8, 131.0 (d, $J_{C-F} = 8.4$ Hz), 128.3, 128.2 (q, $J_{C-F} = 282.0$ Hz), 125.8, 124.9 (d, $J_{C-F} = 3.5$ Hz), 116.5 (d, $J_{C-F} = 22.1$ Hz), 111.1, 106.8, 45.2, 42.7, 34.0, 27.4, 22.1.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ calcd for $C_{22}H_{20}F_4N_4O_2S_2Na$, 535.0856, found 535.0859.

The reaction was conducted following the general procedure in a 0.2 mmol scale for 4 h (7.5 F/mol). The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (5:1) to afford **32** (77 mg, 76% yield) as a colorless oil.

¹**H** NMR (500 MHz, CDCl₃) δ 7.86 (d, J = 8.7 Hz, 2H), 7.45 (d, J = 8.8 Hz, 2H), 7.39 (d, J = 8.3 Hz, 2H), 7.27 (d, J = 8.8 Hz, 2H), 6.82 (s, 1H), 4.82 (s, 1H), 4.16 (s, 2H), 2.92 (t, J = 7.3 Hz, 2H), 1.49 – 1.41 (m, 2H), 1.28 – 1.22 (m, 4H), 0.86 (t, J = 6.7 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 144.33 (q, J_{C-F} = 38.5 Hz), 144.29, 142.2, 140.1, 136.2, 129.8, 129.7, 128.3, 125.7, 121.1 (q, J_{C-F} = 269.2 Hz), 111.4, 106.8, 43.4, 37.6, 29.3, 28.7, 22.2, 14.0. **HRMS** (ESI-TOF) m/z: [M + Na]⁺ calcd for C₂₃H₂₃F₃N₄O₂S₂Na, 531.1107, found 531.1112.

The reaction was conducted following the general procedure in a 0.2 mmol scale for 2 h (3.7 F/mol). The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (10:1) to afford **33** (57 mg, 53% yield) as a colorless oil.

¹**H NMR** (500 MHz, CDCl₃) δ 7.73 (d, *J* = 7.8 Hz, 2H), 7.29 (d, *J* = 7.9 Hz, 2H), 4.82 (t, *J* = 6.4 Hz, 1H), 3.53 (t, *J* = 6.4 Hz, 1H), 2.88 (q, *J* = 6.8 Hz, 2H), 2.41 (s, 3H), 2.04 – 1.93 (m, 2H), 1.71 (t, *J* = 12.0 Hz, 2H), 1.62 – 1.51 (m, 2H), 1.42 (q, *J* = 7.1 Hz, 4H), 1.36 – 1.15 (m, 18H), 0.87 (t, *J* = 6.7 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 143.3, 137.1, 129.7, 127.1, 110.5, 110.4, 55.6, 55.5, 43.2, 31.8, 31.2, 31.1, 29.5, 29.3, 29.2, 29.0, 28.9, 28.8, 28.7, 27.2, 27.1, 26.4, 22.7, 21.6, 14.2.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ calcd for $C_{27}H_{41}N_3O_2S_3Na$, 558.2253, found 558.2263.

4. Scaled-up reaction

To a 150 mL beaker-type cell equipped with a carbon plate anode (3 cm x 3 cm x 0.3 cm, about 1.5 cm immersion depth in solution) and a platinum plate cathode (3 cm x 3 cm x 0.1 mm, about 1.5 cm immersion depth in solution) was charged with **S27** (0.38 g, 1.0 mmol, 1.0 equiv.), TMSNCS (0.20 g, 1.5 mmol, 1.5 equiv.), HCOOH (92 mg, 2.0 mmol, 2.0 equiv.), TBAOAc

(0.15 g, 0.5 mmol, 0.5 equiv.) and HFIP (20 mL). The electrolysis was carried out at room temperature using a constant current of 20 mA under N₂ for 15 h (11.2 F/mol). After completion of the reaction, the mixture was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel eluting with petroleum ether/ethyl acetate (3:1) to give **30** as a yellow oil (0.28 g, 64% yield).

At the beginning of the reaction

At the end of the reaction

Figure S2. Electrolysis cell for large scale reaction

5. Follow-up transformations

To a solution of **30** (88 mg, 0.2 mmol, 1.0 equiv.) in CH₃CN (1.5 mL) was added TMSCF₃ (57 mg, 0.4 mmol, 2.0 equiv.) and Cs₂CO₃ (65 mg, 0.2 mmol, 1.0 equiv.). The reaction mixture was stirred at room temperature for 5 h. After completion of the reaction (monitored by TLC), water (5 mL) was added to quench the reaction and the mixture was extracted with DCM. The organic layers were washed with brine, dried over Na₂SO₄, filtered, and evaporated. The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (5:1) to give **34** (72 mg, 74% yield) as a colorless oil.

¹**H NMR** (500 MHz, CDCl₃) δ 7.85 (d, *J* = 7.9 Hz, 2H), 7.45 – 7.28 (m, 7H), 4.70 (s, 1H), 3.26 (q, *J* = 6.3 Hz, 1H), 3.03 (d, *J* = 5.3 Hz, 2H), 2.49 (s, 3H), 1.69 – 1.62 (m, 4H), 1.39 (d, *J* = 6.9 Hz, 3H).

¹³**C NMR** (125 MHz, CDCl₃) δ 167.4, 161.3, 139.4, 135.5, 131.2 (q, $J_{C-F} = 304.5$ Hz), 130.5, 129.9, 128.9, 128.6, 127.5, 114.6, 43.0, 40.8, 33.9, 27.0, 22.5, 11.9.

HRMS (ESI-TOF) m/z: $[M + H]^+$ calcd for $C_{22}H_{24}F_3N_2O_3S_2$, 485.1175, found 485.1169.

To a solution of **30** (88 mg, 0.2 mmol, 1.0 equiv.), $ZnCl_2$ (27 mg, 0.2 mmol, 1.0 equiv.) in *i*PrOH (1.0 mL) was added NaN₃ (33 mg, 0.5 mmol, 2.5 equiv.) in one portion. The reaction mixture was stirred at 60 °C for 15 h. After cooling, the mixture was acidified with 10% HCl. The aqueous layer was extracted with ethyl acetate. The organic layers were washed with brine, dried over Na₂SO₄, filtered, and evaporated. The residue was purified by column chromatography on silica gel with (DCM/MeOH = 8:1) to give **35** (66 mg, 68% yield) as a white solid.

¹**H** NMR (500 MHz, CDCl₃) δ 7.82 (d, *J* = 4.6 Hz, 2H), 7.36 – 7.22 (m, 7H), 3.63 (s, 1H), 3.01 (s, 3H), 2.45 (s, 3H), 1.76 (s, 1H), 1.62 (s, 3H), 1.31 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 167.5, 161.0, 156.9, 139.0, 135.1, 130.3, 129.8, 128.8, 128.5, 127.6, 114.5, 42.0, 41.4, 33.6, 25.7, 20.5, 11.8.

HRMS (ESI-TOF) m/z: $[M + H]^+$ calcd for $C_{22}H_{25}N_6O_3S_2$, 485.1424, found 485.1434.

To a solution of **30** (88 mg, 0.2 mmol, 1.0 equiv.) was added dry Et_2O (3 mL) under N₂, and the suspension was cooled to 0 °C. A solution of LiAlH₄ (15 mg, 0.4 mmol, 2.0 equiv.) in dry Et_2O (3 mL) was slowly added, and the reaction was stirred at 0 °C for 20 min. After completion of the reaction (monitored by TLC), the mixture was quenched by dropwise addition of 0.5 M HCl, diluted with H₂O and extracted with ethyl acetate. The organic layers were washed with brine, dried over Na₂SO₄, filtered, and evaporated. The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (6:1) to give **36** (79 mg, 95% yield) as a colorless oil.

¹**H** NMR (500 MHz, CDCl₃) δ 7.84 (d, *J* = 8.3 Hz, 2H), 7.40 – 7.28 (m, 7H), 4.96 (t, *J* = 6.3 Hz, 1H), 3.01 (q, *J* = 6.4 Hz, 2H), 2.87 – 2.81 (m, 1H), 2.48 (s, 3H), 1.67 – 1.54 (m, 3H), 1.49 – 1.43 (m, 1H), 1.40 (d, *J* = 6.5 Hz, 1H), 1.28 (d, *J* = 6.7 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 167.4, 161.2, 139.3, 135.2, 130.4, 129.8, 128.8, 128.6, 128.5, 127.5, 114.6, 43.0, 37.6, 35.2, 27.6, 25.9, 11.9.

HRMS (ESI-TOF) m/z: $[M + H]^+$ calcd for $C_{21}H_{25}N_2O_3S_2$, 417.1301, found 417.1299.

6. Mechanism study

Cyclic voltammetry experiments

Figure S3. Cyclic voltammograms for sulfonamides

Cyclic voltammograms (CV) were performed with a CS electrochemical workstation (CS300H, CorrTest, China). CV analysis conditions: working electrode: glassy carbon disk; counter electrode: Pt wire; reference electrode: The reference was an Ag/AgCl electrode submerged in saturated aqueous KCl solution; solvent: HFIP (5 mL); scan rate: v = 100 mV/s; c = 0.005 M; supporting electrolyte: $n\text{Bu}_4\text{NBF}_4$ (0.1 M).

Radical probe experiments

To a 10 mL three-necked flask equipped with a carbon plate anode (3 cm x 1 cm x 0.3 cm, about 1.5 cm immersion depth in solution) and a platinum plate cathode (1 cm x 1 cm x 0.1 mm) was charged with **S26** (59 mg, 0.2 mmol, 1.0 equiv.), TMSNCS (39 mg, 0.3 mmol, 1.5 equiv.), HCOOH (18 mg, 0.4 mmol, 2.0 equiv.), TBAOAc (30 mg, 0.1 mmol, 0.5 equiv.) and HFIP (5 mL). The electrolysis was carried out at room temperature using a constant current of 10 mA under N₂ for 2 h (3.7 F/mol). After completion of the reaction, the mixture was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (5:1) to give **37** as a yellow oil (51 mg, 62% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.73 (d, J = 8.2 Hz, 2H), 7.29 (d, J = 7.9 Hz, 2H), 4.86 (t, J = 6.3 Hz, 1H), 3.35 – 3.31 (m, 2H), 2.89 (q, J = 6.7 Hz, 2H), 2.41 (s, 3H), 2.04 – 1.93 (m, 1H), 1.77 – 1.69 (m, 1H), 1.62 – 1.49 (m, 1H), 1.47 – 1.37 (m, 3H), 1.30 – 1.23 (m, 5H).
¹³C NMR (125 MHz, CDCl₃) δ 143.4, 137.0, 129.8, 127.1, 111.1, 109.3, 50.8, 50.0, 43.1, 39.1, 33.2, 29.4, 28.6, 26.6, 26.3, 21.6.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ calcd for $C_{18}H_{23}N_3O_2S_3Na$, 432.0845, found 432.0848.

7. Unsuccessful substrates

8. Synthesis of substrates

General procedure for the synthesis of sulfonamide (GP1)

$$\begin{array}{cccc} & & & \\ & & & \\ & & \\ R^{1} & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\$$

To a round bottom flask was added sulfonyl chloride (3 mmol, 1.0 equiv.) and dry DCM (12 mL), the mixture was cooled to 0 °C. Amine (3.3 mmol, 1.1 equiv.) and Et₃N (3.6 mmol, 1.2 equiv.) were added into the solution. The reaction mixture was warmed to room temperature and the stirring was continued until the starting material was consumed completely as indicated by TLC. The reaction mixture was quenched with 1.0 M HCl and extracted with DCM. The organic layers were combined, washed with brine, dried over anhydrous Na₂SO₄, and concentrated in vacuo. The residue was purified by column chromatography on silica gel to afford the corresponding sulfonamide.

Following **GP1** with tosyl chloride and amylamine. The crude was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (10:1) to give **S1** (0.67 g, 92%) as a yellow oil. ^[3]

Following **GP1** with 4-bromobenzenesulfonyl chloride and amylamine. The crude was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (10:1) to give **S2** (0.69 g, 75%) as a yellow oil. ^[4]

Following **GP1** with 4-methoxybenzenesulfonyl chloride and amylamine. The crude was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (8:1) to give **S3** (0.66 g, 86%) as a yellow oil. ^[5]

Following **GP1** with benzenesulfonyl chloride and amylamine. The crude was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (10:1) to give **S4** (0.61 g, 89%) as a colorless oil. ^[5]

Following **GP1** with 4-(trifluoromethyl)benzene sulfonyl chloride and amylamine. The crude was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (8:1) to give **S5** (0.80 g, 90%) as a white solid.

¹**H NMR** (400 MHz, CDCl₃) δ 8.01 (d, *J* = 8.2 Hz, 2H), 7.78 (d, *J* = 8.3 Hz, 2H), 4.96 (t, *J* = 6.1 Hz, 1H), 2.96 (q, *J* = 6.8 Hz, 2H), 1.50 – 1.43 (m, 2H), 1.26 – 1.20 (m, 4H), 0.82 (t, *J* = 6.8 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 143.8, 134.4 (q, J_{C-F} = 33.1 Hz), 127.7, 126.4 (q, J_{C-F} = 3.7 Hz), 123.4 (q, J_{C-F} = 272.8 Hz), 43.4, 29.4, 28.7, 22.2, 13.9.

HRMS (ESI-TOF) m/z: $[M + H]^+$ calcd for $C_{12}H_{17}F_3NO_2S$, 296.0927, found 296.0933.

Following **GP1** 2-thiophenesulfonyl chloride and amylamine. The crude was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (10:1) to give **S6** (0.60 g, 86%) as a colorless oil. ^[6]

Following **GP1** *o*-toluenesulfonyl chloride and amylamine. The crude was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (10:1) to give **S7** (0.57 g, 79%) as a colorless oil. ^[6]

Following **GP1** tosyl chloride and octylamine. The crude was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (10:1) to give **S8** (0.76 g, 90%) as a colorless oil. ^[7]

Following **GP1** tosyl chloride and *N*-Boc-1,6-diaminohexane. The crude was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (3:1) to give **S9** (0.94 g, 85%) as a white solid.

Following **GP1** with tosyl chloride and butylamine. The crude was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (10:1) to give **S10** (0.61 g, 90%) as a yellow oil. ^[8]

Following **GP1** with tosyl chloride and isoamylamine. The crude was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (10:1) to give **S11** (0.59 g, 82%) as a yellow oil.^[9]

Following **GP1** with *o*-toluenesulfonyl chloride and tert-butylamine. The crude was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (15:1) to give **S12** (0.55 g, 80%) as a white solid. ^[10]

Following **GP1** with mesitylene-2-sulfonyl chloride and tert-butylamine. The crude was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (15:1) to give **S13** (0.60 g, 79%) as a white solid. ^[11]

Following **GP1** tosyl chloride and oleylamine. The crude was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (8:1) to give **S14** (1.02 g, 81%) as a white solid. ^[12]

General procedure for the synthesis of sulfonamide (GP2)

To a round bottom flask was added the acid (3 mmol, 1.0 equiv.) and dry THF (12 mL), the mixture was cooled to 0 °C. LiAlH₄ (0.17 g, 4.5 mmol, 1.5 equiv.) was added into the solution under N₂. The reaction mixture was warmed to room temperature and the stirring was continued until the starting material was consumed completely as indicated by TLC. The reaction mixture was quenched carefully with water at 0 °C and allowed to stir for about 10 min. The mixture was filtered and extracted with ethyl acetate. The organic extracts were combined, washed with

brine, and dried over anhydrous Na₂SO₄. The organic layer was concentrated in vacuo to obtain the alcohol.

To a round bottom flask was added alcohol, PPh_3 (1.1 equiv.), tert-butyl tosylcarbamate (1.1 equiv.) and dry THF (12 mL). The mixture was stirred for 10 min then cooled to 0 °C. DIAD (1.1 equiv.) was added and the mixture was stirred overnight at room temperature. Upon completion, the mixture was concentrated and purified by column chromatography on silica gel to give the Boc-protected amide.

To a round bottom flask was added Boc-protected amide and DCM (0.25 M), then TFA (5.0 equiv.) was added. The reaction was stirred for 3 h at room temperature. The mixture was concentrated and purified by column chromatography on silica gel to give the corresponding amide.

Following **GP2** with 3-methylpentanoic acid. The crude was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (10:1) to give **S15** (0.60 g, 78%) as a colorless oil.^[13]

Following **GP2** with 4-phenylbutyric acid. The crude was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (5:1) to give **S16** (0.64 g, 70%) as a white solid.

Following **GP2** with 5-phenylvaleric acid. The crude was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (8:1) to give **S17** (0.74 g, 78%) as a white solid. ^[14]

Following **GP2** with 1-adamantaneacetic acid. The crude was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (10:1) to give **S18** (0.65 g, 65%) as a white solid. ^[14]

Following **GP2** with 2-pentanol. The crude was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (8:1) to give **S19** (0.45 g, 62%) as a colorless oil.^[13]

Following **GP2** with 2-methyl-1-butanol. The crude was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (8:1) to give **S20** (0.53 g, 73%) as a colorless oil.^[16]

Following **GP2** with cyclohexanepropionic acid. The crude was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (10:1) to give **S21** (0.56 g, 63%) as a white solid.^[14]

Following **GP2** with 3-cyclopentylpropionic acid. The crude was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (10:1) to give **S22** (0.48 g, 57%) as a white solid. ^[13]

General procedure for the synthesis of sulfonamide (GP3)

To a round bottom flask was added alkyl bromide (3 mmol, 1.0 equiv.), sulfonamide (6 mmol, 2.0 equiv.), K_2CO_3 (0.83 g, 6 mmol, 2.0 equiv.) and MeCN (12 mL). The reaction mixture was heated to reflux for 5 h. The mixture was filtrated through celite and concentrated in vacuo. The crude was purified by column chromatography on silica gel to give the corresponding amide.

Following **GP3** with *p*-toluenesulfonamide and 1-bromo-5-methylhexane. The crude was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (8:1) to give **S23** (0.63 g, 78%) as a colorless oil. ^[13]

Following **GP3** with *p*-toluenesulfonamide and 1-bromo-2-cyclohexyl. The crude was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (10:1) to give **S24** (0.53 g, 63%) as a white solid. ^[4]

Following **GP3** with *p*-toluenesulfonamide and 1-bromo-4-methylpentane. The crude was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (8:1) to give **S25** (0.57 g, 75%) as a colorless oil. ^[7]

Following **GP3** with *p*-toluenesulfonamide and 9-bromo-1-decene. The crude was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (10:1) to give **S26** (0.71 g, 80%) as a white solid. ^[17]

Following **GP3** with valdecoxib and 1-bromopentane. The crude was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (5:1) to give **S27** (0.75 g, 65%) as a white solid.

Following **GP3** with celecoxib and 1-bromopentane. The crude was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (5:1) to give **S28** (0.69 g, 51%) as a white solid.

(S)-4-methyl-2-((4-methylphenyl) sulfonamido) pentyl benzoate (S29)

To a round bottom flask was added L(+)-Leucinol (0.35 g, 3 mmol, 1.0 equiv.) and dried DCM (6 mL). The mixture was cooled to 0 °C, Et₃N (1.25 mL, 9 mmol, 3.0 equiv.) and tosyl chloride (0.57 g, 3 mmol, 1.0 equiv.) were added slowly. The reaction was warmed to room temperature and stirred overnight. After completion, the solvent was evaporated and the residue was dissolved in dried DCM (6 mL), then Et₃N (1.25 mL, 9 mmol, 3.0 equiv.) and BzCl (0.51 g, 3.6 mmol, 1.2 equiv.) were added. The reaction mixture was warmed to room temperature and stirred for 8 h. The mixture was quenched by water and extracted with DCM. The organic layers were combined, washed with brine, and dried over anhydrous Na₂SO₄. The crude was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (5:1) to give **S29** (0.57 g, 51%) as a yellow solid. ^[18]

N-(1-(3-chlorophenyl) pentyl)-4-methylbenzenesulfonamide (S30)

To a solution of *n*BuMgBr (15 mmol, 3.0 equiv.) in THF (20 mL) was added 3chlorobenzonitrile (0.69 g, 5 mmol, 1.0 equiv.). The reaction mixture was heated at 70 °C for 4 h under vigorous stirring. After cooling to room temperature, a solution of sodium borohydride (0.38 g, 10 mmol, 2.0 equiv.) in MeOH (25 mL) was added to the reaction mixture. After stirring for 15 min, the mixture was quenched with aqueous NaOH solution (1.0 M), and extracted with ethyl acetate. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄ and concentrated to give the crude amine.

The last step was following **GP1** with 1-(3-chlorophenyl) pentan-1-amine (0.65 g, 3.3 mmol, 1.1 equiv.) and tosyl chloride (0.57 g, 3 mmol, 1.0 equiv.). The crude was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (8:1) to give **S30** (0.66 g, 63%) as a yellow oil. ^[19]

N-(6-bromohexyl)-4-methylbenzenesulfonamide (S31)

To a round bottom flask was added 6-aminohexanol (0.70 g, 5 mmol) and 40% HBr (6 mL). The mixture was refluxed for 8 h, and concentrated to give 6-bromohexylamine hydrobromide (1.14 g, 88%) as a yellow solid.

The last step was following **GP1** with 6-bromohexan-1-aminium bromide (0.85 g, 3.3 mmol, 1.1 equiv.) and tosyl chloride (0.57 g, 3 mmol, 1.0 equiv.). The crude was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (5:1) to give **S31** (0.83 g, 83%) as a yellow solid. ^[20]

4-(5-(4-fluorophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl)-*N*-pentylbenzenesulfonamide (S32)

To a round bottom flask was added 4-fluorobenzaldehyde (0.37 g, 3 mmol, 1.0 equiv.), 4methylbenzenesulfonohydrazide (0.67 g, 3.6 mmol, 1.2 equiv.), 1,8-diazabicyclo[5.4.0]undec-7-ene (1.37 g, 9 mmol, 3.0 equiv.), 2-bromo-3,3,3-trifluoropropene (1.05 g, 6 mmol, 2.0 equiv.), and toluene (18 mL). The resulting mixture was vigorously stirred at 60 °C for 6 h. The reaction mixture was quenched with water and extracted with ethyl acetate. The combined organic layers were washed with brine, dried over anhydrous Na_2SO_4 , and concentrated in vacuo. The crude was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (10:1) to give **S33** (0.50 g, 72%) as a yellow solid.

The **S34** was synthesized following **GP1** with 4-iodobenzenesulfonyl chloride (3.63 g, 12 mmol, 1.0 equiv.) and amylamine (1.15 g, 13.2 mmol, 1.1 equiv.). The crude was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (10:1) to give **S34** (4.15 g, 98%) as a white solid.

To a Schlenk tube was added **S33** (0.46 g, 2 mmol, 1.0 equiv.), **S34** (3.18 g, 9 mmol, 4.5 equiv.), CuI (0.19 g, 1 mmol, 0.5 equiv.), K_2CO_3 (0.55 g, 4 mmol, 2.0 equiv.) and 1,4-dioxane (8 mL). *N*, *N*'-dimethyl-1,2-cyclohexanediamine (0.14 g, 1 mmol, 1.0 equiv.) was slowly injected into the system under Ar. The resulting mixture was vigorously stirred at 150 °C for 24 h under Ar. The mixture was concentrated in vacuo and purified by column chromatography on silica gel with petroleum ether/ethyl acetate (20:1) to give **S32** (0.30 g, 33%) as a colorless oil.

9. Copies of NMR spectra

7.773 7.7678 7.7678 7.6678 4.862 4.862 4.882 4.8836 4.8836 4.8836 5.3.717 3.2.963 3.2717 3.2.976 5.3.773 3.2717 3.2.963 7.1.759 7.1.759 7.1.759 7.1.759 7.1.759 7.1.759 7.1.773 7.1.773 7.1.779 7.1.773 7.1.779 7.1.769 7.1769 7.1769 7.1769 7.1769 7.1769 7.1769 7.1769 7.1769 7.1769

$\langle 7.802 \\ 7.784 \\ 6.980 \\ \langle 6.980 \\ 6.936 \\ \langle 6.938 \\ \langle 6.938 \\ \langle 6.938 \\ 3.872 \\ 3.375 \\ 3.375 \\ 3.3.75 \\ 3.3.75 \\ 3.3.175$

500 MHz CDCl₃

) 90 fl (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2. f1 (ppm)

¹H NMR 500 MHz CDCl₃

¹H NMR 500 MHz CDCl₃

7.5

2.01⊣± 0.92_{-1} 3.04<u>H</u> 3.02<u>⊣</u> 2.03≖ 3.08₌ 1.09⊈ 5.01 1.05⊈ 2.98∄ 10.0 9.5 9.0 8.5 8.0 7.0 6.5 6.0 5.5 5.0 4.5 f1 (ppm) 4.0 3.5 3.0 2.5 2.0 1.0 0.5 0.0

1.5

7.755 7.7338 7.7338 7.7338 7.7338 7.7338 7.7338 7.7338 7.7338 7.7338 7.7338 7.7338 7.7338 7.7338 7.2919 7.3015 7.312 7.3339 7.2919 7.3337 7.3015 7.3336 7.33

7.531 7.531 7.531 7.143 7.113 7.113 7.113 7.113 7.113 7.113 7.113 7.113 7.113 6.936 6.9336 6.9336 6.9336 6.9239 6.9239 6.9236 6.9236 6.9236 6.9236 6.9239 6.9229 6.9239 6.9239 6.9229 6.9239 6.9239 6.9239 6.9239 6.9239 6.9239 6.9239 6.9239 6.9239 6.9229 6.9239 6.9229 6.9239 6.9229 6.9239 6.9229 7.129 7.1299 7.1270 7.1270 7.1299 7.127007.12700

7.759 7.759 7.75318 7.7318 7.7318 7.7318 7.334 7.7318 7.7318 7.7318 7.7318 7.2560 7.2550 7.3555 7.2555 7.2555 7.2555 7.2555 7.1056 7.10

7.741 7.724 7.724 7.724 7.724 7.724 7.726 7.726 7.725 7.724 7.726 7.725 7.725 7.725 7.2312 7.2312 7.2312 7.2350 7.33206 7.33206 7.32306 7.32006 7.2200

500 MHz CDCl₃

¹H NMR 500 MHz CDCl₃

S48

¹H NMR 500 MHz CDCl₃

S54

(7.75)(7.75)(7.73)(7.73)(7.260)(7.260)(7.260)(2.964)(2.964)(2.990)(2.991)(2.91)

7.348 7.411 7.337 7.4115 7.4115 7.4115 7.4115 7.3379 7.3379 7.3362 7.3362 7.3362 7.3362 7.3362 7.3362 7.3362 7.3362 7.3362 7.3362 7.3362 7.3362 7.3362 7.3362 7.3365 7.330

500 MHz CDCl₃

500 MHz CDCl₃

10.Theoretical calculations

Computational details:

All calculations were performed using Gaussian 16, Revision A.03 package.^[21] All of the reactants, intermediates, transition states, products were optimized by the DFT with the M06-2X functional.^[22] For geometry optimizations and frequency calculations, BS-I basis set system was employed. In BS-I, we employed 6-31+G(d) basis sets for all atoms. All the stationary structures were characterized with no imaginary frequency and the transition state structures (TSs) were characterized with a single imaginary frequency. Intrinsic reaction coordinate (IRC) calculations were performed on the TSs. The solvent effect of hexafluoro-propan-2-ol (HFIP) ($\varepsilon = 16.7$) was evaluated through the SMD method,^[23] in which a better basis system BS-II was used. In BSII, we employed def2-TZVP basis sets for all atoms. All reported energies are free energies at a concentration of 1 M and a temperature of 298.15 K.

Figure S4. The scanned energy change along with the formation of C-S bond.

Figure S5. DFT calculated Gibbs free energy profiles for the radical coupling process (in kcal/mol).

Cartesian coordinates of the optimized structures

1 E = -1071.7237480 a.u.	H -1.05067300 4.65407400 2.74046800 H -1.53054600 5.94129200 1.64336200
0 1	C -2.69355100 5.85802600 3.46225700
S -2.90105100 0.72786200 -2.33081300	H -3.07123400 5.11754200 4.17608700
O -2.06398100 0.54367100 -3.50861900	H -2.06257000 6.56258300 4.01241100 H -3.55411400 6.41232100 3.07160900
O -4.31824100 1.04623000 -2.46355500	H-3.33411400 0.41232100 3.0/160900
C -2.77834100 -0.70290200 -1.28411300	3
C -1.54333600 -1.33757100 -1.15180900	E = -1562.08245935 a.u.
C -1.44954500 -2.45569900 -0.33503400	E = -1502.08245955 a.u. 0 1
C -2.57141600 -2.94885300 0.34832600	S -1.75297400 0.94202200 -1.84571900
C -3.79427600 -2.29371900 0.19284900	O -0.97085900 0.59294100 -3.01920800
C -3.90837600 -1.16858200 -0.62445200	O -2.86725000 1.87630900 -1.88726300
Н -0.67978900 -0.95713600 -1.68930600	C - 2.36944200 - 0.57143900 - 1.13285600
Н -0.49362400 -2.96227900 -0.22600800	C -1.61633900 -1.73843200 -1.26763000
Н -4.67267000 -2.66847600 0.71142900	C - 2.07994400 - 2.91046400 - 0.68412400
Н -4.85859200 -0.66203600 -0.76315500	C -3.28746800 -2.93580300 0.02836200
C -2.44687900 -4.17154800 1.22046300	C -4.02541800 -1.75507100 0.13811300
H -3.38704500 -4.39319700 1.73168300	C -3.57551200 -0.56838700 -0.44045300
H -2.17104000 -5.04761200 0.62389200	H -0.69579200 -1.72507300 -1.84445700
H -1.67003100 -4.03375900 1.97954300	H-1.50467000 -3.82692800 -0.79139300
N -2.11478500 1.88847900 -1.41883000	H -4.97058200 -1.76283000 0.67442100
H -1.67531300 2.54607400 -2.06392000	H -4.16006700 0.34481300 -0.38193800
C -2.89957600 2.53004000 -0.35728700	C -3.77681100 -4.22205100 0.64229600
H -3.25132500 1.73664400 0.31364000	H -4.70337100 -4.06918100 1.20117100
H -3.78506800 3.03629000 -0.76350600	H -3.96772600 -4.97361000 -0.13098100
C -2.02152500 3.50625300 0.41522200 H -1.63209500 4.26944000 -0.27401500	H -3.03042800 -4.63789500 1.32684600
H -1.05209500 4.20944000 -0.27401500 H -1.15390800 2.96709100 0.81487300	N -0.66516600 1.57003700 -0.75980800
C -2.78456600 4.19158600 1.54732200	C -1.14950200 2.02651700 0.54645800
H -3.17802900 3.42986100 2.23540600	H -0.35260800 1.83418000 1.27263600
H -3.65751600 4.71795100 1.13637500	H -2.01796100 1.43248300 0.86832200
C -1.92279300 5.18057700 2.33111500	C -1.50055500 3.51167500 0.52601400
0 1.72277500 5.10057700 2.55111500	H -2.24378600 3.68620700 -0.25974500

Н -0.60214700	4.07472700	0.24768300
C -2.04484800	3.96715700	1.87907900
H -1.30093900	3.80429400	2.67292900
H -2.91664900	3.35235700	2.14274600
C -2.51305000	5.42293300	1.92798500
H -3.19356400	5.61886100	1.09305900
C -3.17341700	5.76910300	3.25439700
H -2.48821400	5.58025300	4.08719000
H -3.48499400	6.81630500	3.29098800
H -4.06399500	5.14492200	3.38770600
H 0.20190300	1.04153500	-0.76480400
S -1.00988100	6.47023200	1.62967100
C -1.72811000	8.00431100	1.74618800
N -2.20977100	9.05710800	1.82832100

E = -1071.05852649 a.u.

02

02		
S -3.77704400	0.57119100	-0.95606900
O -3.32998300	1.06463000	-2.25408300
O -5.18031900	0.65377800	-0.56578400
C -3.22623000	-1.09834300	-0.75920200
C -2.12863100	-1.54004000	-1.49246600
C -1.69350300	-2.84946400	-1.31854800
C -2.33878300	-3.71213500	-0.42439700
C -3.44409300	-3.23825800	0.29071200
C -3.89562200	-1.93166700	0.13121600
H -1.64126400	-0.87037000	-2.19427500
Н -0.84300000	-3.21119900	-1.89060500
H -3.96225100	-3.90316900	0.97665400
H -4.76100600	-1.56246000	0.67277700
C -1.83881900	-5.11960700	-0.22511000
H -2.63416600	-5.77634800	0.13708200
H -1.44606100	-5.53629800	-1.15677500
H -1.02910500	-5.13803800	0.51322600
N -2.87311600	1.37566500	0.23074100
C -3.16940400	2.79406500	0.25147400
Н -4.25023000	2.92978400	0.42417200
Н -2.96630700	3.21513000	-0.74745000
C -2.34843700	3.49904000	1.32293900
H -1.28333800	3.32759400	1.12437400
Н -2.56753800	3.04239000	2.29592900
C -2.63857700	4.99784800	1.36972000
Н -3.70977900	5.15961900	1.55760600
H -2.42690300	5.44448000	0.38755600
C -1.82476100	5.72513900	2.43914000
Н -2.03736500	5.27878800	3.41942200
Н -0.75540200	5.56288900	2.25061900
C -2.11940600	7.22310500	2.48003800
Н -3.17807800	7.40756800	2.69376000
H -1.52889700	7.72761500	3.25080000
H -1.88769000	7.69345800	1.51798200

48

E = -1071.0592089 a.u 0 2 S -2.41318900 0.73475000 -2.36530400

O -1.35440200	0.50007200	-3.33405100
O -3.76109000	1.11632500	-2.75327500
C -2.55172000	-0.72024800	-1.34399400
C -1.43559100	-1.53804500	-1.16997400
C -1.53439400	-2.64339900	-0.33329500
C -2.73218100	-2.94419200	0.32953900
C -3.83533900	-2.10965700	0.13225700
C -3.75519300	-0.99666100	-0.70351400
H -0.51583100	-1.31637900	-1.70376100
Н -0.67233500	-3.29221800	-0.19793500
Н -4.77354500	-2.33620100	0.63192000
H -4.61657600	-0.35826400	-0.87651600
C -2.82319700	-4.15936800	1.21637300
Н -3.76850800	-4.18205900	1.76440800
Н -2.75520900	-5.07768900	0.62311400
Н -2.00567200	-4.17729800	1.94393300
N -1.84622300	1.94654100	-1.37752200
C -2.64291700	2.31957400	-0.20694600
Н -2.63646700	1.52562500	0.55684600
Н -3.67376700	2.44944200	-0.55123000
C -2.11837800	3.62285000	0.38334300
H -2.15671300	4.39996700	-0.38878700
H -1.06378900	3.50438200	0.66732400
C -2.92007100	4.05895500	1.61073000
H -2.88826800	3.26888400	2.37681400
Н -3.98567500	4.14690900	1.32719700
C -2.43490600	5.34185700	2.20024100
H -1.99826100	6.07888200	1.53076800
C -2.89943500	5.77609500	3.54881400
H -2.81110300	4.96224300	4.27994600
Н -2.32808200	6.63109900	3.92081100
Н -3.96152900	6.07338000	3.54053200
Н -0.85412600	1.80990600	-1.19107200
49		

E = -1070.80997156 a.u

1.33266300	0.29107500
2.10960100	-0.71434900
1.84199200	0.74212600
-0.34067200	-0.22832800
-0.74675900	-1.34606600
-2.07708900	-1.74819200
-2.98497300	-1.05262600
-2.53618000	0.06883900
-1.21819300	0.49028900
-0.03539300	-1.89182700
-2.41068700	-2.62033700
-3.23381100	0.61178400
-0.86884000	1.35178200
-4.42030300	-1.49041400
-4.65780400	-1.77172500
-4.62849800	-2.34780600
-5.09659300	-0.67734000
1.26564600	1.70304600
2.34530600	2.64792400
2.22825800	3.44326400
	$\begin{array}{c} 2.10960100\\ 1.84199200\\ -0.34067200\\ -0.74675900\\ -2.07708900\\ -2.98497300\\ -2.53618000\\ -1.21819300\\ -0.03539300\\ -2.41068700\\ -3.23381100\\ -0.86884000\\ -4.42030300\\ -4.65780400\\ -4.62849800\\ -5.09659300\\ 1.26564600\\ 2.34530600\\ \end{array}$

Н -2.91140800	2.20313900	3.08856300
C -1.77633400	3.79850800	2.08095700
H -1.31999500	3.71898900	1.08301400
Н -1.11479700	4.41623300	2.68957900
C -3.23026000	4.53537700	2.10224200
Н -3.27190700	5.14074200	3.00601300
H -4.02395800	3.79722400	2.00018800
C -2.87058000	5.19721700	0.89838100
H -2.18303400	6.04263200	0.97488000
C -3.32583400	4.82129900	-0.43689800
Н -3.91264200	3.90360600	-0.45433400
Н -3.96750200	5.67742500	-0.72680600
H -2.51221400	4.80239100	-1.16896000
Н -0.70522500	1.09615400	1.48943200

E = -1070.88612727 a.u

11

11		
S 0.33790600	-1.35010800	-0.39947700
O -0.71575200	-2.28074800	-0.08152800
O 1.62110200	-1.73019900	-0.93446500
C -0.27869300	0.10565300	-1.13915300
C -1.65305700	0.35364700	-1.10619100
C -2.11769500	1.53697900	-1.66588200
C -1.23709500	2.45785400	-2.25303800
C 0.13624200	2.16733400	-2.27454800
C 0.62975500	0.99106700	-1.72698300
Н -2.33616500	-0.37314600	-0.67629400
Н -3.18355300	1.74560900	-1.65973800
H 0.82348800	2.86614400	-2.74270200
H 1.68810600	0.74981100	-1.77570100
C -1.75863100	3.71539700	-2.88951700
Н -2.70038200	4.03207000	-2.43571700
Н -1.03720500	4.53191400	-2.80782100
H -1.94413500	3.54254800	-3.95590400
N 0.82862600	-0.72458300	1.27531500
C 1.51885900	-1.82028000	2.06306800
H 2.55921400	-1.88417300	1.74522400
H 1.00269700	-2.75591700	1.82690500
C 1.27076900	-1.39447000	3.50245200
H 1.94661100	-0.57947300	3.78499500
H 1.43322000	-2.22156900	4.19613900
C -0.18680100	-0.92539100	3.46122600
Н -0.45029600	-0.27812500	4.30090500
H -0.85819100	-1.78892400	3.47408700
C -0.32166600	-0.17144300	2.12574300
H -1.24479600	-0.44383100	1.60831400
C -0.18533300	1.33965000	2.22571600
H -1.03683900	1.74219800	2.77986000
H 0.72684200	1.61973900	2.76586500
Н -0.17693800	1.81101000	1.23626400
H 1.50593600	0.02777100	1.09633700

Int1

E = -1860.789161	.07 a.u	
-11		
S -4.22844700	1.45332500	-2.15791300

O -4.06499800	1.43483200	-3.60956000
O -5.57591100	1.47845400	-1.57882500
C -3.45438500	-0.03785200	-1.51873900
C -2.08933200	-0.23472700	-1.74140900
C -1.49506700	-1.39397100	-1.25517500
C -2.23642400	-2.35527300	-0.55455100
C -2.23042400 C -3.59596900	-2.12533100	-0.33837400
C -4.21062700	-0.96501500	-0.81360000
H -1.50515900	0.52577900	-2.26217100
H -0.43143000	-1.55417200	-1.41998300
H -4.18263400	-2.85839900	0.21150200
Н -5.26513400	-0.76952700	-0.64410600
C -1.56570800	-3.60752500	-0.04555300
H -2.26838600	-4.23683300	0.50898600
Н -1.16140700	-4.20096300	-0.87330300
Н -0.73014400	-3.36458200	0.62020100
N -3.35717300	2.70159700	-1.59778200
H -2.32860100	2.70394600	-2.03137500
C -3.32444700	2.89381900	-0.14982600
H -2.81274600	2.05514500	0.35513000
H -4.35121500	2.93760300	0.23289000
C -2.58224400	4.19191900	0.15203100
H -3.12129600	5.02163200	-0.32315200
H -1.59316700	4.14714100	-0.32174400
C -2.44147300	4.44268300	1.65130600
H -1.89504300	3.60704200	2.11297300
Н -3.43703600	4.45729600	2.12080000
C -1.71735100	5.74968900	1.97093400
Н -0.72707600	5.73514400	1.49787300
Н -2.26391400	6.58514100	1.51357900
C -1.57008500	5.99128000	3.47239500
H -1.00215200	5.18033100	3.94322000
H -1.04997200		3.68378400
	6.93188400	
H -2.55168200	6.03293100	3.95929200
C -0.46647900	4.60329800	-3.78218500
C -0.92473000	3.13495300	-3.75781700
H -1.90559800	3.13304700	-4.28233500
C -0.00736800	2.27372700	-4.63940100
O -0.95524500	2.66050300	-2.49803200
F -1.30656800	5.35336900	-3.04698200
F -0.45639200	5.14603800	-5.02320800
F 0.76474300	4.78574700	-3.27531400
F 0.00908200	2.66006600	-5.93673600
F 1.27265800	2.26944800	-4.22648100
F -0.42483700	0.99644800	-4.62721600

Int2

E = -1860.79147925 a.u

-11		
S -3.88817700	1.51587000	-2.20771500
O -3.58324400	1.46325600	-3.64806100
O -5.30554000	1.55918200	-1.80277400
C -3.28132000	-0.04904900	-1.53823400
C -1.95904800	-0.41726400	-1.79702200
C -1.46402100	-1.60222000	-1.26675200
C -2.26768200	-2.43061700	-0.46979900
C -3.58196100	-2.03895900	-0.21673900

C -4.09267700	-0.84989000	-0.74595600
H -1.33151000	0.22733000	-2.40843600
H -0.43503600	-1.89279100	-1.47101300
H -4.21780100	-2.66912700	0.40234600
H -5.11537800	-0.53623300	-0.55889900
C -1.70952900	-3.71382400	0.09558200
H -2.45820300	-4.24097000	0.69486500
H -1.38172000	-4.38827800	-0.70365500
H -0.84108900	-3.51972800	0.73532800
N -3.00244800	2.65808200	-1.56470300
H -1.56627900	2.75298200	-2.12606200
C -3.23169600	2.92614000	-0.15381100
H -2.98093900	2.05212600	0.47943500
H -4.29039000	3.16032600	0.03626700
C -2.36381200	4.10605100	0.03020700
H -2.60713500	4.96460300	-0.36565200
H -1.30981600	3.86509900	0.07972800
C -2.54972800	4.47405800	1.74411800
H -2.31544400	3.60267400	2.37395100
H -3.60716000	4.71301400	1.93223400
C -1.68376800	5.65445900	2.18219500
H -0.62877800	5.41618800	1.99271300
H -1.91852000	6.52488200	1.55522600
C -1.87418900	6.01422300	3.65498500
H -1.61901400	5.16468200	4.29938600
H -1.24656500	6.86162700	3.95199500
H -2.91790500	6.28081200	3.85913500
C -0.68799200	4.67732700	-4.14239500
C -0.94214600	3.18402900	-3.92005200
H -1.99561100	2.98863100	-4.17764300
C -0.09338700	2.32155200	-4.85230100
O -0.64752900	2.84589200	-2.61756600
F -1.43632700	5.39948500	-3.29838700
F -1.00655600	5.07413300	-5.39235400
F 0.59263700	5.02973300	-3.93715500
F -0.32765400	2.58742400	-6.15312300
F 1.22652100	2.48430800	-4.65415000
F -0.36220300	1.02425800	-4.65910100
Int3		
E = -1071.16695	153 a.u	
-11		
S -2.76089500	0.86329100	-2.34899500
O -1.94697500	0.53012900	-3.53106000
O -4.20958100	1.09035900	-2.58015100
C -2.74718100	-0.66407900	-1.36078000
C -1.56332500	-1.39873500	-1.26053300
C -1.50806800	-2.52132300	-0.44275500
C -2.62558300	-2.93015300	0.29977600
C -3.79859800	-2.18345600	0.19409500
C -3.86374100	-1.05616300	-0.63135600
Н -0.70096900	-1.07651100	-1.83815900
Н -0.58536600	-3.09677700	-0.37528500
II -0.38330000	-3.07077700	-0.37520500

H -4.67743200 -2.48769100 0.76069800

H -4.78044900 -0.48197400 -0.73325800

C -2.54933200 -4.15202600 1.18332300

H -3.50563400 -4.33833700 1.68238600

Н -2.29296500	-5.04705900	0.60427600
H -1.78332500	-4.03565900	1.95915200
N -2.04490700	1.95574600	-1.48821900
C -2.81739400	2.43296200	-0.35810800
H -2.98371800	1.64252100	0.40565300
H -3.82028000	2.78798300	-0.65342500
C -2.06412700	3.58042200	0.31016600
H -1.90877200	4.37084700	-0.43658100
H -1.06605600	3.22204900	0.59681500
C -2.78646400	4.14670100	1.53053300
H -2.94145800	3.34644900	2.26999400
H -3.78986900	4.48991200	1.23673300
C -2.03835100	5.30180700	2.19514600
H -1.03578900	4.96047900	2.48695800
H -1.88715200	6.10293700	1.45896200
C -2.76719200	5.85858700	3.41767300
H -2.90391500	5.07942300	4.17689900
Н -2.21793600	6.68639200	3.88041100
Н -3.76230900	6.22733000	3.14219100
Int4		
E = -1071.05905	5903 a.u	
02		
S -3.24320800	0.14206800	-1.10180200
O -2.02245900	0.46071100	-1.83584100
O -4.54214500	0.60358300	-1.57814700
C -3.31458800	-1.60617300	-0.84332100
C -2.13127400	-2.33627700	-0.82908800

C -3.31458800	-1.60617300	-0.84332100
C -2.13127400	-2.33627700	-0.82908800
C -2.19562500	-3.70869800	-0.60380800
C -3.42175500	-4.34854800	-0.39730900
C -4.59490300	-3.58356000	-0.42117900
C -4.55252500	-2.21213900	-0.64383000
Н -1.18334600	-1.83622700	-1.00241300
Н -1.27907500	-4.29227700	-0.59261800
H -5.55400600	-4.07170000	-0.26710500
Н -5.45875600	-1.61532000	-0.67534400
C -3.49243900	-5.83735600	-0.17542100
H -3.91020600	-6.33929300	-1.05506900
Н -2.50203900	-6.25909700	0.01344000
H -4.13553700	-6.07764000	0.67671100
N -3.03288800	0.72031800	0.47357200
C -3.00062100	2.17123400	0.50893100
H -4.04645300	2.51341500	0.44396600
H -2.48676100	2.57813700	-0.37460600
C -2.35285100	2.64622300	1.80673100
Н -2.97535500	2.32743000	2.65044900
Н -2.35574900	3.74288900	1.80434900
C -0.92905100	2.10999200	1.99308600
Н -0.98371700	1.02782800	2.16248900
Н -0.50873500	2.55148600	2.90622600
C 0.01426400	2.38633100	0.81726300
H 1.00230900	1.98151300	1.06716300
Н -0.32156300	1.83420700	-0.07044000
C 0.14968100	3.87142200	0.48108500
H 0.44225800	4.44859300	1.36658500
H 0.90689700	4.03344800	-0.29177900
H -0.79083800		0.10848100

Int5

E = -1071.05746	534 a.u
0 2	
S 2 16049100	0 122400

0 2		
S -3.16048100	0.12340800	-1.42249400
O -2.16761600	0.28510500	-2.48103800
O -4.51379200	0.62837700	-1.60915100
C -3.21947200	-1.60046000	-0.99975900
C -2.27590000	-2.46645400	-1.53678700
C -2.33877500	-3.81963000	-1.20225500
C -3.32999000	-4.30394500	-0.34698000
C -4.27096400	-3.40339400	0.17513300
C -4.22477400	-2.05409700	-0.14583800
H -1.51789500	-2.08377200	-2.21318400
H -1.60809000	-4.50744600	-1.61930100
Н -5.05070500	-3.77151300	0.83753400
H -4.95469700	-1.35402400	0.24950600
C -3.40684200	-5.76634500	0.00880200
Н -4.34372000	-6.20501200	-0.35069100
Н -2.57934200	-6.32738700	-0.43262500
Н -3.37377500	-5.90728100	1.09407300
N -2.61853400	0.78411900	0.02433800
C -2.78517300	2.24708300	0.13164800
H -3.80714200	2.47960300	-0.17520200
H -2.09571500	2.76652300	-0.54741600
C -2.55612000	2.68607400	1.57570500
Н -3.37006200	2.30332200	2.20096400
H -2.61389800	3.78089400	1.60695300
C -1.21382100	2.21077900	2.16114800
H -1.26465700	1.13130700	2.34673200
H -1.09852800	2.67679900	3.15543000
C -0.02622600	2.52727800	1.30592400
H 0.78883500	1.81023900	1.26790400
H -1.63498800	0.52615500	0.13377700
C 0.24939700	3.93094100	0.87847500
H 0.50607500	4.56903300	1.74077100
H 1.08298900	3.98298500	0.17336200
Н -0.62305800	4.39509000	0.40154600
Int6		
E = -1561.98696	634 a.u	
03		
S -2.26465600	0.64095100	-2.23880900
O -1.21943100	0.08916800	-3.08411300
O -3.65171800	0.73359600	-2.66558200
~		

H-0.22092900 -0.95730300 -1.01352600

H -4.26892900 0.21891400 -0.20788000 C -2.07949800 -2.37614500 3.04467600 H -2.94574600 -2.14391400 3.66973200

0.87033400

1.73256800

1.33825600

0.10851600

1.15991300

1.98629500

C -1.03265800 -1.63990500

C -2.13535300 -1.64018800

C -3.29604700 -0.95208800

C -3.36174700 -0.28752100

H -0.12731100 -2.16706100

H -4.16909100 -0.96461700

H -2.06300600	-3.45874700	2.87794300
H -1.17497500	-2.11280600	3.60162900
N -1.78697900	2.17671300	-1.84347700
C -2.67464600	2.97333400	-0.99149900
H -2.80896600	2.51518900	0.00108200
Н -3.65039200	3.01335000	-1.48396600
C -2.09960400	4.37679300	-0.83530100
H -2.10566700	4.87372000	-1.81112200
H -1.05179800	4.30661600	-0.51187600
C -2.88707600	5.19009000	0.20029000
H -3.96314200	5.12257700	-0.01604200
H -2.62560400	6.25522700	0.08185000
C -2.62382800	4.75358000	1.60661400
H -1.58179800	4.67776800	1.91172200
C -3.67205400	4.87916800	2.66064700
H -4.61344900	4.41511300	2.33928100
H -3.36513000	4.40810000	3.59935600
H -3.90349300	5.93355100	2.88632900
H -0.82011400	2.16659800	-1.51477500
S -2.15020000	1.32413900	2.95519200
C -1.04968400	1.62049500	1.76039900
N -0.27892300	1.82479000	0.90100300

³Int7

E = -1561.	94888648 a.u
------------	--------------

03		
S -2.13796700	0.61148800	-2.75491900
O -1.03072400	0.42307300	-3.67940000
O -3.39149100	1.23482200	-3.14940000
C -2.54073900	-1.00722800	-2.11073400
C -1.40769200	-1.74130900	-1.50821700
C -1.45675800	-1.95198600	-0.16556100
C -2.65415200	-1.69450400	0.58558200
C -3.87424800	-1.40091400	-0.13915400
C -3.86201600	-1.15026900	-1.46894700
Н -0.56275400	-2.03793900	-2.12147800
H -0.61181800	-2.40469600	0.34994100
H -4.81673400	-1.44128800	0.40405800
H -4.76633300	-0.98668400	-2.04542200
C -2.69820200	-1.88297800	2.06799300
H -3.56883100	-2.47968800	2.36623600
Н -1.79573500	-2.37604200	2.43920700
Н -2.78622900	-0.91871900	2.58863200
N -1.50826600	1.53297400	-1.51801600
C -2.33834500	1.86078600	-0.36054600
Н -2.34417700	1.04063800	0.37430500
Н -3.36206700	1.99187800	-0.72615700
C -1.84311200	3.14822200	0.29123200
H -1.86754100	3.95285200	-0.45272500
Н -0.79354700	3.02298600	0.58789900
C -2.70181100	3.51692400	1.50086600
H -2.66184400	2.72032900	2.25803900
Н -3.75162800	3.59138100	1.18644600
C -2.34977300	4.85088300	2.16200800
Н -2.30316600	5.63837900	1.40280700
C -3.33268000	5.22283600	3.26243100
Н -3.37301300	4.43829800	4.02498300

H -3.06079600	6.16463100	3.74636400
H -4.33224900	5.33971900	2.82944000
Н -0.55521300	1.24358100	-1.30680400
S -0.62749700	4.67121800	2.83017200
C -0.43899700	6.22187300	3.49534500
N -0.30376300	7.27858900	3.95569800

Int8

E = -1070.8080104 a.u

11		
S 0.84942200	-1.54363200	-0.55374600
O -0.12516400	-2.61856100	-0.50234400
O 2.02902500	-1.56454700	-1.39516300
C -0.06179800	-0.05196500	-0.91956800
C -1.44826300	-0.11536800	-1.06837400
C -2.14325600	1.04632900	-1.39461300
C -1.47149000	2.26199300	-1.60816600
C -0.07431100	2.28795700	-1.48099000
C 0.63704000	1.13793000	-1.14946400
H -1.96067300	-1.06494000	-0.94112000
Н -3.22258600	1.00639400	-1.51564500
H 0.46278100	3.21304300	-1.67373300
H 1.72297600	1.15060000	-1.09164400
C -2.22983900	3.49144000	-2.02851100
Н -3.23283400	3.51182300	-1.59503500
H -1.70484200	4.40587800	-1.74227600
Н -2.34221900	3.50179700	-3.11855700
N 1.44222300	-1.27174700	1.01147800
C 0.81525000	-1.97300600	2.14333200
H 1.57139000	-2.56935500	2.66022000
H 0.06020100	-2.66829400	1.76358400
C 0.18088800	-0.97962500	3.12149400
H 0.95140400	-0.38365800	3.62177300
Н -0.34894000	-1.53533200	3.90048900
C -0.81397900	-0.07929800	2.39073700
H -1.45085500	0.47206100	3.13180800
Н -1.54303700	-0.63512000	1.78893200
C -0.33435800	1.08985000	1.67619000
H -1.01875000	1.52892500	0.94676300
C 0.87626000	1.82739300	2.03144300
H 0.97155600	2.77392100	1.50259200
H 0.89940700	1.98160600	3.12162500
H 1.73716600	1.17649000	1.81899600
H 2.45335000	-1.39297200	0.96031900

TS1

Н -1.43155300	0.41932000	-2.30733400
H -0.41267700	-1.67511100	-1.43411100
Н -4.18336500	-2.81845900	0.27002300
Н -5.20770700	-0.71340800	-0.61914800
C -1.59567000	-3.65901700	-0.00018400
H -2.31400300	-4.25642200	0.56943200
Н -1.21417600	-4.27972000	-0.81878200
Н -0.74947300	-3.42987700	0.65713900
N -3.22009600	2.67103100	-1.59749400
H -2.11301900	2.67491400	-2.04106500
C -3.25123200	2.88481800	
		-0.15485100
Н -2.76257400	2.05422500	0.38721100
H -4.29194900	2.93638400	0.19050100
C -2.52423400	4.18796200	0.16381000
H -3.03993600	5.00878200	-0.35109600
H -1.51259700	4.14070700	-0.25958700
C -2.45633100	4.46454400	1.66365000
H -1.93161100	3.63834000	2.16593400
Н -3.47371500	4.48366700	2.08335000
C -1.75221300	5.77913400	1.99678300
Н -0.73970700	5.76084400	1.57314400
H -2.27806800	6.60487900	1.49931900
C -1.67911000	6.04640900	3.49937000
Н -1.13198400		
	5.24593100	4.01104500
Н -1.17353500	6.99280500	3.72020000
H -2.68352800	6.09152700	3.93685600
C -0.51016000	4.61093800	-3.83819400
C -0.95208600	3.14092700	-3.77824900
H -1.96796700	3.11864900	-4.22313600
C -0.08586800	2.27514100	-4.70081700
O -0.89356400	2.67371400	-2.50823700
F -1.29525200	5.35457900	-3.04088600
F -0.60239500	5.14650200	-5.07762100
F 0.75597500	4.80277600	-3.43066200
F -0.13811800	2.66164100	-5.99586500
F 1.21355100	2.27334300	-4.35416300
F -0.50199600	0.99963200	-4.66214700
1 0.50177000	0.77703200	1.00211700
TS2		
E = -1071.02789	331 a.u	
02		
	0 55077100	1 1 4 1 (() 0 0
S -3.37105400	0.55077100	-1.14166200
O -2.27985000	0.99262400	-2.01015900
O -4.75095100	0.84412200	-1.51372200
C -3.18910700	-1.19227200	-0.86858500
C -1.96347100	-1.79634700	-1.12127800
C -1.82654300	-3.16311300	-0.88301900
C -2.89780000	-3.92027200	-0.40226700
C -4.12205200	-3.28106400	-0.16151200
C -4.27753400	-1.92005000	-0.39177700
H -1.14112900	-1.20442900	-0.39177700
Н -0.87445600	-3.64824500	-1.08122300
H -4.96365200	-3.86242100	0.20727400
H -5.22512300	-1.42000200	-0.21590200
C -2.75802100	-5.40162500	-0.16235100
H -3.36058800		-0.10233100
	-5.96880700	
H -1.71911400	-5.72526900	-0.26486200

Н -3.10271200	-5.67112300	0.84096700
N -3.15462500	1.12841500	0.42261300
C -3.20920800	2.59766800	0.48021500
H -4.26477300	2.88934600	0.48200300
Н -2.74728500	3.04585700	-0.40951500
C -2.51167200	3.10237400	1.76314300
Н -3.25153400	3.23357700	2.55773000
H -2.10516600	4.09604800	1.54791900
C -1.39752100	2.16153700	2.28378700
H -1.82684200	1.47121800	3.01655900
Н -0.63798700	2.75474500	2.81273700
C -0.75677100	1.34412200	1.18108600
Н -0.28538300	0.41985000	1.52735400
H -1.87158000	0.93134500	0.66762500
C 0.02955100	2.07987400	0.12506900
H 0.95270100	2.48820700	0.56118800
H 0.30490400	1.42272500	-0.70397500
Н -0.53470900	2.91877000	-0.29454000

TS3

155		
E = -1561.94527427 a.u		
03		
S -2.67624600	0.73573600	-2.19578700
O -1.88867500	0.05228700	-3.20575200
O -4.07913100	1.07162300	-2.38835000
C -2.54017600	-0.18850200	-0.67725200
C -1.46271200	-1.05270400	-0.50398900
C -1.28144400	-1.66843400	0.73112400
C -2.14293300	-1.40997600	1.80127400
C -3.23273000	-0.55494500	1.59401300
C -3.44651500	0.04767200	0.35541100
Н -0.77607100	-1.22826500	-1.32642400
Н -0.44037900	-2.34205600	0.87236200
H -3.93188400	-0.37166300	2.40676200
H -4.31629800	0.67450000	0.17937200
C -1.88813800	-2.01515800	3.15699000
H -2.81677800	-2.13745400	3.72124000
H -1.40505400	-2.99227200	3.07151600
H -1.22451200	-1.36715700	3.74175900
N -1.90253200	2.18545900	-1.88833200
C -2.56887500	3.04842500	-0.91045200
Н -2.83783500	2.47120100	-0.01549900
Н -3.49953700	3.40982800	-1.35952900
C -1.67391600	4.21048100	-0.50473100
H -1.49107500	4.84991400	-1.37509400
Н -0.69822800	3.82519400	-0.18303000
C -2.28472300	5.06369800	0.62103100
H -3.19013000	5.55645600	0.23711200
H -1.57469400	5.86391800	0.85342900

C -2.66745200	4.34531000	1.91666300
Н -2.37123800	4.91451600	2.80514100
C -4.11024200	3.88049300	2.03188600
H -4.40870600	3.25271500	1.18667100
H -4.28984400	3.32413400	2.95750100
Н -4.77157100	4.75692500	2.03740900
Н -0.91973700	2.00762600	-1.66675100
S -1.54155500	2.66233000	2.25297900
C -0.32810300	1.57975100	1.38795700
N 0.32006200	1.33406200	0.43909500

TS4

E = -1070.80800768 a.u

L -10/0.00000/00 a.u		
11		
S -3.53433000	1.84273300	-1.31378100
O -4.49717300	0.75677600	-1.28568600
O -2.33829000	1.83894600	-2.13193800
C -4.45304200	3.32775800	-1.68500800
C -5.84065900	3.26126500	-1.81627900
C -6.54205000	4.42152200	-2.13544100
C -5.87540200	5.63796400	-2.35852400
C -4.47658200	5.66665800	-2.24854900
C -3.75906200	4.51860900	-1.92390900
H -6.34967200	2.31073100	-1.68250900
Н -7.62265700	4.37924800	-2.24361000
H -3.94371000	6.59248600	-2.44928600
H -2.67254900	4.53290200	-1.87941800
C -6.64055400	6.86576400	-2.77162200
H -7.64240500	6.88000600	-2.33533400
H -6.11876600	7.78135500	-2.48304400
Н -6.75577300	6.88033000	-3.86131000
N -2.97236200	2.11386700	0.26386700
C -3.62000500	1.41216300	1.38307400
H -2.88238800	0.79019700	1.89674800
H -4.38905200	0.74014300	0.98954500
C -4.23613100	2.40834400	2.37017300
H -3.45473400	2.98866800	2.87189500
H -4.77389200	1.85677200	3.14658200
C -5.21768100	3.32825100	1.64452300
H -5.83745400	3.89250300	2.39054600
H -5.95910100	2.78584100	1.04621900
C -4.71887900	4.48713600	0.92781100
H -5.38715200	4.92360300	0.18197600
C -3.50439900	5.21521000	1.28755300
H -3.41704600	6.17666000	0.78445200
Н -3.44623300	5.32890900	2.38017100
H -2.65259300	4.56910800	1.02439100
H -1.96024900	1.99325300	0.23218100

11. References

- Q. Wang, P. Tian, Z.-Y. Cao, H. Zhang and C. Jiang, Copper-Catalyzed Remote Direct Thiocyanation of Alkyl C(sp³)-H Bonds, *Adv. Synth. Catal.*, 2020, **362**, 3851-3856.
- [2] Q.-Q. Min, J.-W. Yang, M.-J. Pang, G.-Z. Ao and F. Liu, Copper-catalyzed, N-directed remote C(sp³)–H azidation and thiocyanation, Org. Chem. Front., 2021, 8, 249-253.
- [3] E. A. Wappes, S. C. Fosu, T. C. Chopko and D. A. Nagib, Triiodide-Mediated δ-Amination of Secondary C-H Bonds, Angew. Chem. Int. Ed., 2016, 55, 9974-9978.
- [4] N. Tang, X. Wu and C. Zhu, Practical, metal-free remote heteroarylation of amides via unactivated C(sp³)–H bond functionalization, *Chem. Sci.*, 2019, **10**, 6915-6919.
- [5] Y. Zhu, J. Shi and W. Yu, Photoinduced Site-Selective C(sp³)–H Chlorination of Aliphatic Amides, *Org. Lett.*, 2020, 22, 8899-8903.
- [6] Y. Zhu, J.-J. Wang, D. Wu and W. Yu, Visible-Light-Driven Remote C-H Chlorination of Aliphatic Sulfonamides with Sodium Hypochlorite, *Asian J. Org. Chem.*, 2020, 9, 1650-1654.
- [7] A. Modak, E. N. Pinter and S. P. Cook, Copper-Catalyzed, N-Directed Csp³–H Trifluoromethylthiolation (-SCF₃) and Trifluoromethylselenation (-SeCF₃), *J. Am. Chem. Soc.*, 2019, **141**, 18405-18410.
- [8] Z. Tonga, O. L. Garrya, P. J. Smitha, Y. Jianga, S. J. Mansfielda and E. A. Anderson, Au(I)-Catalyzed Oxidative Functionalization of Yndiamides, *Org. Lett.*, 2021, 23, 4888-4892.
- [9] X.-B. Yan, L. Li, W.-Q. Wu, L. Xu, K. Li, Y.-C. Liu and H. Shi, Ni-catalyzed hydroalkylation of olefins with N-sulfonyl amines, *Nat. Commun.*, 2021, 12, 5881.
- [10] X. Chen, Q. Wang, Z. Zhang, Z.-J. Niu, W.-Y. Shi, X.-P. Gong, R.-Q. Jiao, M.-H. Gao, X.-Y. Liu and Y.-M. Liang, Copper-Catalyzed Hydrogen Atom Transfer and Aryl Migration Strategy for the Arylalkylation of Activated Alkenes, *Org. Lett.*, 2022, 24, 4338-4343.
- [11] L.-J. Zhong, Z.-Q. Xiong, X.-H. Ouyang, Y. Li, R.-J. Song, Q. Sun, X. Lu and J.-H. Li, Intermolecular 1,2-Difunctionalization of Alkenes Enabled by Fluoroamide-Directed Remote Benzyl C(sp³)–H Functionalization, J. Am. Chem. Soc., 2022, 144, 339-348.
- [12] W.-F. Zheng, P. P. Bora, G.-J. Sun and Q. Kang, Rhodium-Catalyzed Regio- and Stereoselective [2 + 2] Cycloaddition of Allenamides, *Org. Lett.*, 2016, 18, 3694-3697.
- [13] H. Zhang, Y. Zhou, P. Tian and C. Jiang, Copper-Catalyzed Amide Radical-Directed Cyanation of Unactivated Csp³–H Bonds, Org. Lett., 2019, 21, 1921-1925.
- [14] A. N. Herron, C.-P. Hsu and J.-Q. Yu, δ-C–H Halogenation Reactions Enabled by a Nitrogen-Centered Radical Precursor, Org. Lett., 2022, 24, 3652-3656.
- [15] N. R. Paz, D. Rodríguez-Sosa, H. Valdes, R. Marticorena, D. Melian, M. B. Copano, C. C. Gonzalez and A. J. Herrera, Chemoselective Intramolecular Functionalization of Methyl Groups in Nonconstrained Molecules Promoted by N-Iodosulfonamides, *Org. Lett.*, 2015, 17, 2370-2373.
- [16] M. Zhu, K. Fujita and R. Yamaguchi, Simple and Versatile Catalytic System for N-Alkylation of Sulfonamides with Various Alcohols, *Org. Lett.*, 2010, **12**, 1336-1339.

- [17] C. Zhao, Y. Li, Y. Dong, M. Li, D. Xia, S. Gao, Q. Zhang, Q. Liu, W. Guan and J. Fu, Divergent regioselective Heck-type reaction of unactivated alkenes and N-fluoro-sulfonamides, *Nat. Commun.*, 2022, 13, 6297.
- [18] Y. Qin, Y. Han, Y. Tang, J. Wei and M. Yang, A general method for site-selective Csp³–S bond formation via cooperative catalysis, *Chem. Sci.*, 2020, **11**, 1276-1282.
- [19] K.-J. Xiao, L. Chu, G. Chen and J.-Q. Yu, Kinetic Resolution of Benzylamines via Palladium (II)-Catalyzed C-H Cross-Coupling, J. Am. Chem. Soc., 2016, 138, 7796-7800.
- [20] S. Shi, X. Yang, M. Tang, J. Hu and T.-P. Loh, Direct Synthesis of α-Amino Nitriles from Sulfonamides via Base-Mediated C–H Cyanation, Org. Lett., 2021, 23, 4018-4022.
- [21] Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
- [22] Y. Zhao and D. G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals, *Theor Chem Account.*, 2008, **120**, 215.
- [23] A. V. Marenich, C. J. Cramer and D. G. Truhlar, Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions, J. Phys. Chem. B., 2009, 113, 6378.