Supporting Information

Photoinduced Copper-Catalyzed Alkoxycarbonylation of Alkyl Fluorides Peng Yang,^a Yan-Hua Zhao,^a Xiao-Feng Wu,^{*a,b}

^a. Leibniz-Institut für Katalyse e.V, Albert-Einstein-Straße 29a, 18059 Rostock (Germany), E-mail: xiao-feng.wu@catalysis.de
^b. Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning (China)

Contents

1. General information	S2
2. Additional Optimization Information	S3
3. Preparation of Substrates	S6
4. General procedure	S7
5. Mechanism studies	S9
6. References	\$13
7. Spectroscopic data of products	S14
8. NMR spectra of the products	S30

1. General information

Reagents and solvents: Unless otherwise noted, reagents were ordered from *Sigma-Aldrich*, *TCI*, *ABCR*, *Alfa Aesar* or *BLD pharm*, and used without purification. Pure solvents was available from *Thermo Fisher*, and degassed (3 times) under argon atmosphere, then store under standard Schlenk technique (anhydrous and under inert atmosphere).

Purification: Analytical thin layer chromatography was performed using *MACHEREY-NAGEL Gmbn & Co. KG* silica gel plates (Silica gel 60 UV₂₅₄). Visualization was by ultraviolet fluorescence (λ = 254 nm) and/or staining with potassium permanganate (KMnO₄). The products were isolated from the reaction mixture by column chromatography on silica gel 60, 0.063-0.2 mm, 70-230 mesh (Merck). Gradient flash chromatography was conducted eluting with PE/EA, PE refers to pentane and EA refers to ethyl acetate, they were listed as volume/volume ratios.

Irradiation: The light source was placed ca. 23 cm from the reaction vial on top of a manufactured autoclave (see Figure S1). In every reaction the strong light source Portable Lumatec SUPERLITE S $04^{[1]}$ was used with different set filters: UV-A (λ = 320 - 400 nm) at maximum intensity (100% power). Figures S2, S3 illustrate relevant photophysical properties of the lamps.

Data collection: GC analysis was performed on an Agilent HP-7890A instrument with FID detector and HP-5 capillary column (polydimethylsiloxane with 5% phenyl groups, 30 m, 0.32 mm i.d., 0.25 µm film thickness) using argon as carrier gas. Electron impact (EI) mass spectra were recorded on AMD 402 mass spectrometer (70 eV). The data are given as mass units per charge (m/z). NMR spectra were recorded on Bruker Avance 300 and Bruker ARX 400 spectrometers. Multiplets were assigned as s(singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublet), m (multiplet) and br. s (broad singlet). Chemical shifts (ppm) are given relative to solvent: references for CDCl₃ were 7.26 ppm (¹H NMR) and 77.00 ppm (¹³C NMR). All measurements were carried out at room temperature unless otherwise stated.

NOTE: Because of the high toxicity of carbon monoxide, all the reactions should be performed in an autoclave. The laboratory should be well-equipped with a CO detector and alarm system.

2. Additional Optimization Information

Table S1. Optimization of metal iodides.

F + CO +	Ph-OH	MI (1.5 Cu(CH₃CN)₄P Xantphos (5 eq.) F ₆ (10 mol%) 11 mol%)		O A A Ph
1a	2a	K ₂ CO ₃ (2.5 eq.), anisole (1 mL) UV-A (320-400 nm) T, 24h		6a	3a
Entry	Ν	letal iodide	T (°C)	Conv. 6a (%)	Yield 3a (%)
1		Mgl ₂	25	0	0
2		MgI ₂	60	61	42
3		MgI ₂	80	89	95
4		Lil (3 eq.)	80	75	0
5	1	Val (3 eq.)	80	trace	0
6		KI (3 eq.)	80	trace	0
7	1	Agl (3 eq.)	80	60	0
8		Cal ₂	80	71	0

Reaction conditions: 1a (0.2 mmol), 2a (0.1 mmol), **Metal iodide** (1.5 eq.), Cu(CH₃CN)₄PF₆ (10 mol%), Xantphos (11 mol%), K₂CO₃ (2.5 eq.), CO (40 atm), anisole (1 mL), stirred at 80 $^{\circ}$ C for 24 h under UV-A (320-400 nm). Determined by GC with hexadecane as internal standard.

Table S2. Optimization of copper salts.

F + CO +	Ph-OH	Mgl ₂ (1.5 eq.) Copper Salts (10 mol%) Xantphos (11 mol%)	
1a	2a	K ₂ CO ₃ (2.5 eq.), anisole (1 mL) UV-A (320-400 nm) 80 °C, 24h	3a
Entry		Copper Salts	Yield (%)
1		Cu(CH ₃ CN) ₄ PF ₆	95
2		CuBr	5
3		Cul	15
4		CuCN	trace
5		Cu(OAc) ₂	0
6		CuCl ₂	0
7		Cu(OTf) ₂	0
8		IMesCuCl	8
9		CuBr(Me ₂ S)	trace

Reaction conditions: 1a (0.2 mmol), 2a (0.1 mmol), MgI_2 (1.5 eq.), **Copper salts** (10 mol%), Xantphos (11 mol%), K_2CO_3 (2.5 eq.), CO (40 atm), anisole (1 mL), stirred at 80 °C for 24 h under UV-A (320-400 nm). NMR yield.

Table S3. Optimization of ligands.

← F + CO +	Ph-OH	MgI₂ (1.5 eq.) Cu(CH₃CN)₄PF ₆ (10 mol%) Ligand (11 mol%)	O Av L Ph
1a	2a	K ₂ CO ₃ (2.5 eq.), anisole (1 mL) UV-A (320-400 nm) 80 °C, 24h	3a
Entry		Ligand	Yield (%)
1		Xantphos	95
2		Nixantphos	16
3		Sixantphos	20
4		BNIAP	<5
5		DPEphos	0
6		DPPBz	0
7		DPPE	0
8		DPPP	0
9		DCyPE	0
10		BuPAd ₂	0
11		Pyridine	0
12		Bipyridine	0
13		1,10-phen	0

Reaction conditions: 1a (0.2 mmol), 2a (0.1 mmol), MgI_2 (1.5 eq.), $Cu(CH_3CN)_4PF_6$ (10 mol%), Ligand (11 mol%), K_2CO_3 (2.5 eq.), CO (40 atm), anisole (1 mL), stirred at 80 °C for 24 h under UV-A (320-400 nm). NMR yield.

Table S4. Optimization of ligands.

F + CO +	Ph-OH	Mgl ₂ (1.5 eq.) Cu(CH ₃ CN) ₄ PF ₆ (10 mol ⁴ Xantphos (11 mol%)	%) O Ph
1a	2a	Base (2.5 eq.), anisole (1 r UV-A (320-400 nm) 80 °C, 24h	nL) 3a
Entry		Base	Yield (%)
1		K ₂ CO ₃	95
2		Li ₂ CO ₃	0
3		Na ₂ CO ₃	<5
4		Rb ₂ CO ₃	62
5		Cs_2CO_3	33
6		KHCO₃	0
7		КОН	0
8		KO ^t Bu	0
9		DBU	0
10		DABCO	0

Reaction conditions: 1a (0.2 mmol), 2a (0.1 mmol), MgI_2 (1.5 eq.), $Cu(CH_3CN)_4PF_6$ (10 mol%), Xantphos (11 mol%), **Base** (2.5 eq.), CO (40 atm), anisole (1 mL), stirred at 80 °C for 24 h under UV-A (320-400 nm). NMR yield.

Table S5. Optimization of solvent.

← ^F + CO +	Ph-OH	MgI ₂ (1.5 eq.) Cu(CH ₃ CN) ₄ PF ₆ (10 mol%) Xantphos (11 mol%)	O Av Ph
1a	2a	K ₂ CO ₃ (2.5 eq.), solvent (1 mL) UV-A (320-400 nm) 80 °C, 24h	3a
Entry		Solvent	Yield (%)
1		Anisole	95
2		4-Methylanisole	80
3		Toluene	40
4		Fluorobenzene	26
5		Chlorobenzene	17
6		Benzotrifluoride	trace
7		<i>p</i> -Xylene	trace
8		Cumene	trace
9		DCE	0
10		CH ₃ CN	0
11		THF	0
12		1,4-Dioxane	0
13		DME	0
14		DMF	0
15		DMSO	0
16		EtOH	0
17		HFIP	0

Reaction conditions: 1a (0.2 mmol), 2a (0.1 mmol), MgI₂ (1.5 eq.), Cu(CH₃CN)₄PF₆ (10 mol%), Xantphos (11 mol%), K₂CO₃ (2.5 eq.), CO (40 atm), **solvent** (1 mL), stirred at 80 °C for 24 h under UV-A (320-400 nm). NMR yield.

3. Preparation of Substrates

General Procedure A^[2]:

A round-bottom flask containing a stirring bar was charged DAST (1.1 eq.) and DCM (4 mL), a solution of alcohol (3 mmol) in DCM (4 mL) was slowly added at 0 °C followed by stirring at the temperature for 18 h. The reaction mixture was quenched by addition of mixture of ice and water and extracted with DCM (15 mL×3). Combined organic layer was dried over MgSO4, concentrated, and purified by flash column chromatography on silica gel to obtain corresponding fluorides.

General Procedure [3]:

Ph-OH + HO^{H_5}, Br $\frac{K_2CO_3 (2 \text{ eq.})}{DMF, 80 °C}$ Ph O_{6} H_6

A round-bottom flask containing a stirring bar was charged with the phenol (8.0 eq.), 6bromo-1-hexanol (5 mmol), and DMF (10 mL). Then K_2CO_3 (2.0 eq.) was added. The reaction mixture was stirred at 80 °C for 2 h. After the reaction was completed, the reaction mixture was diluted with AcOEt and washed with water and brine. Combined organic layer was dried over MgSO4, concentrated, and purified by flash column chromatography on silica gel to obtain corresponding fluorides.

4. General procedure

$$R_{alkyl} = F + Ar = OH \begin{cases} Cu(CH_3CN)_4 PF_6(10 \text{ mol\%}) \\ Xantphos (11 \text{ mol\%}) \\ CO (40 \text{ bar}) \\ K_2CO_3 (2.5 \text{ eq.}), \text{ anisole (1 mL)} \\ UV-A (320-400 \text{ nm}) \\ 80 \text{ °C}, 24 \text{ h} \end{cases}$$

A 4 mL screw-cap vial was charged with Phenol (9.4 mg, 1 mmol), Cu(CH₃CN)₄PF₆ (3.7 mg, 10 mol%), Xantphos (6.4 mg, 11 mol%), Mgl₂ (41.7 mg, 1.5 eq.), K₂CO₃ (34.5 mg, 2.5 eq.), and an oven-dried stir bar. The vial was closed with a Teflon septum and cap and connected to the atmosphere via a needle. After anisole (1.0 mL), and alkyl fluoride (0.2 mmol) were added with a syringe under argon atmosphere, the vial was moved to a cannula and transferred into a 300 mL photoautoclave, manufactured by Parr instrument company®, under an argon atmosphere. At room temperature, the autoclave was flushed with CO three times and charged with 40 bar of CO. The autoclave was placed on a heating plate equipped with a magnetic stirrer and an aluminum block. The reaction mixture was reacted at 80 °C under UV-A (320-400 nm). for 24h. After the reaction was complete, the pressure of the autoclave was released carefully. Then the reaction was extracted with EA (3 x 3 mL). The Combined organic layer was dried over MgSO₄, concentrated, and purified by flash column chromatography on silica gel to obtain the corresponding product.

Figure S1. Photoautoclave and photoreactor used in this research. **Note:** All photos in this material were taken by the first author Peng Yang.

SPEKTRUM

Figure S2. Emission spectrums of the Portable Lumatec SUPERLITE S 04.

Spektrum		Leistung	Intensität	
UVA	320-400 nm	2.100 mW	10.500 mW/cm ²	
UVA + Blau	320-500 nm	6.900 mW	34.500 mW/cm ²	
Blau	400-500 nm	4.800 mW	24.000 mW/cm ²	
Weiß	400-700 nm	9.700 mW	48.500 mW/cm ²	
Violett	415 nm	2.000 mW	10.000 mW/cm ²	
Blau 440	440 nm	2.300 mW	11.500 mW/cm ²	
Blau 460	460 nm	2.000 mW	10.000 mW/cm ²	
Türkis	490 nm	1.200 mW	6.000 mW/cm ²	
Grün	550 nm	1.400 mW	7.000 mW/cm ²	
Gelb	570 nm	1.800 mW	9.000 mW/cm ²	

OPTISCHE LEISTUNG

Figure S3. Technical specifications of the Portable Lumatec SUPERLITE S 04

5. Mechanism studies.

5.1 Control experiments

In a flame-dried 10 mL Schlenk tube equipped with oven-dried stir added MgI₂ (41.7 mg, 1.5 eq.), and 1-fluorooctane (0.2 mmol), followed by the addition of DCM (4.0 mL). Then the mixture was stirred at established temperature for 24 h. After the reaction was complete, 10 μ L of hexadecane was added to the tube. And a proper amount of solvent was taken for GC analysis. The result is shown above.

A 4 mL screw-cap vial was charged with Phenol (9.4 mg, 1 mmol), Cu(CH₃CN)₄PF₆ (3.7 mg, 10 mol%), Xantphos (6.4 mg, 11 mol%), K₂CO₃ (34.5 mg, 2.5 eq.), and an oven-dried stir bar. The vial was closed with a Teflon septum and cap and connected to the atmosphere via a needle. After anisole (1.0 mL), and **6b** (0.2 mmol) were added with a syringe under argon atmosphere, the vial was moved to a cannula and transferred into a 300 mL photoautoclave, manufactured by Parr instrument company®, under an argon atmosphere. At room temperature, the autoclave was flushed with CO three times and charged with 40 bar of CO. The autoclave was placed on a heating plate equipped with a magnetic stirrer and an aluminum block. The reaction mixture was reacted at established temperature under UV-A (320-400 nm). for 24h. After the reaction was complete, the pressure of the autoclave was released carefully. Then, 8.4 mg 1,3,5-trimethoxybenzene was added to the vials. A proper amount of solvent was dried under high vacuum and dissolved in CDCl₃ taken for NMR analysis.

A 4 mL screw-cap vial was charged with Phenol (9.4 mg, 1 mmol), Cu(CH₃CN)₄PF₆ (3.7 mg, 10 mol%), Xantphos (6.4 mg, 11 mol%), MgF₂ (9.4 mg, 1.5 eq.), K₂CO₃ (34.5 mg, 2.5 eq.), and an oven-dried stir bar. The vial was closed with a Teflon septum and cap and connected to the atmosphere via a needle. After anisole (1.0 mL), and **6b** (0.2 mmol) were added with a syringe under argon atmosphere, the vial was moved to a cannula and transferred into a 300 mL photoautoclave, manufactured by Parr instrument company®, under an argon atmosphere. At room temperature, the autoclave was flushed with CO three times and charged with 40 bar of CO. The autoclave was placed on a heating plate equipped with a magnetic stirrer and an aluminum block. The reaction mixture was reacted at 80 °C under UV-A (320-400 nm). for 24h. After the reaction was complete, the pressure of the autoclave was released carefully. Then, 8.4 mg 1,3,5-trimethoxybenzene was added to the vials. A proper amount of solvent was dried under high vacuum and dissolved in CDCl₃ taken for NMR analysis.

A 4 mL screw-cap vial was charged with Phenol (9.4 mg, 1 mmol), $Cu(CH_3CN)_4PF_6$ (3.7 mg, 10 mol%), Xantphos (6.4 mg, 11 mol%), AgF_2 (38.1 mg, 3 eq.), K_2CO_3 (34.5 mg, 2.5 eq.), and an oven-dried stir bar. The vial was closed with a Teflon septum and cap and connected to the atmosphere via a needle. After anisole (1.0 mL), and **6b** (0.2 mmol) were added with a syringe under argon atmosphere, the vial was moved to a cannula and transferred into a 300 mL photoautoclave, manufactured by Parr instrument company®, under an argon atmosphere. At room temperature, the autoclave was flushed with CO three times and charged with 40 bar of CO. The autoclave was placed on a heating plate equipped with a magnetic stirrer and an aluminum block. The reaction mixture was reacted at 80 °C under UV-A (320-400 nm). for 24h. After the reaction was complete, the pressure of the autoclave was released carefully. Then, a proper amount of solvent was taken for GC-MS analysis.

5.2 Radical capture experiments

A 4 mL screw-cap vial was charged with Phenol (9.4 mg, 1 mmol), Cu(CH₃CN)₄PF₆ (3.7 mg, 10 mol%), Xantphos (6.4 mg, 11 mol%), MgI₂ (41.7 mg, 1.5 eq.), K₂CO₃ (34.5 mg, 2.5 eq.), radical scavenger (1.5 eq.), and an oven-dried stir bar. The vial was closed with a Teflon septum and cap and connected to the atmosphere via a needle. After anisole (1.0 mL), and 1-fluorooctane (0.2 mmol) were added with a syringe under argon atmosphere, the vial was moved to a cannula and transferred into a 300 mL photoautoclave, manufactured by Parr instrument company®, under an argon atmosphere. At room temperature, the autoclave was flushed with CO three times and charged with 40 bar of CO. The autoclave was placed on a heating plate equipped with a magnetic stirrer and an aluminum block. The reaction mixture was reacted at 80 °C under UV-A (320-400 nm). for 24h. After the reaction was complete, the pressure of the autoclave was released carefully. Then, a proper amount of solvent was taken for GC-MS analysis. The result is shown in Figure S2.

5.2 Radical inhibition experiments

A 4 mL screw-cap vial was charged with Phenol (9.4 mg, 1 mmol), Cu(CH₃CN)₄PF₆ (3.7 mg, 10 mol%), Xantphos (6.4 mg, 11 mol%), Mgl₂ (41.7 mg, 1.5 eq.), K₂CO₃ (34.5 mg, 2.5 eq.), 2,6-di-tert-butyl4-methylphenol (0-2 eq) and an oven-dried stir bar. The vial was closed with a Teflon septum and cap and connected to the atmosphere via a needle. After anisole (1.0 mL), and 1-fluorooctane (0.2 mmol) were added with a syringe under argon atmosphere, the vial was moved to a cannula and transferred into a 300 mL photoautoclave, manufactured by Parr instrument company®, under an argon atmosphere. At room temperature, the autoclave was flushed with CO three times and charged with 40 bar of CO. The autoclave was placed on a heating plate equipped with a magnetic stirrer and an aluminum block. The reaction mixture was reacted at 80 °C under UV-A (320-400 nm). for 24h. After the reaction was complete, the pressure of the autoclave was released carefully. Then, 8.4 mg 1,3,5-trimethoxybenzene was added to the vials. A proper amount of solvent was dried under high vacuum and dissolved in CDCl₃ taken for NMR analysis.

Figure S2 GC-MS of the reaction solvent

5.2 Radical clock experiments

A 4 mL screw-cap vial was charged with Phenol (9.4 mg, 1 mmol), Cu(CH₃CN)₄PF₆ (3.7 mg, 10 mol%), Xantphos (6.4 mg, 11 mol%), Mgl₂ (41.7 mg, 1.5 eq.), K₂CO₃ (34.5 mg, 2.5 eq.), and an oven-dried stir bar. The vial was closed with a Teflon septum and cap and connected to the atmosphere via a needle. After anisole (1.0 mL), and 6-fluorohex-1-ene (0.2 mmol) were added with a syringe under argon atmosphere, the vial was moved to a cannula and transferred into a 300 mL photoautoclave, manufactured by Parr instrument company®, under an argon atmosphere. At room temperature, the autoclave was flushed with CO three times and charged with 40 bar of CO. The autoclave was placed on a heating plate equipped with a magnetic stirrer and an aluminum block. The reaction mixture was reacted at 80 °C under UV-A (320-400 nm). for 24h. After the reaction was complete, the pressure of the autoclave was released carefully. Then, a proper amount of solvent was taken for GC-MS analysis. And the crude residue was purified by silica gel chromatography (pentane/EA = 200:1) to afford a mixture of 7 and 8.

Phenyl 2-cyclopentylacetate (7) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA =100:1) to afford the title compound as a colorless oil (12.3 mg, 60% yield)

¹H NMR (300 MHz, CDCl₃): δ 7.41 – 7.34 (m, 2H), 7.25 – 7.19 (m, 1H), 7.10 – 7.06 (m, 2H), 2.57 (d, *J* = 7.59 Hz, 2H), 2.45 – 2.29 (m, 1H), 1.97 – 1.88 (m, 2H), 1.78 – 1.59 (m, 4H), 1.31 – 1.24 (m, 2H).

¹³C NMR (75 MHz, CDCl₃): δ 171.88, 150.78, 129.40, 125.71, 121.62, 40.46, 36.62, 32.47, 25.05.

6. References

1. http://www.lumatec.de/de/produkte/uv-lichtquelle-superlite-s04/

2. T. Iwasaki, R. Shimizu, R. Imanishi, H. Kuniyasu, N. Kambe, *Angew. Chem. Int. Ed.* **2015**, *54*, 9347-9350.

3. T. Suzuki, Y. Nagano, A. Kouketsu, A. Matsuura, S. Maruyama, M. Kurotaki, H. Nakagawa, N. Miyata, *J. Med. Chem.* **2005**, *48*, 1019-1032.

4. P. Wang, Y. Wang, H. Neumann, M. Beller, Chem. Sci. 2022, 13, 13459-13465.

5. H.-J. Ai, C.-L. Li, H. Wang, X.-F. Wu, ACS Catal. 2020, 10, 5147-5152.

7. Spectroscopic data of products

О

Phenyl nonanoate (3a) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 200:1) to afford the title compound as a colorless oil (21.5 mg, 92% yield)^[4]

¹H NMR (300 MHz, CDCl₃): δ 7.41 – 7.35 (m, 2H), 7.26 – 7.20 (m, 1H), 7.11 – 7.06 (m, 2H), 2.56 (t, *J* = 7.35 Hz, 2H), 1.81 – 1.71 (m, 2H), 1.49 – 1.27 (m, 10H), 0.92 – 0.85 (m, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 172.35, 150.80, 129.40, 125.71, 121.61, 34.44, 31.83, 29.25, 29.15, 29.14, 24.98, 22.67.

p-Tolyl nonanoate (3b) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 200:1) to afford the title compound as a colorless oil (21.3 mg, 86% yield)^[4]

¹**H NMR (300 MHz, CDCl₃):** δ 7.18 – 7.15 (m, 2H), 6.97 – 6.93 (m, 2H), 2.54 (t, *J* = 7.32 Hz, 2H), 2.34 (s, 3H), 1.80 – 1.70 (m, 2H), 1.44 – 1.28 (m, 10H), 0.91 – 0.87 (m, 3H).

¹³**C NMR (75 MHz, CDCl₃):** δ 172.54, 148.55, 135.31, 129.90, 121.25, 34.43, 31.81, 29.23, 29.13, 25.00, 22.65, 20.86, 14.10.

4-Ethylphenyl nonanoate (3c) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 200:1) to afford the title compound as a colorless oil (21.5 mg, 82% yield)

¹H NMR (300 MHz, CDCl₃): δ 7.22 – 7.17 (m, 2H), 7.00 – 6.96 (m, 2H), 2.65 (q, *J* = 7.59 Hz, 2H), 2.55 (t, *J* = 7.41 Hz, 2H), 1.80 – 1.71 (m, 2H), 1.43 – 1.27 (m, 10H), 1.24 (t, *J* = 7.59 Hz, 3H), 0.92 – 0.88 (m, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 172.55, 148.69, 141.63, 128.72, 121.29, 34.44, 31.83, 29.25, 29.15, 28.30, 25.01, 22.67, 15.58, 14.11.

HRMS-EI(m/z): calcd for C₁₇H₂₆O₂+ [M+] 262.19273, found 262.19315.

4-(*tert***-Butyl)phenyl nonanoate (3d)** Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 200:1) to afford the title compound as a colorless oil (23.2 mg, 80% yield)^[4]

¹**H NMR (300 MHz, CDCl₃):** δ 7.40 – 7.35 (m, 2H), 7.02 – 6.97 (m, 2H), 2.54 (t, *J* = 7.32 Hz, 2H), 1.80 – 1.70 (m, 2H), 1.43 – 1.27 (m, 19H),0.92 – 0.87 (m, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 172.56, 148.49, 148,41 126.29, 120.88, 34.46, 31.83, 31.43, 29.25, 29.15, 29.14, 25.01, 22.66, 14.12.

[1,1'-Biphenyl]-4-yl nonanoate (3e) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 100:1) to afford the title compound as a colorless oil (25.1 mg, 81% yield)^[5]

¹H NMR (300 MHz, CDCl₃): δ 7.61 – 7.54 (m, 4H), 7.47 – 7.41 (m, 2H), 7.38 – 7.32 (m, 1H), 7.18 – 7.13 (m, 2H), 2.58 (t, *J* = 7.32 Hz, 2H), 1.83 – 1.73 (m, 2H), 1.46 – 1.26 (m, 10H),0.92 – 0.88 (m, 3H).

¹³**C NMR (75 MHz, CDCl₃):** δ 172.44, 150.20, 140.44, 138.89, 128.80, 128.16, 127.33, 127.14, 121.87, 34.47, 31.83, 29.25, 29.15, 24.99, 22.67, 14.12.

4-Fluorophenyl nonanoate (3f) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 400:1) to afford the title compound as a colorless oil (23.2 mg, 92% yield)

¹**H NMR (300 MHz, CDCI₃):** δ 7.15– 7.03 (m, 4H), 2.54 (t, *J* = 7.32 Hz, 2H), 1.79 – 1.69 (m, 2H), 1.37 – 1.26 (m, 10H), 0.91 – 0.87 (m, 3H).

¹³**C NMR (75 MHz, CDCl₃):** δ 172.38, 160.17(d, *J* = 242.51 Hz), 146.59 (d, *J* = 3.01 Hz), 122.96 (d, *J* = 8.36 Hz), 116.03 (d, *J* = 23.42 Hz), 34.31, 31.81, 29.22, 29.13, 29.11, 24.92, 22.66, 14.11.

¹⁹**F NMR (300 MHz, CDCl₃):** δ -117.25 (p, *J* = 6.5 Hz),

HRMS-EI(m/z): calcd for C₁₅H₂₁O₂F₁+ [M+] 252.15201, found 252.15273.

4-Chlorophenyl nonanoate (3g) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 200:1) to afford the title compound as a colorless oil (26.2 mg, 98% yield)^[4]

¹**H NMR (300 MHz, CDCl₃):** δ 7.36 – 7.31 (m, 2H), 7.05 – 7.00 (m, 2H), 2.54 (t, *J* = 7.32 Hz, 2H), 1.79 – 1.70 (m, 2H), 1.43 – 1.28 (m, 10H),0.92 – 0.87 (m, 2H).

¹³**C NMR (75 MHz, CDCl₃):** δ172.06, 149.26, 131.06, 129.44, 122.96, 34.33, 31.81, 29.21, 29.10, 24.89, 22.65, 14.10.

|| 0 R

4-Bromophenyl nonanoate (3h) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 200:1) to afford the title compound as a colorless oil (28.5 mg, 91% yield).

¹H NMR (300 MHz, CDCl₃): δ 7.51 – 7.46 (m, 2H), 7.00 – 6.95 (m, 2H), 2.54 (t, *J* = 7.32 Hz, 2H), 1.80 – 1.69 (m, 2H), 1.43 – 1.26 (m, 10H),0.92 – 0.87 (m, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 171.98, 149.80, 132.43, 123.41, 1148.76, 34.34, 31.82, 29.22, 29.13, 29.10, 24.89, 22.66, 14.12.

HRMS-EI(m/z): calcd. for C₁₅H₂₁BrO₂+ [M+] 312.07194, found 312.07260.

4-lodophenyl nonanoate (3i) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 200:1) to afford the title compound as a colorless oil (25.2 mg, 70% yield).^[4]

¹**H NMR (300 MHz, CDCl₃):** δ 7.70– 7.65 (m, 2H), 6.87 – 6.82 (m, 2H), 2.54 (t, *J* = 7.35 Hz, 2H), 1.79 – 1.69 (m, 2H), 1.42 – 1.25 (m, 10H), 0.91 – 0.86 (m, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 171.98, 150.61, 138.44, 123.82, 89.69, 34.36, 31.81, 29.21, 29.12, 29.10, 24.88, 22.66, 14.12.

4-(Trifluoromethyl)phenyl nonanoate (3j) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 200:1) to afford the title compound as a colorless oil (19.3 mg, 64% yield).

¹H NMR (300 MHz, CDCl₃): δ 7.67– 7.62 (m, 2H), 7.23 – 7.18 (m, 2H), 2.58 (t, *J* = 7.35 Hz, 2H), 1.81 – 1.71 (m, 2H), 1.44 – 1.26 (m, 22H), 0.91 – 0.87 (m, 3H).

¹³**C NMR (75 MHz, CDCl₃):** δ 171.80, 153.26, 127.99 (q, *J* = 32.44Hz), 126.76(q, *J* = 3.67 Hz), 124.02(q, *J* = 315.01 Hz), 122.10, 34.36, 31.80, 29.21, 29.12, 29.09, 24.84, 22.65, 14.10.

¹⁹**F NMR (300 MHz, CDCl₃):** δ -62.23

HRMS-EI(m/z): calcd for C₁₆H₂₁F₃O₂+ [M+] 302.14882, found 302.14927

4-Cyanophenyl nonanoate (3k) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 100:1) to afford the title compound as a colorless oil (12.4 mg, 48% yield).

¹**H NMR (300 MHz, CDCl₃):** δ 7.71 – 7.66 (m, 2H), 7.24 – 7.20 (m, 2H), 2.58 (t, *J* = 7.35 Hz, 2H), 1.80 – 1.70 (m, 2H), 1.43 – 1.25 (m, 10H),0.91 – 0.86 (m, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 171.43, 154.07, 133.65, 122.75, 118,28, 109.63, 34.34, 31.79, 29.18, 29.10, 29.06, 24.77, 22.64, 14.09.

HRMS-EI(m/z): calcd for C₁₆H₂₁NO₂+ [M+] 259.15668, found 259.15631.

0

4-Methoxyphenyl nonanoate (3I) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 200:1) to afford the title compound as a colorless oil (14.5 mg, 55% yield).^[4]

¹**H NMR (300 MHz, CDCl₃):** δ 7.02 – 6.96 (m, 2H), 6.91 – 6.85 (m, 2H), 3.80 (s, 3H), 2.53 (t, J = 7.32 Hz, 2H), 1.79 – 1.69 (m, 2H), 1.43 – 1.26 (m, 10H),0.91 – 0.86 (m, 3H).

¹³**C NMR (75 MHz, CDCl₃):** δ 172.73, 157.17, 144.29, 122.32, 114.44, 55.60, 34.37, 31.81, 29.23, 29.13, 24.99, 22.65, 14.10.

4-(Methylthio)phenyl nonanoate (3m) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 200:1) to afford the title compound as a yellow oil (19.8 mg, 71% yield).

¹H NMR (300 MHz, CDCl₃): δ 7.29 – 7.25 (m, 2H), 7.03 – 6.99 (m, 2H), 2.54 (t, *J* = 7.32 Hz, 2H), 2.48 (s, 3H), 1.79 – 1.69 (m, 2H), 1.43 – 1.26 (m, 10H),0.91 – 0.87 (m, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 172.37, 148.52, 135.49, 128.06, 122.08, 34.39, 31.82, 29.23, 29.13, 29.12, 24.94, 22.66, 16.56, 14.11.

HRMS-EI(m/z): calcd for C₁₆H₂₄O₃+ [M+] 280.14915, found 280.14924.

4-(Methylsulfonyl)phenyl nonanoate (3n) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 5:1) to afford the title compound as a yellow oil (16.2 mg, 52% yield).

¹**H NMR (300 MHz, CDCl₃):** δ 7.99 – 7.95 (m, 2H), 7.32 – 7.27 (m, 2H), 3.06 (s, 3H), 2.59 (t, J = 7.41 Hz, 2H), 1.81 – 1.71 (m, 2H), 1.37 – 1.25 (m, 10H), 0.91 – 0.86 (m, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 171.59, 154.85, 137.70, 129.19, 122.71, 44.68, 34.36, 31.79, 29.70, 29.19, 29.10, 29.06, 24.79, 22.64, 14.10.

HRMS-EI(m/z): calcd for C₁₆H₂₄O₄S+ [M+] 312.13898, found 312.13893.

|| 0

4-(2-Phenylpropan-2-yl)phenyl nonanoate (30) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 100:1) to afford the title compound as a colorless oil (31.0 mg, 88% yield).

¹H NMR (300 MHz, CDCl₃): δ 7.30 – 7.27 (m, 1H), 7.25 – 7.15 (m, 6H), 6.99 – 6.94 (m, 2H), 2.54 (t, *J* = 7.32 Hz, 2H), 1.79 – 1.72 (m, 2H), 1.68 (m, 6H) 1.43 – 1.27 (m, 10H), 0.91 – 0.87 (m, 3H).

¹³**C NMR (75 MHz, CDCl₃):** δ 172.47, 150.38, 148.57, 148.07, 128.05, 127.81, 126.79, 125.72, 120.88, 42.72, 34.45, 31.82, 30.84, 29.24, 29.15, 29.12, 24.99, 22.66, 14.11.

HRMS-EI(m/z): calcd for C₂₄H₃₂O₂+ [M+] 352.23968, found 352.23959.

4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl nonanoate (3p) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 50:1) to afford the title compound as a colorless oil (28.4 mg, 79% yield).

¹H NMR (300 MHz, CDCl₃): δ 7.85– 7.80 (m, 2H), 7.10 – 7.05 (m, 2H), 2.55 (t, *J* = 7.32 Hz, 2H), 1.80 – 1.70 (m, 2H), 1.38 – 1.27 (m, 22H), 0.91 – 0.86 (m, 3H).

¹³**C NMR (75 MHz, CDCl₃):** δ 172.10, 153.31, 136.17, 120.97, 83.89, 34.47, 31.82, 29.72, 29.23, 29.13, 24.93, 24.86, 22.66, 14.11.

¹¹**B NMR (300 MHz, CDCI₃):** δ 29.60.

HRMS-EI(m/z): calcd for C₂₁H₃₃BO₄+ [M+] 360.24664, found 360.24675.

m-Tolyl nonanoate (3q) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 200:1) to afford the title compound as a colorless oil (18.9 mg, 76% yield).^[5]

¹**H NMR (300 MHz, CDCl₃):** δ 7.27 – 7.22 (m, 1H), 7.05 – 7.01 (m, 1H), 6.89 – 6.85 (m, 2H), 2.54 (t, *J* = 7.41 Hz, 2H), 2.36 (s, 3H), 1.80 – 1.70 (m, 2H), 1.41 – 1.26 (m, 10H), 0.91 – 0.87 (m, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 172.49, 150.72, 139.58, 129.12, 126.53, 122.20, 118.53, 34.45, 31.83, 29.24, 29.14, 25.00, 22.66, 21.32, 14.11.

Br O

3-Bromophenyl nonanoate (3r) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 200:1) to afford the title compound as a colorless oil (24.4 mg, 78% yield). ^[5]

¹H NMR (300 MHz, CDCl₃): δ 7.38 – 7.34 (m, 1H), 7.28 – 7.21 (m, 2H), 7.05 – 7.02 (m, 1H), 2.54 (t, *J* = 7.41 Hz, 2H), 1.79 – 1.69 (m, 2H), 1.41 – 1.26 (m, 10H), 0.91 – 0.87 (m, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 171.89, 151.30, 130.43, 128.90, 125.14, 122.35, 120.50, 34.31, 31.81, 29.20, 29.11, 29.09, 24.87, 22.65, 14.10.

3-Methoxyphenyl nonanoate (3s) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 100:1) to afford the title compound as a colorless oil (23.8 mg, 90% yield).^[5]

¹H NMR (300 MHz, CDCl₃): δ 7.27 (t, J = 8.15 Hz, 1H), 6.79 – 6.76 (m, 1H), 6.70 – 6.66 (m, 1H), 6.63 (t, J = 2.31 Hz, 1H), 3.80 (s, 3H), 2.54 (t, J = 7.41 Hz, 2H), 1.80 – 1.70 (m, 2H), 1.41 – 1.26 (m, 10H), 0.91 – 0.87 (m, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 172.24, 160.49, 151.76, 129.78, 113.83, 111.56, 107.63, 55.40, 34.44, 31.82, 29.23, 29.13, 24.96, 22.66, 14.10.

o-Tolyl nonanoate (3t) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 100:1) to afford the title compound as a colorless oil (17.4 mg, 70% yield).^[4]

¹**H NMR (300 MHz, CDCl₃):** δ 7.25 – 7.11 (m, 3H), 7.01 – 6.98 (m, 1H), 2.58 (t, *J* = 7.32 Hz, 2H), 2.18 (s, 3H), 1.83 – 1.73 (m, 2H), 1.43 – 1.26 (m, 10H), 0.92 – 0.87 (m, 3H).

¹³**C NMR (75 MHz, CDCl₃):** δ 172.08, 149.40, 131.11, 130.11, 126.90, 125.93, 121.91, 34.30, 31.82, 29.24, 29.21, 29.15, 25.11, 22.66, 16.22, 14.11.

[1,1'-Biphenyl]-2-yl nonanoate (3u) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 50:1) to afford the title compound as a colorless oil (27.3 mg, 88% yield).^[4]

¹**H NMR (300 MHz, CDCl₃):** δ 7.44 – 7.29 (m, 8H), 7.15 – 7.12 (m, 1H), 2.35 (t, *J* = 7.32 Hz, 2H), 1.58 – 1.48 (m, 2H), 1.36 – 1.24 (m, 10H), 0.93 – 0.88 (m, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 172.20, 147.90, 137.69, 135.08, 130.88, 129.02, 128.49, 128.21, 127.42, 126.24, 122.88, 34.24, 31.82, 29.19, 29.08, 28.97, 24.71, 22.68, 14.13.

2-Isopropylphenyl nonanoate (3v) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 100:1) to afford the title compound as a colorless oil (17.9 mg, 65% yield).

¹H NMR (300 MHz, CDCl₃): δ 7.33 – 7.29 (m, 1H), 7.21 – 7.16 (m, 2H), 7.00 – 6.96 (m, 1H), 3.07 – 2.98 (m, 1H), 2.58 (t, *J* = 7.32 Hz, 2H), 1.83 – 1.73 (m, 2H), 1.43 – 1.26 (m, 10H), 1.21 (d, *J* = 6.96 Hz, 6H), 0.92 – 0.87 (m, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 172.50, 148.14, 140.15, 126.62, 126.60, 126.20, 122.29, 34.42, 31.82, 29.25, 29.21, 29.16, 27.33, 25.06, 22.96, 22.67, 14.12.

HRMS-EI(m/z): calcd for C₁₈H₂₈O₂+ [M+] 276.20838, found 276.20793.

2-Allylphenyl nonanoate (3w) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 200:1) to afford the title compound as a colorless oil (14.0 mg, 65% yield).

¹H NMR (300 MHz, CDCl₃): δ 7.25 – 7.15 (m, 3H), 7.04 – 7.01 (m, 1H), 5.97– 5.84 (m, 1H), 5.09– 5.02 (m, 2H), 3.31 – 3.28 (m, 2H), 2.56 (t, *J* = 7.35 Hz, 2H), 1.81 – 1.71 (m, 2H), 1.39 – 1.26 (m, 10H), 0.91 – 0.87 (m, 3H).

¹³**C NMR (75 MHz, CDCl₃):** δ 172.19, 148.99, 135.93, 131.91, 130.34, 127.38, 126.05, 122.38, 116.20, 34.56, 34.34, 31.82, 29.24, 29.20, 29.14, 24.99, 22.66, 14.10.

HRMS-EI(m/z): calcd for C₁₈H₂₆O₂+ [M+] 274.19273, found 274.19272.

2,6-Dimethylphenyl nonanoate (3x) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 100:1) to afford the title compound as a colorless oil (14.7 mg, 56% yield).

¹H NMR (300 MHz, CDCl₃): δ 7.09 – 7.04 (m, 3H), 2.60 (t, *J* = 7.35 Hz, 2H), 2.14 (s, 6H), 1.85 – 1.75 (m, 2H), 1.37 – 1.26 (m, 10H), 0.92 – 0.87 (m, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 171.55, 148.24, 130.12, 128.55, 125.73, 34.10, 31.45, 29.30, 29.24, 29.15, 25.17, 22.65, 16.37, 14.10.

HRMS-EI(m/z): calcd for C₁₇H₂₆O₂+ [M+] 262.19273, found 262.19332.

4-Chloro-3-methoxyphenyl nonanoate (3y) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 200:1) to afford the title compound as a colorless oil (27.4 mg, 92% yield).^[5]

¹H NMR (300 MHz, CDCl₃): δ 7.34 (d, *J* = 8.52 Hz, 1H), 6.69 – 6.63 (m, 2H), 3.88 (s, 3H), 2.55 (t, *J* = 7.32 Hz, 2H), 1.80 – 1.70 (m, 2H), 1.44 – 1.25 (m, 10H), 0.91 – 0.86 (m, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 172.10, 155.47, 150.16, 130.20, 119.43, 114.21, 106.30, 56.24, 34.36, 31.81, 29.22, 29.12, 24.87, 22.66, 14.11.

3-Chloro-5-methoxyphenyl nonanoate (3z) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 200:1) to afford the title compound as a colorless oil (27.4 mg, 92% yield).^[5]

¹H NMR (300 MHz, CDCl₃): δ 6.78 – 6.76 (m, 1H), 6.72 (t, *J* = 1.92 Hz, 1H), 6.54 (t, *J* = 2.22 Hz, 1H), 3.78 (s, 3H), 2.53 (t, *J* = 7.32 Hz, 2H), 1.79 – 1.69 (m, 2H), 1.41 – 1.29 (m, 10H), 0.91 – 0.87 (m, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 171.80, 160.75, 151.89, 135.02, 114.64, 112.03, 106.60, 55.68, 34.32, 31.81, 29.20, 29.12, 29.08, 24.86, 22.65, 14.09.

2,4-Dimethylphenyl nonanoate (4a) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 100:1) to afford the title compound as a colorless oil (21.2 mg, 81% yield).^[4]

¹H NMR (300 MHz, CDCl₃): δ 7.04 – 6.98 (m, 2H), 6.87 (d, J = 8.07 Hz, 1H), 2.56 (t, J = 7.32 Hz, 2H), 2.31 (s, 3H), 2.14 (s, 3H), 1.82 – 1.72 (m, 2H), 1.45 – 1.27 (m, 10H), 0.92 – 0.87 (m, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 172.27, 147.16, 135.46, 131.74, 129.64, 127.43, 121.55, 34.31, 31.82, 29.24, 29.22, 29.15, 25.13, 22.66, 20.81, 16.14, 14.10.

3,5-Dimethoxyphenyl nonanoate (4b) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 200:1) to afford the title compound as a colorless oil (27.6 mg, 94% yield).^[4]

¹**H NMR (300 MHz, CDCl₃):** δ 6.33 (t, J = 2.28 Hz, 1H), 6.25 (t, J = 2.9 Hz, 1H), 3.77 (s, 6H), 2.53 (t, J = 7.32 Hz, 2H), 1.79 - 1.69 (m, 2H), 1.41 - 1.27 (m, 10H), 0.91 - 0.87 (m, 3H).

¹³C NMR (**75 MHz, CDCI₃**): δ 172.13, 161.13, 152.34, 100.23, 98.17, 55.46, 34.43, 31.82, 29.22, 29.13, 24.93, 22.65, 14.09.

Benzo[*d*][1,3]dioxol-5-yl nonanoate (4c) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 200:1) to afford the title compound as a colorless oil (17.2 mg, 62% yield).

¹H NMR (300 MHz, CDCl₃): δ 6.76 (d, *J* = 8.07 Hz, 1H), 6.59 – 6.49 (m, 2H), 5.97 (s, 2H), 2.52 (t, *J* = 7.32 Hz, 2H), 1.78 – 1.68 (m, 2H), 1.38 – 1.25 (m, 10H), 0.91 – 0.86 (m, 3H).

¹³C NMR (75 MHz, CDCI₃): δ 172.67, 147.98, 145.08, 113.92, 107.97, 103.78, 101.68, 34.32, 31.82, 29.22, 29.14, 29.13, 24.96, 22.66, 14.1. HRMS-ESI(m/z): calcd for $C_{16}H_{23}O_4^+$ [M+H]⁺ 279.1591, found

HRMS-EI(m/z): calcd for C₁₆H₂₂O₄+ [M+] 278.15126, found 278.15149.

Naphthalen-2-yl nonanoate (4d) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 200:1) to afford the title compound as a colorless oil (13.7 mg, 48% yield).^[4]

¹H NMR (300 MHz, CDCl₃): δ 7.91 – 7.86 (m, 2H), 7.75 (d, *J* = 8.25 Hz, 2H), 7.56 – 7.45 (m, 3H),), 7.29 – 7.23 (m, 1H), 2.75 (t, *J* = 732 Hz, 2H), 1.91 – 1.84 (m, 2H), 1.46 – 1.28 (m, 10H), 0.94 – 0.90 (m, 3H).

¹³**C NMR (75 MHz, CDCl₃):** δ 172.33, 146.68, 134.68, 128.05, 126.91, 126.40, 125.90, 125.43, 121.17, 118.10, 34.47, 31.84, 29.28, 29.26, 29.18, 25.15, 22.68, 14.12.

Naphthalen-2-yl nonanoate (4e) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 200:1) to afford the title compound as a colorless oil (19.9 mg, 70% yield).^[4]

¹H NMR (300 MHz, CDCl₃): δ 7.87 – 7.79 (m, 3H), 7.57–7.43 (m, 3H), 7.26 – 7.21 (m, 1H), 2.62 (t, *J* = 7.44 Hz, 2H), 1.86 – 1.76 (m, 2H), 1.47 – 1.30 (m, 10H), 0.94 – 0.89 (m, 3H).

¹³**C NMR (75 MHz, CDCl₃):** δ 172.53, 148.45, 133.81, 131.44, 129.37, 127.78, 127.64, 126.54, 125.65, 121.24, 118.52, 34.51, 31.85, 29.27, 29.17, 25.02, 22.69, 14.13.

Cyclohexyl 5-phenylpentanoate (4f) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 100:1) to afford the title compound as a colorless oil (5.8 mg, 22% yield).^[4]

¹H NMR (300 MHz, CDCl₃): δ 7.31– 7.25 (m, 2H), 7.20 – 7.14 (m, 3H), 4.80 – 4.71 (m, 1H), 2.65 – 2.61 (m, 2H), 2.33 – 2.29 (m, 2H), 1.86 – 1.80 (m, 2H), 1.72 – 1.62 (m, 6H), 1.42 – 1.26 (m, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 173.14, 142.24, 128.40, 128.32, 125.76, 72.42, 35.62, 34.60, 31.67, 30.92, 25.41, 24.75, 23.77.

4-(4-Methoxybenzyl)phenyl nonanoate (4g) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 200:1) to afford the title compound as a colorless oil (28.3 mg, 80% yield).^[5]

¹H NMR (300 MHz, CDCl₃): δ 7.18 – 7.07 (m, 4H), 7.00 – 6.95 (m, 2H), 6.86 – 6.81 (m, 2H), 3.91 (s, 2H), 3.79 (s, 3H), 2.53 (t, *J* = 7.35 Hz, 2H), 1.79 – 1.69 (m, 2H), 1.42 – 1.26 (m, 10H), 0.91 – 0.86 (m, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 172.49, 158.05, 148.98, 139.02, 132.93, 129.91, 129.68, 121.45, 113.92, 55.28, 40.38, 34.43, 31.82, 29.23, 29.14, 24.98, 22.66, 14.11.

Phenyl undecanoate (5a) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 200:1) to afford the title compound as a colorless oil (23.3 mg, 89% yield).^[4]

¹H NMR (300 MHz, CDCl₃): δ 7.41– 7.34 (m, 2H), 7.25 – 7.19 (m, 1H), 7.10 – 7.05 (m, 2H), 2.56 (t, *J* = 7.35 Hz, 2H), 1.81 – 1.71 (m, 2H), 1.41 – 1.28 (m, 12H), 0.91 – 0.87 (m, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 172.35, 150.80, 129.39, 125.71, 121.60, 34.44, 31.92, 29.57, 29.49, 29.33, 29.28, 29.13, 24.98, 22.70, 14.13.

Phenyl 7-ethoxyheptanoate (5b) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 200:1) to afford the title compound as a colorless oil (20.7 mg, 83% yield).^[5]

¹H NMR (300 MHz, CDCl₃): δ 7.41– 7.34 (m, 2H), 7.24 – 7.19 (m, 1H), 7.09 – 7.05 (m, 2H), 3.51 – 3.40 (m, 2H), 2.56 (t, *J* = 7.35 Hz, 2H), 1.82 – 1.72 (m, 2H), 1.66 – 1.56 (m, 2H), 1.46 – 1.41 (m, 4H), 1.20 (t, *J* = 6.96 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 172.25, 150.77, 129.39, 125.72, 121.58, 70.57, 66.12, 34.34, 29.65, 28.97, 25.93, 24.91, 15.25.

S

Phenyl 7-(ethylthio)heptanoate (5c) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 100:1) to afford the title compound as a yellow oil (21.5 mg, 81% yield).

¹H NMR (300 MHz, CDCl₃): δ 7.41 – 7.34 (m, 2H), 7.25 – 7.19 (m, 1H), 7.09 – 7.05 (m, 2H), 2.59 – 2.54 (m, 6H), 1.82 – 1.72 (m, 2H), 1.65 – 1.58 (m, 2H), 1.65 – 1.58 (m, 4H), 1.26 (t, J = 7.44 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 172.23, 150.74, 129.42, 125.75, 121.58, 34.31, 31.45, 29.48, 28.72, 28.55, 25.92, 24.82, 14.85.

HRMS-EI(m/z): calcd for C₁₅H₂₂O₄S₁+ [M+] 266.13350, found 266.13306.

Phenyl dodec-11-enoate (5d) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 400:1) to afford the title compound as a colorless oil (12.9 mg, 47% yield).^[5]

¹H NMR (300 MHz, CDCl₃): δ 7.41 – 7.34 (m, 2H), 7.25 – 7.19 (m, 1H), 7.09 – 7.05 (m, 2H), 5.88 – 7.75 (m, 1H), 5.03 – 4.91 (m, 2H), 2.55 (t, *J* = 7.35 Hz, 2H), 2.01 – 2.00 (m, 2H), 1.82 – 1.70 (m, 2H), 1.40 – 1.25 (m, 12H).

¹³C NMR (75 MHz, CDCl₃): δ 172.33, 150.80, 139.22, 129.39, 125.71, 121.60, 121.56, 114.15, 34.43, 33.82, 29.43, 29.41, 29.25, 29.12, 28.94, 24.97.

phenyl 3-(4-chlorophenyl)propanoate (5e) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 100:1) to afford the title compound as a colorless oil (19.3 mg, 74% yield).

¹H NMR (300 MHz, CDCl₃): δ 7.40 – 7.33 (m, 2H), 7.32 – 7.19 (m, 5H), 7.03 – 6.99 (m, 2H), 3.05 (t, *J* = 7.41 Hz, 2H), 2.30 – 2.84 (m, 2H).

¹³C NMR (75 MHz, CDCl₃): δ 171.13, 150.58, 138.59, 132.28, 129.82, 129.45, 128.72, 125.89, 121.48, 35.81, 30.27.

HRMS-EI(m/z): calcd for C₁₅H₁₃O₂Cl₁+ [M+] 260.05986, found 260.05836.

Phenyl 4-phenylbutanoate (5f) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 100:1) to afford the title compound as a colorless oil (18.1 mg, 75% yield).

¹H NMR (300 MHz, CDCl₃): δ 7.41 – 7.29 (m, 4H), 7.26 – 7.19 (m, 4H), 7.10 – 7.05 (m, 2H), 2.76 (t, *J* = 7.23 Hz, 2H), 2.59 (t, *J* = 7.41 Hz, 2H), 2.14 – 2.05 (m, 2H).

¹³**C NMR (75 MHz, CDCl₃):** δ 172.01, 150.74, 141.24, 129.44, 128.57, 128.51, 126.14, 125.80, 121.59, 35.11, 33.69, 26.53.

HRMS-EI(m/z): calcd for C₁₆H₁₆O₂+ [M+] 240.11448, found 240.11612.

Phenyl 5-phenylpentanoate (5g) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 100:1) to afford the title compound as a colorless oil (18.3 mg, 72% yield).

¹**H NMR (300 MHz, CDCl₃):** δ 7.41 – 7.17 (m, 8H), 7.09 – 7.04 (m, 2H), 2.69 (t, *J* = 7.32 Hz, 2H), 2.59 (t, *J* = 7.05 Hz, 2H), 1.87 – 1.72 (m, 4H).

¹³**C NMR (75 MHz, CDCl₃):** δ 172.12, 150.73, 142.04, 129.42, 128.43, 128.39, 125.87, 125.77, 121.59, 35.59, 34.26, 30.88, 24.57.

HRMS-EI(m/z): calcd for C₁₇H₁₈O₂+ [M+] 254.13013, found 254.13047.

Phenyl 7-phenoxyheptanoate (5h) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 100:1) to afford the title compound as a colorless oil (24.1 mg, 81% yield).^[5]

¹H NMR (300 MHz, CDCl₃): δ 7.40 – 7.19 (m, 5H), 7.10 – 7.05 (m, 2H), 6.96 – 6.88 (m, 3H), 3.97 (t, *J* = 6.42 Hz, 2H), 2.58 (t, *J* = 7.38 Hz, 2H), 1.87 – 1.75 (m, 4H), 1.60 – 1.44 (m, 4H).

¹³C NMR (75 MHz, CDCl₃): δ 172.22, 159.08, 150.76, 129.44, 129.42, 125.75, 121.59, 120.55, 114.51, 67.66, 34.32, 29.14, 28.86, 25.81, 24.87.

Phenyl 7-(*p***-tolyloxy)heptanoate (5i)** Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 100:1) to afford the title compound as a colorless oil (25.2 mg, 81% yield). ^[5]

¹**H NMR (300 MHz, CDCl₃):** δ 7.41 – 7.34 (m, 2H), 7.25 – 7.19 (m, 1H), 7.09 – 7.05 (m, 4H), 6.82 – 6.77 (m, 2H), 3.95 (t, *J* = 6.39 Hz, 2H), 2.58 (t, *J* = 7.51 Hz, 2H), 2.29 (s, 3H), 1.85 – 1.75 (m, 4H), 1.52 – 1.50 (m, 4H).

¹³**C NMR (75 MHz, CDCl₃):** δ 172.21, 156.96, 150.76, 129.87, 129.74, 129.41, 125.73, 121.58, 114.38, 67.85, 34.32, 29.17, 28.86, 25.79, 24.87, 20.46.

Phenyl 7-(*m***-tolyloxy)heptanoate (5j)** Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 100:1) to afford the title compound as a colorless oil (25.3 mg, 81% yield). ^[5]

¹H NMR (300 MHz, CDCl₃): δ 7.41 – 7.34 (m, 2H), 7.25 – 7.16 (m, 2H), 7.10 – 7.06 (m, 2H), 6.77 – 6.69 (m, 3H), 3.96 (t, *J* = 6.39 Hz, 2H), 2.58 (t, *J* = 7.38 Hz, 2H), 2.33 (s, 3H), 1.87 – 1.76 (m, 4H), 1.56 – 1.50 (m, 4H).

¹³**C NMR (75 MHz, CDCl₃):** δ 172.22, 159.11, 150.77, 139.45, 129.41, 129.18, 125.74, 121.59, 121.39, 115.40, 111.37, 67.62, 34.32, 29.17, 28.86, 25.81, 24.88, 21.54.

Phenyl 7-(o-tolyloxy)heptanoate (5k) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 100:1) to afford the title compound as a colorless oil (25.9 mg, 83% yield).^[5]

¹H NMR (300 MHz, CDCl₃): δ 7.41 – 7.34 (m, 2H), 7.26 – 7.06 (m, 5H), 6.88 – 6.80 (m, 2H), 3.98 (t, *J* = 6.24 Hz, 2H), 2.59 (t, *J* = 7.38 Hz, 2H), 2.24 (s, 3H), 1.90 – 1.77 (m, 4H), 1.63 – 1.46 (m, 4H).

¹³**C NMR (75 MHz, CDCl₃):** δ 172.22, 157.20, 150.77, 130.60, 129.41, 126.84, 126.73, 125.74, 121.58, 120.14, 110.93, 67.67, 34.33, 29.22, 28.86, 25.90, 24.90, 16.25.

Phenyl 3-(thiophen-2-yl)propanoate (5I) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 100:1) to afford the title compound as a colorless oil (14.0 mg, 60% yield).^[5]

¹**H NMR (300 MHz, CDCl₃):** δ 7.41 – 7.20 (m, 4H), 7.08 – 7.00 (m, 4H), 3.11 (t, *J* = 7.77 Hz, 2H), 2.92 – 2.87 (m, 2H).

¹³**C NMR (75 MHz, CDCl₃):** δ 171.41, 150.67, 140.44, 129.44, 128.03, 125.85, 125.81, 121.54, 120.96, 35.30, 25.51.

Phenyl 7-(phenylthio)heptanoate (5m) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 100:1) to afford the title compound as a yellow oil (26.7 mg, 85% yield).^[5]

¹**H NMR (300 MHz, CDCl₃):** δ 7.41 – 7.14 (m, 8H), 7.09 – 7.05 (m, 2H), 2.94 (t, *J* = 7.14 Hz, 2H), 2.55 (t, *J* = 7.44 Hz, 2H), 1.81 – 1.64 (m, 4H), 1.53 – 1.38 (m, 4H).

¹³C NMR (75 MHz, CDCl₃): δ 172.17, 150.74, 136.84, 129.42, 129.02, 128.87, 125.77, 125.75, 121.57, 34.28, 33.55, 28.94, 28.62, 28.41, 24.78.

Phenyl 7-(phenylsulfonyl)heptanoate (5n) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 5:1) to afford the title compound as a yellow oil (24.9 mg, 72% yield).

¹H NMR (300 MHz, CDCl₃): δ 7.93 – 7.89 (m, 2H), 7.68 – 7.54 (m, 3H), 7.40 – 7.33 (m, 2H), 7.24 – 7.18 (m, 1H), 7.07 – 7.03 (m, 2H), 3.12 – 3.07 (m, 2H), 2.53 (t, *J* = 7.35 Hz, 2H), 1.80 – 1.66 (m, 4H), 1.49 – 1.37 (m, 4H).

¹³**C NMR (75 MHz, CDCl₃):** δ 171.97, 150.67, 139.18, 133.69, 129.43, 129.31, 128.05, 125.80, 121.53, 56.17, 34.11, 28.48, 27.96, 24.48, 22.52.

HRMS-EI(m/z): calcd for C₁₉H₂₂O₄S₁+ [M+] 346.12333, found 346.12433.

Phenyl 7-(benzhydryloxy)heptanoate (5o) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 50:1) to afford the title compound as a colorless oil (15.5 mg, 40 % yield).^[5]

¹H NMR (300 MHz, CDCl₃): δ 7.42 – 7.20 (m, 13H), 7.10 – 7.06 (m, 2H), 5.35 (s, 1H), 3.48 (t, *J* = 6.42 Hz, 2H), 2.56 (t, *J* = 7.32 Hz, 2H), 1.83 – 1.65 (m, 4H), 1.53 – 1.42 (m, 4H).

¹³**C NMR (75 MHz, CDCl₃):** δ 172.27, 150.77, 142.61, 129.41, 128.36, 127.36, 126.97, 125.73, 121.60, 83.66, 69.04, 34.36, 29.72, 28.95, 25.97, 24.91.

Phenyl 7-(naphthalen-2-yloxy)heptanoate (5p) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 50:1) to afford the title compound as a colorless oil (13.8 mg, 42 % yield).^[5]

¹H NMR (300 MHz, CDCl₃): δ 7.78 – 7.71 (m, 3H), 7.46 – 7.30 (m, 4H), 7.25 – 7.05 (m, 5H), 4.10 (t, *J* = 6.42 Hz, 2H), 2.60 (t, *J* = 7.38 Hz, 2H), 1.94 – 1.78 (m, 4H), 1.63 – 1.53 (m, 4H).

¹³C NMR (75 MHz, CDCl₃): δ 172.21, 157.06, 150.76, 134.63, 129.41, 129.35, 128.93, 127.65, 126.71, 126.31, 125.74, 123.51, 121.58, 119.01, 106.60, 67.80, 34.33, 29.09, 28.87, 25.85, 24.88.

Phenyl 2-methyl-4-phenylbutanoate (5q) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 50:1) to afford the title compound as a colorless oil (13.8 mg, 42 % yield).^[4]

¹H NMR (300 MHz, CDCl₃): δ 7.41 – 7.17 (m, 8H), 7.09 – 7.05 (m, 2H), 2.77 – 2.69 (m, 3H), 2.23 – 2.11(m, 1H), 1.92 – 1.80 (m, 1H), 1.35 (d, *J* = 6.96 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 175.04, 150.82, 141.52, 129.45, 128.51, 126.07, 125.78, 121.56, 39.17, 35.45, 33.53, 17.16.

Phenyl (3r,5r,7r)-adamantane-1-carboxylate (5r) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 400:1) to afford the title compound as a colorless oil (22.8 mg, 89 % yield).^[4]

¹H NMR (300 MHz, CDCl₃): δ 7.40 – 7.34 (m, 2H), 7.24 – 7.18 (m, 1H), 7.07 – 7.03 (m, 2H), 2.09 – 2.07 (m, 9H), 1.82 – 1.78 (m, 6H).

¹³C NMR (75 MHz, CDCl₃): δ 175.04, 150.82, 141.52, 129.45, 128.51, 126.07, 125.78, 121.56, 39.17, 35.45, 33.53, 17.16.

Phenyl 7-(benzo[d][1,3]dioxol-5-yloxy)heptanoate (5s) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 100:1) to afford the title compound as a white oil (27.5 mg, 85 % yield).^[4]

¹**H NMR (300 MHz, CDCl₃):** δ 7.41 – 7.34 (m, 2H), 7.25 – 7.19 (m, 1H), 7.10 – 7.06 (m, 2H), 6.70 (d, J = 8.43 Hz, 1H), 6.50 (d, J = 2.46 Hz, 1H), 6.32 (dd, J = 8.43, 2.46 Hz, 1H), 5.91 (s, 2H), 3.89 (t, J = 6.42 Hz, 2H), 2.58 (t, J = 7.35 Hz, 2H), 1.84 – 1.74 (m, 4H), 1.54 – 1.47 (m, 4H).

¹³**C NMR (75 MHz, CDCl₃):** δ 172.21, 154.63, 150.76, 148.24, 141.51, 129.42, 125.75, 121.59, 107.95, 105.68, 101.09, 98.07, 68.74, 34.31, 29.14, 28.84, 25.77, 24.86.

Phenyl 7-(((8R,9S,13S,14S)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6*H*-cyclopenta[a]phenanthren-3-yl)oxy)heptanoate (5t) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 50:1) to afford the title compound as a colorless oil (37.9 mg, 80 % yield).^[5]

¹H NMR (300 MHz, CDCl₃): δ 7.41 – 7.34 (m, 2H), 7.26 – 7.18 (m, 2H), 7.10 – 7.06 (m, 2H), 6.74 – 6.65 (m, 2H), 3.95 (t, *J* = 6.42 Hz, 2H), 2.93 – 2.88 (m, 2H), 2.58 (t, *J* =7.32 Hz, 2H), 2.53 – 1.27 (m, 21H), 0.92 (s, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 220.96, 172.21, 157.13, 150.77, 137.73, 131.93, 129.42, 126.33, 125.75, 121.60, 114.59, 112.15, 67.71, 50.44, 48.04, 44.02, 38.42, 35.90, 34.32, 31.63, 29.69, 29.18, 28.85, 26.60, 25.96, 25.81, 24.88, 21.62, 13.89.

Phenyl 7-((2,5,7,8-tetramethyl-2-((4S,8S)-4,8,12-trimethyltridecyl)chroman-6yl)oxy)heptanoate (5u) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 50:1) to afford the title compound as a colorless oil (38.1 mg, 60% yield).

¹H NMR (300 MHz, CDCl₃): δ 7.42 – 7.36 (m, 2H), 7.26 – 7.21 (m, 1H), 7.12 – 7.07 (m, 2H), 3.67 (t, *J* = 6.51 Hz, 2H), 2.63 – 2.56 (m, 4H), 2.19 (s, 3H), 2.14 (s, 3H), 2.10 (s, 3H), 1.88 – 1.76 (m, 4H), 1.64 – 1.09 (m, 28H), 0.90 – 0.85 (m, 12H).

¹³C NMR (75 MHz, CDCl₃): δ 172.26, 150.78, 148.35, 147.69, 129.42, 127.84, 125.82, 125.75, 122.80, 121.62, 117.50, 74.77, 72.90, 40.13, 39.41, 37.61, 37.50, 37.43, 37.32, 34.39, 32.83, 32.81, 32.74, 32.71, 31.34, 31.29, 30.22, 29.14, 28.02, 26.01, 24.96, 24.85, 24.48, 23.93, 22.77, 22.67, 21.09, 20.70, 19.80, 19.73, 19.67, 19.64, 12.79, 11.92, 11.84.

HRMS-EI(m/z): calcd for C₄₂H₆₆O₄+ [M+] 634.49556, found 634.49454.

8. NMR spectra of the products

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -19C f1 (ppm)

7,6715 7,6629 7,6629 7,6629 7,6629 7,6522 7,6532 7,6532 7,6532 7,6532 7,6532 7,6532 7,6532 7,6532 7,6532 7,6532 7,6532 7,6332 7,7332 7,6332 7,7322 7,7322 7,

-2.6021 -2.5773 -2.5773 -2.5721 -2.5721 -1.8091 -1.8091 -1.7837 -1.7837 -1.7837 -1.7837 -1.7838 -1.47327 -1.43327 -1.432

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

S46

160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 f1 (ppm)

