A nickel-catalyzed carbon-sulfur cross-coupling reaction with disulfides enabled by mechanochemistry

Xiujia Hao, Daming Feng*, Peng Huang, Fang Guo*

College of Chemistry, Liaoning University, Shenyang 110036 China

E-mail: dmfeng@lnu.edu.cn; fguo@lnu.edu.cn

Supporting Information

Table of Contents

1. General Information	1
2. General procedures for the experiments	2
3. Optimisation studies	6
4. Characterisation Data	9
5. Spectroscopic Data	17
6. Green metrics for the C-S bond cross-coupling	79
References	85

1. General Information

All chemicals were obtained from commercial sources and used without further purification. ¹H NMR and ¹³C NMR spectra were obtained on Varian Mercury-VX300 and Bruker AVIII-400 spectrometers. Mass spectral data were obtained on a GCM-SQF2020V. All compounds were detected by ultraviolet light (254 nm and 365 nm) and iodine vapour. The synthesized products were purified by silica gel column chromatography. The ball mill used was a Retsch MM 400 mixing mill. Unless otherwise stated, the mechanochemical reactions were performed in 25 mL stainless steel jars with one stainless steel ball of 14 mm. Mechanochemical reactions were performed using mills and jars without any modifications or temperature control system.

2. General procedures for the experiments

2.1 General Procedure

To a 25 mL stainless steel Jar was added a 14 mm stainless steel milling ball. A mixture of bromobenzene (1.5 mmol), phenyl disulfide (0.5 mmol, 109 mg), NiI₂ 6H₂O (0.1 mmol, 10 mol%), 2,2'-bipyridine (0.15 mmol, 15 mol%), DMF (200 μ L), Zinc Powder (4 mmol, 8 equiv.) and NaI (2.5 mmol) were added to the jar, which was closed and placed on a ball mill. The reaction was milled for 100 min at 30 Hz. After the milling, the jar was opened and the mixture was rinsed into a conical flask using EtOAc (~40 mL). The mixture was filtered and concentrated under reduced pressure. The crude product was purified by column chromatography using petroleum as eluent to afford pure products. The procedure is applied for the preparation of all compounds. The identity and purity of the known products were determined by ¹H NMR and ¹³C NMR spectroscopic analysis.

2.2 Procedure for the gram scale experiments

To a 25 mL stainless steel Jar was added a 14 mm stainless steel milling ball. A mixture of bromobenzene (7.5 mmol), phenyl disulfide (2.5 mmol, 546 mg), NiI₂ 6H₂O (0.21 g, 0.5 mmol, 10 mol%), 2,2'-bipyridine (0.117 g, 0.75 mmol, 15 mol%), DMF (1000 μ L), Zinc Powder (1.308 g, 20 mmol, 8 equiv.) and NaI (1.874 g, 12.5mmol.) were all added to the jar, which was closed and placed on a ball mill. The reaction was milled for 100 min at 30 Hz. After the milling period, the jar was opened and the mixture was rinsed into a conical flask using EtOAc (100 mL). The mixture was filtered and concentrated under reduced pressure. The crude product was purified by column chromatography using petroleum as eluent to afford pure products. The yield of coupled product was determined to be 71% by column chromatography.

2.3 Procedure for radical trapping experiments

To a 25 mL stainless steel Jar was added a 14 mm stainless steel milling ball. A mixture of bromobenzene (1.5 mmol), phenyl disulfide (0.5 mmol, 109 mg), NiI₂ 6H₂O (0.1 mmol, 10 mol%), 2,2'-bipyridine (0.15 mmol, 15 mol%), DMF (200 μ L), Zinc Powder (4 mmol, 8 equiv.) TEMPO (0.234 g, 3 equiv.) and NaI (2.5 mmol) were all added to the jar, which was closed and placed on a ball mill. The reaction was milled for 100 min at 30 Hz. After the milling period, the jar was opened and the mixture was rinsed into a conical flask using EtOAc (~40 mL). The mixture was filtered and concentrated under reduced pressure. The crude product was purified by column chromatography using petroleum as eluent to afford pure products. The yield of coupled product was determined to be 54% by column chromatography.

2.4 Control experiments

To a 25 mL stainless steel jar was added a 14 mm stainless steel milling ball. Phenyl disulfide (0.1 mmol, 218 mg), NiI₂ 6H₂O (0.2 mmol, 20 mol%), 2,2'-bipyridine (0.3 mmol; 30 mol%) and DMF (40 μ L) were added to the tank and allowed to react for 70 min. When the reaction is complete, quickly add bromobenzene (0.3 mmol), zinc powder (0.8 mmol, 8 equiv.), NaI (0.5 mmol) and DMF (40 μ L), and place on a ball mill. Grinding was continued at 30 Hz for 100 minutes. After the milling period, the jar was opened and the mixture was rinsed into a conical flask using EtOAc (~40 mL). The mixture was filtered and concentrated under reduced pressure. The crude product was purified by column chromatography using petroleum as eluent to afford pure products. The yield of coupled product was determined to be 78% by column chromatography, and biphenyl was monitored by GC-MS.

To a 25 mL stainless steel jar was added a 14 mm stainless steel milling ball. Bromobenzene (0.3 mmol), NiI₂ 6H₂O (0.2 mmol, 20 mol%), 2,2'-bipyridine (0.3 mmol; 30 mol%) and DMF (40 μ L) were added to the tank and allowed to react for 70 min. When the reaction is complete, quickly add phenyl disulfide (0.1 mmol, 218 mg), zinc powder (0.8 mmol, 8 equiv.), NaI (0.5 mmol) and DMF (40 μ L), and place on a ball mill. Grinding was continued at 30 Hz for 100 minutes. After

the milling period, the jar was opened and the mixture was rinsed into a conical flask using EtOAc (~40 mL). The mixture was filtered and concentrated under reduced pressure. The crude product was purified by column chromatography using petroleum as eluent to afford pure products. The yield of coupled product was determined to be 51% by column chromatography, while biphenyl was not detected by GC-MS.

To a 25 mL stainless steel jar was added a 14 mm stainless steel milling ball. Bromobenzene (0.3 mmol), NiI₂ 6H₂O (0.2 mmol, 20 mol%), 2,2'-bipyridine (0.3 mmol; 30 mol%), NaI (0.5 mmol) and DMF (40 μ L) were added to the tank and allowed to react for 70 min. When the reaction is complete, quickly add phenyl disulfide (0.1 mmol, 218 mg), zinc powder (0.8 mmol, 8 equiv.) and DMF (40 μ L), and place on a ball mill. Grinding was continued at 30 Hz for 100 minutes. After the milling period, the jar was opened and the mixture was rinsed into a conical flask using EtOAc (~40 mL). The mixture was filtered and concentrated under reduced pressure. The crude product was purified by column chromatography using petroleum as eluent to afford pure products. The yield of coupled product was determined to be 4% by column chromatography.

To a 25 mL stainless steel jar was added a 14 mm stainless steel milling ball. Bromobenzene (0.3 mmol), NiI₂ 6H₂O (0.2 mmol, 20 mol%), 2,2'-bipyridine (0.3 mmol; 30 mol%), NaI (0.5 mmol), zinc powder (0.8 mmol, 8 equiv.) and DMF (40 μ L) were added to the tank and allowed to react for 70 min. When the reaction is complete, quickly add phenyl disulfide (0.1 mmol, 218 mg), and DMF (40 μ L), and place on a ball mill. Grinding was continued at 30 Hz for 100 minutes. After the milling period, the jar was opened and the mixture was rinsed into a conical flask using EtOAc (~40 mL). The mixture was filtered and concentrated under reduced pressure. The crude product was purified by column chromatography using petroleum as eluent to afford pure products. The yield of coupled product was determined to be 9% by column chromatography.

To a 25 mL stainless steel jar was added a 14 mm stainless steel milling ball. Phenyl disulfide (0.1 mmol, 218 mg), NiI₂ 6H₂O (0.2 mmol, 20 mol%), 2,2'-bipyridine (0.3 mmol; 30 mol%), zinc powder (0.8 mmol, 8 equiv.) and DMF (40 μ L) were added to the tank and allowed to react for 70 min. When the reaction is complete, quickly add bromobenzene (0.3 mmol), NaI (0.5 mmol) and DMF (40 μ L), and place on a ball mill. Grinding was continued at 30 Hz for 100 minutes. At the end of grinding, the jar was opened and rinsed with EtOAc. No product was detected by thin layer chromatography.

3. Optimisation studies

 Table S1: Optimisation of Mechanochemical C-S Coupling

Entry	[Ni] & ligand ratio	Additive	Reductant	LAG	Time	Milling	Yield	Remarks
					(min)	Ball	(%)	
1	CUI & Bpy (1:2)	NaI (3 mmol)	Zn Powder	DMF (0.24	100	Ø 14 mm	-	
			(3.5mmol)	μL/mg)		(1 ball)		
2	CoCl ₂ 6H ₂ O & Bpy (1:2)	NaI (3 mmol)	Zn Powder	DMF (0.24	100	Ø 14 mm	37	
			(3.5mmol)	μL/mg)		(1 ball)		
3	NiI ₂ 6H ₂ O &	NaI (3 mmol)	Zn Powder	DMF (0.24	100	Ø 14 mm	-	
	2,9-dm-1,10-phen (1:2)		(3.5mmol)	μL/mg)		(1 ball)		
4	NiI ₂ 6H ₂ O &	NaI (3 mmol)	Zn Powder	DMF (0.24	100	Ø 14 mm	-	
	2,9-dm-4,7-dpphen (1:2)		(3.5mmol)	μL/mg)		(1 ball)		Selected Catalyst & Ligand
5	NiI ₂ 6H ₂ O & Bpy (1:1)	NaI (3 mmol)	Zn Powder	DMF (0.24	100	Ø 14 mm	66	Ratio
			(3.5mmol)	μL/mg)		(1 ball)		
6	NiI ₂ 6H ₂ O & Bpy (1:1.5)	NaI (3 mmol)	Zn Powder (3.5	DMF (0.24	100	Ø 14 mm	79	
			mmol)	μL/mg)		(1 ball)		
7	NiI ₂ 6H ₂ O & Bpy (1:2)	NaI (3 mmol)	Zn Powder (3.5	DMF (0.24	100	Ø 14 mm	77	
			mmol)	μL/mg)		(1 ball)		
8	NiI ₂ 6H ₂ O & Bpy (1:1.5,	NaI (3 mmol)	Zn Powder (3.5	DMF (0.24	100	Ø 14 mm	70	
	0.05 mmol Ni)		mmol)	μL/mg)		(1 ball)		
9	NiI ₂ 6H ₂ O & Bpy (1:1.5)	NaI (2 mmol)	Zn Powder (3.5	DMF (0.24	100	Ø 14 mm	73	Salastad Amount of Nat
			mmol)	μL/mg)		(1 ball)		Sciected Amount of Nat

10	NiI ₂ 6H ₂ O & Bpy (1:1.5)	NaI (2.5	Zn Powder (3.5	DMF (0.24	100	Ø 14 mm	81	
		mmol)	mmol)	μL/mg)		(1 ball)		
11	NiI ₂ 6H ₂ O & Bpy (1:1.5)	NaI (3 mmol)	Zn Powder (3.5	DMF (0.24	100	Ø 14 mm	79	
			mmol)	μL/mg)		(1 ball)		
12	NiI ₂ 6H ₂ O & Bpy (1:1.5)	NaI (2.5	Zn Powder (3	DMF (0.24	100	Ø 14 mm	77	
		mmol)	mmol)	μL/mg)		(1 ball)		
13	NiI ₂ 6H ₂ O & Bpy (1:1.5)	NaI (2.5	Zn Powder (3.5	DMF (0.24	100	Ø 14 mm	81	
		mmol)	mmol)	μL/mg)		(1 ball)		
14	NiI ₂ 6H ₂ O & Bpy (1:1.5)	NaI (2.5	Zn Powder (4	DMF (0.24	100	Ø 14 mm	85	
		mmol)	mmol)	μL/mg)		(1 ball)		
15	NiI ₂ 6H ₂ O & Bpy (1:1.5)	NaI (2.5	Zn Powder (4.5	DMF (0.24	100	Ø 14 mm	52	Colortad 7r
		mmol)	mmol)	μL/mg)		(1 ball)		Selected Zn
16	NiI ₂ 6H ₂ O & Bpy (1:1.5)	NaI (2.5	Zn Granular (4	DMF (0.24	100	Ø 14 mm	17	
		mmol)	mmol)	μL/mg)		(1 ball)		
17	NiI ₂ 6H ₂ O & Bpy (1:1.5)	NaI (2.5	Zn flake (4	DMF (0.24	100	Ø 14 mm	29	
		mmol)	mmol)	μL/mg)		(1 ball)		
18	NiI ₂ 6H ₂ O & Bpy (1:1.5)	NaI (2.5	-	DMF (0.24	100	Ø 14 mm	-	
		mmol)		μL/mg)		(1 ball)		
19	NiI ₂ 6H ₂ O & Bpy (1:1.5)	NaI (2.5	Zn Powder (4	DMF (0.19	100	Ø 14 mm	86	
		mmol)	mmol)	μL/mg)		(1 ball)		
20	NiI ₂ 6H ₂ O & Bpy (1:1.5)	NaI (2.5	Zn Powder (4	DMF	100	Ø 14 mm	62	
		mmol)	mmol)	(0.14µL/mg)		(1 ball)		
21	NiI ₂ 6H ₂ O & Bpy (1:1.5)	NaI (2.5	Zn Powder (4	DMA (0.19	100	Ø 14 mm	70	Selected LAGS
		mmol)	mmol)	μL/mg)		(1 ball)		
22	NiI ₂ 6H ₂ O & Bpy (1:1.5)	NaI (2.5	Zn Powder (4	DMSO	100	Ø 14 mm	35	
		mmol)	mmol)	(0.19 µL/mg)		(1 ball)		

23	NiI ₂ 6H ₂ O & Bpy (1:1.5)	NaI (2.5	Zn Powder (4	CH ₃ OH	100	Ø 14 mm	59	
		mmol)	mmol)	(0.19µL/mg)		(1 ball)		
24	NiI ₂ 6H ₂ O & Bpy (1:1.5)	NaI (2.5	Zn Powder (4	H ₂ O	100	Ø 14 mm	5	
		mmol)	mmol)	(0.19µL/mg)		(1 ball)		
25	NiI ₂ 6H ₂ O & Bpy (1:1.5)	NaI (2.5	Zn Powder (4	CH ₃ CN	100	Ø 14 mm	42	
		mmol)	mmol)	(0.19µL/mg)		(1 ball)		
26	NiI ₂ 6H ₂ O & Bpy (1:1.5)	NaI (2.5	Zn Powder (4	-	100	Ø 14 mm	-	
		mmol)	mmol)			(1 ball)		
27	NiI ₂ 6H ₂ O & Bpy (1:1.5)	NaI (2.5	Zn Powder (4	DMF (0.19	70	Ø 14 mm	76	
		mmol)	mmol)	μL/mg)		(1 ball)		
28	NiI ₂ 6H ₂ O & Bpy (1:1.5)	NaI (2.5	Zn Powder (4	DMF (0.19	120	Ø 14 mm	69	Departion Time
		mmol)	mmol)	μL/mg)		(1 ball)		Reaction Time
29	NiI ₂ 6H ₂ O & Bpy (1:1.5)	NaI (2.5	Zn Powder (4	DMF (0.19	100	Ø 14 mm	86	
		mmol)	mmol)	μL/mg)		(1 ball)		
30	NiI ₂ 6H ₂ O & Bpy (1:1.5)	NaI (2.5	Zn Powder (4	DMF (0.19	100	Ø 12 mm	75	
		mmol)	mmol)	μL/mg)		(1 ball)		
31	NiI ₂ 6H ₂ O & Bpy (1:1.5)	NaI (2.5	Zn Powder (4	DMF (0.19	100	Ø 15 mm	47	Salaatad Milling Pall
		mmol)	mmol)	μL/mg)		(1 ball)		Selected Willing Dall
32	NiI ₂ 6H ₂ O & Bpy (1:1.5)	NaI (2.5	Zn Powder (4	DMF (0.19	100	Ø 14 mm	86	
		mmol)	mmol)	μL/mg)		(1 ball)		

4. Characterisation Data

Diphenylsulfane (3a)^[1]

Prepared according to general procedure. Purified by column chromatography (PE) to give diphenylsulfane in the form of a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.32 (t, J = 6.5 Hz, 5H), 7.28 (d, J = 1.8 Hz, 3H), 7.21 (d, J = 3.5 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 135.69, 130.96, 129.13, 126.98. GCMS-EI (m/z): [M]⁺ calcd for C₁₂H₁₀S, 186; found, 186.

phenyl(p-tolyl)sulfane (3b)^[1]

Prepared according to general procedure. Purified by column chromatography (PE) to give phenyl(p-tolyl)sulfane in the form of a yellow oil. ¹H NMR (300 MHz, DMSO) δ 7.43 – 7.32 (m, 2H), 7.28 (dd, J = 14.0, 5.8 Hz, 4H), 7.23 (s, 1H), 7.21 (d, J = 4.7 Hz, 2H), 2.31 (s, 3H).¹³C NMR (75 MHz, DMSO) δ 137.66, 136.24, 132.08, 130.38, 130.33, 129.51, 129.45, 126.78, 20.71. GCMS-EI (m/z): [M]⁺ calcd for C₁₃H₁₂S, 200; found, 200.

(4-ethoxyphenyl)(phenyl)sulfane (3c)^[2]

Prepared according to general procedure. Purified by column chromatography (PE) to give (4-ethoxyphenyl)(phenyl)sulfane in the form of a yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 7.44 – 7.36 (m, 2H), 7.26 – 7.19 (m, 2H), 7.13 (dd, J = 14.5, 7.2 Hz, 3H), 6.91 – 6.84 (m, 2H), 4.03 (q, J = 7.0 Hz, 2H), 1.42 (t, J = 7.0 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 159.13, 138.60, 135.30, 128.79, 128.02, 125.59, 123.90, 63.48, 14.69. GCMS-EI (m/z): [M]⁺ calcd for C₁₄H₁₄OS, 230; found, 230.

(4-fluorophenyl)(phenyl)sulfane (3d)^[1]

Prepared according to general procedure. Purified by column chromatography (PE) to give (4-fluorophenyl)(phenyl)sulfane in the form of a colourless oil. ¹H NMR (300 MHz, CDCl₃) δ 7.42 – 7.35 (m, 2H), 7.31 – 7.18 (m, 5H), 7.08 – 6.98 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 162.6 (d, J = 246.8 Hz), 136.60, 134.04 (d, J = 8.2 Hz), 130.2 (d, J = 3 Hz), 129.90, 129.13, 126.71, 116.4 (d, J = 22.0 Hz). ¹⁹F NMR (377 MHz, CDCl₃) δ -114.06. GCMS-EI (m/z): [M]⁺ calcd for C₁₂H₉FS, 204; found, 204.

phenyl(4-(trifluoromethyl)phenyl)sulfane (3e)^[1]

Prepared according to general procedure. Purified by column chromatography (PE) to give phenyl(4-(trifluoromethyl)phenyl)sulfane in the form of a colourless oil. ¹H NMR (400 MHz, DMSO) δ 7.67 (d, J = 8.3 Hz, 2H), 7.56 – 7.43 (m, 5H), 7.34 (d, J = 8.1 Hz, 2H). ¹³C NMR (101 MHz, DMSO) δ 143.18, 133.91, 131.78, 130.50, 129.53, 128.58, 127.3 (q, J = 32.3 Hz), 126.5 (q, J = 4.0 Hz), 124.2 (q, J = 272.7 Hz). ¹⁹F NMR (377 MHz, DMSO) δ -60.94. GCMS-EI (m/z): [M]⁺ calcd for C₁₃H₉F₃S, 254; found, 254.

4-(phenylthio)benzonitrile (3f)^[3]

Prepared according to general procedure. Purified by column chromatography (PE) to give 4-(phenylthio)benzonitrile in the form of a yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 7.55 – 7.49 (m, 2H), 7.49 – 7.45 (m, 2H), 7.45 – 7.40 (m, 3H), 7.19 – 7.13 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 145.65, 134.42, 132.29, 130.76, 129.85, 129.32, 127.24, 118.72, 108.63. GCMS-EI (m/z): [M]⁺ calcd for C₁₃H₉NS, 211; found, 211.

4-(phenylthio)benzaldehyde (3g)^[4]

Prepared according to general procedure. Purified by column chromatography (PE) to give 4-(phenylthio)benzaldehyde in the form of a yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 9.91 (s, 1H), 7.75 – 7.68 (m, 2H), 7.56 – 7.49 (m, 2H), 7.46 – 7.40 (m, 3H), 7.24 (dd, *J* = 8.2, 1.4 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 191.11, 147.18, 134.31, 133.68, 131.27, 130.08, 129.76, 129.12, 127.19. GCMS-EI (m/z): [M]⁺ calcd for C₁₃H₁₀OS, 214; found, 214.

(4-(dimethoxymethyl)phenyl)(phenyl)sulfane (3h)

Prepared according to general procedure. Purified by column chromatography (PE/EA = 100/1) to give (4-(dimethoxymethyl)phenyl)(phenyl)sulfane in the form of a yellow oil. ¹H NMR (400 MHz, DMSO) δ 7.40 (d, *J* = 8.6 Hz, 2H), 7.38 – 7.35 (m, 3H), 7.35 – 7.29 (m, 4H), 5.37 (s, 1H), 3.24 (s, 6H). ¹³C NMR (101 MHz, DMSO) δ 137.85, 135.63, 134.89, 134.36, 131.47, 130.57, 130.08, 128.17, 128.07, 102.69, 53.08. GCMS-EI (m/z): [M]⁺ calcd for C₁₅H₁₆O₂S, 260; found, 260.

1-(4-(phenylthio)phenyl)ethan-1-one (3i)^[3]

Prepared according to general procedure. Purified by column chromatography (PE) to give 1-(4-(phenylthio)phenyl)ethan-1-one in the form of a White solid. ¹H NMR (300 MHz, CDCl₃) δ 7.82 (d, J = 8.3 Hz, 2H), 7.50 (dd, J = 6.6, 3.0 Hz, 2H), 7.44 – 7.37 (m, 3H), 7.21 (d, J = 8.3 Hz, 2H), 2.55 (d, J = 0.7 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 197.01, 144.83, 134.29, 133.78, 131.88, 129.59, 128.79, 128.71, 127.28, 26.41. GCMS-EI (m/z): [M]⁺ calcd for C₁₄H₁₂OS, 228; found, 228.

methyl 4-(phenylthio)benzoate (3j)^[4]

Prepared according to general procedure. Purified by column chromatography (PE/EA = 50/1) to give methyl 4-(phenylthio)benzoate in the form of a White solid. ¹H NMR (300 MHz, CDCl₃) δ 7.94 – 7.84 (m, 2H), 7.52 – 7.45 (m, 2H), 7.42 – 7.34 (m, 3H), 7.23 – 7.16 (m, 2H), 3.88 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 166.52, 144.27, 133.57, 132.28, 129.99, 129.53, 128.54, 127.46, 127.38, 51.96. GCMS-EI (m/z): [M]⁺ calcd for C₁₄H₁₂O₂S, 244; found, 244.

4-(phenylthio)phenol (3k)^[11]

Prepared according to general procedure. Purified by column chromatography (PE/EA = 50/1) to give 4-(phenylthio)phenol in the form of a yellow oil. ¹H NMR (300 MHz, DMSO) δ 7.37 – 7.30 (m, 2H), 7.26 (d, *J* = 8.1 Hz, 2H), 7.18 – 7.04 (m, 3H), 6.88 – 6.80 (m, 2H). ¹³C NMR (75 MHz, DMSO) δ 158.39, 138.72, 136.07, 129.19, 127.14, 125.67, 120.44, 116.85. GCMS-EI (m/z): [M]⁺ calcd for C₁₂H₁₀OS, 202; found, 202.

4-(phenylthio)benzoic acid (31)^[7]

Prepared according to general procedure. Purified by column chromatography (PE/EA = 50/1) to give 4-(phenylthio)benzoic acid in the form of a White solid. ¹H NMR (300 MHz, DMSO) δ 7.90 – 7.81 (m, 3H), 7.75 – 7.67 (m, 2H), 7.48 (dt, *J* = 5.4, 3.4 Hz, 3H), 7.27 – 7.23 (m, 1H). ¹³C NMR (75 MHz, DMSO) δ 166.68, 142.88, 133.35, 131.77, 131.36, 130.26, 130.07, 129.00, 128.51, 127.66, 126.97. HRMS(EI) m/z: [M-H]⁻Calcd for C₁₃H₁₀O₂S, 230; found, 229.0327.

4-(phenylthio)aniline (3m)^[3]

Prepared according to general procedure. Purified by column chromatography (PE/EA = 20/1) to give 4-(phenylthio)aniline in the form of a yellow solid. ¹H NMR (300 MHz, CDCl₃) δ 7.33 – 7.27 (m, 2H), 7.25 – 7.16 (m, 2H), 7.15 – 7.05 (m, 3H), 6.70 – 6.63 (m, 2H), 3.74 (br. s, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 146.86, 139.59, 136.02, 128.75, 127.25, 125.20, 120.50, 115.86. GCMS-EI (m/z): [M]⁺ calcd for C₁₂H₁₁NS, 201; found, 201.

4,4,5,5-tetramethyl-2-(4-(phenylthio)phenyl)-1,3,2-dioxaborolane (**3n**)^[3]

Prepared according to general procedure. Purified by column chromatography (PE/EA = 100/1) to give 4,4,5,5-tetramethyl-2-(4-(phenylthio)phenyl)-1,3,2-dioxaborolane in the form of a yellow oil. ¹H NMR (400 MHz, DMSO) δ 7.61 (dd, J = 11.6, 4.9 Hz, 3H), 7.46 – 7.35 (m, 4H), 7.24 (d, J = 8.2 Hz, 2H), 1.29 (d, J = 4.4 Hz, 12H). ¹³C NMR (101 MHz, DMSO) δ 140.39, 136.82, 135.78, 133.57, 132.58, 131.44, 130.23, 128.87, 128.66, 126.01, 84.41, 84.21, 25.12. GCMS-EI (m/z): [M]⁺ calcd for C₁₀H₁₂O₂S, 196; found, 196.

phenyl(m-tolyl)sulfane (30)^[1]

Prepared according to general procedure. Purified by column chromatography (PE) to give phenyl(m-tolyl)sulfane in the form of a yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 77.36 – 7.31 (m, 2H), 7.31 – 7.26 (m, 2H), 7.25 – 7.18 (m, 3H), 7.16 (d, *J* = 4.7 Hz, 1H), 7.06 (d, *J* = 7.8 Hz, 1H), 2.31 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 139.01, 136.06, 135.18, 131.80, 130.70, 129.08, 128.99, 128.29, 127.98, 126.80, 21.26. GCMS-EI (m/z): [M]⁺ calcd for C₁₃H₁₂S, 200; found, 200.

phenyl(o-tolyl)sulfane (**3p**)^[1]

Prepared according to general procedure. Purified by column chromatography (PE) to give phenyl(o-tolyl)sulfane in the form of a yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 7.50 (dd, J = 7.3, 1.6 Hz, 1H), 7.34 – 7.27 (m, 2H), 7.25 (t, J = 3.3 Hz, 3H), 7.21 (d, J = 0.6 Hz, 2H), 7.18 – 7.10 (m, 1H), 2.38 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 139.95, 136.12, 132.97, 130.56, 129.60, 129.09, 129.03, 127.87, 127.48, 127.12, 126.68, 126.30, 20.52. GCMS-EI (m/z): [M]⁺ calcd for C₁₃H₁₂S, 200; found, 200.

(3,4-dimethylphenyl)(phenyl)sulfane (3q)^[7]

Prepared according to general procedure. Purified by column chromatography (PE) to give (3,4-dimethylphenyl)(phenyl)sulfane in the form of a yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 7.31 (d, *J* = 7.0 Hz, 1H), 7.25 (d, *J* = 4.4 Hz, 3H), 7.23 – 7.13 (m, 3H), 7.09 (d, *J* = 7.9 Hz, 1H), 2.25 (s, 3H), 2.23 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 137.72, 137.32, 136.37, 133.52, 130.51, 129.93, 129.55, 129.03, 128.95, 127.49, 127.12, 126.21 (s), 19.66, 19.43. GCMS-EI (m/z): [M]⁺ calcd for C₁₄H₁₄S, 200; found, 214.

3-(phenylthio)thiophene (3r)^[9]

Prepared according to general procedure. Purified by column chromatography (PE) to give 3-(phenylthio)thiophene in the form of a yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 7.41 – 7.35 (m, 2H), 7.31 – 7.22 (m, 4H), 7.19 (dd, *J* = 10.7, 3.9 Hz, 1H), 7.06 (dd, *J* = 4.5, 1.3 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 137.28, 131.17, 129.28, 128.94, 128.36, 128.13, 126.68, 126.07. GCMS-EI (m/z): [M]⁺ calcd for C₁₀H₈S₂, 192; found, 192.

3-(phenylthio)pyridine (3s)^[1]

Prepared according to general procedure. Purified by column chromatography (PE) to give 3-(phenylthio)pyridine in the form of a yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 8.42 (d, *J* = 5.8 Hz, 1H), 7.65 – 7.55 (m, 2H), 7.48 – 7.35 (m, 4H), 6.99 (ddd, *J* = 7.5, 4.9, 1.0 Hz, 1H), 6.88 (dd, *J* = 8.1, 0.9 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 161.46, 149.45, 136.68, 134.89, 130.95, 129.57, 129.04, 121.30, 119.82. HRMS(EI) m/z: [M+H]⁺Calcd for C₁₁H₉NS, 187; found, 188.0522.

ethyl 2-(phenylthio)acetate (3t)^[12]

Prepared according to general procedure. Purified by column chromatography (PE/EA = 100/1) to give ethyl 2-(phenylthio)acetate in the form of a yellow oil. ¹H NMR (400 MHz, DMSO) δ 7.38 – 7.29 (m, 4H), 7.25 – 7.18 (m, 1H), 4.08 (q, *J* = 7.1 Hz, 2H), 3.86 (s, 2H), 1.13 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, DMSO) δ 169.71, 135.57, 129.51, 128.90, 126.77, 61.36, 35.37, 14.42. GCMS-EI (m/z): [M]⁺ calcd for C₁₀H₁₂O₂S, 196; found, 196.

butyl(phenyl)sulfane (3u)^[13]

Prepared according to general procedure. Purified by column chromatography (PE) to give butyl(phenyl)sulfane in the form of a yellow oil. ¹H NMR (300 MHz, DMSO) δ 7.56 – 7.36 (m, 1H), 7.31 (d, *J* = 4.4 Hz, 4H), 7.22 – 7.12 (m, 1H), 2.99 – 2.90 (m, 2H), 1.60 – 1.33 (m, 4H), 0.88 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (75 MHz, DMSO) δ 136.58, 129.04, 127.95, 125.48, 31.70, 30.72, 21.34, 13.54. GCMS-EI (m/z): [M]⁺ calcd for C₁₀H₁₄S, 166; found, 166.

phenyl(p-tolyl)sulfane (4b)^[3]

Prepared according to general procedure. Purified by column chromatography (PE) to give phenyl(p-tolyl)sulfane in the form of a colourless oil. ¹H NMR (400 MHz, DMSO) δ 77.36 – 7.31 (m, 2H), 7.30 – 7.26 (m, 2H), 7.23 (dd, *J* = 12.1, 5.0 Hz, 5H), 2.31 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 138.08, 136.66, 132.49, 130.83, 130.76, 129.90, 129.86, 127.22, 21.12. GCMS-EI (m/z): [M]⁺ calcd for C₁₃H₁₂S, 200; found, 200.

(4-chlorophenyl)(phenyl)sulfane (4c)^[5]

Prepared according to general procedure. Purified by column chromatography (PE) to give (4-chlorophenyl)(phenyl)sulfane in the form of a yellow oil. ¹H NMR (400 MHz, DMSO) δ 7.51 – 7.42 (m, 2H), 7.41 – 7.33 (m, 5H), 7.32 – 7.28 (m, 2H). ¹³C NMR (101 MHz, DMSO) δ 134.83, 134.39, 132.46, 132.36, 131.78, 130.21, 129.96, 128.38. GCMS-EI (m/z): [M]⁺ calcd for C₁₂H₉ClS, 220; found, 220.

4-(phenylthio)aniline (4d)^[1]

Prepared according to general procedure. Purified by column chromatography (PE/EA = 20/1) to give 4-(phenylthio)aniline in the form of a yellow solid. ¹H NMR (400 MHz, DMSO) δ 7.30 – 7.15 (m, 4H), 7.09 (t, *J* = 7.4 Hz, 1H), 7.03 (d, *J* = 7.3 Hz, 2H), 6.64 (d, *J* = 8.5 Hz, 2H), 5.51 (br. s, 2H). ¹³C NMR (101 MHz, DMSO) δ 150.44, 140.63, 136.84, 129.40, 126.48, 125.42, 115.33, 115.21. GCMS-EI (m/z): [M]⁺ calcd for C₁₂H₁₁NS, 201; found, 201.

4-(phenylthio)phenol (4e)^[5]

Prepared according to general procedure. Purified by column chromatography (PE/EA = 30/1) to give 4-(phenylthio)phenol in the form of a yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 7.40 – 7.32 (m, 2H), 7.27 – 7.10 (m, 5H), 6.85 – 6.77 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 155.64, 138.17,

135.38, 128.91, 128.89, 128.30, 128.28, 125.86, 125.83, 124.56, 116.45, 116.43. GCMS-EI (m/z): $[M]^+$ calcd for $C_{12}H_{10}OS$, 202; found, 202.

2-(phenylthio)aniline (4f)^[8]

Prepared according to general procedure. Purified by column chromatography (PE/EA = 50/1) to give 2-(phenylthio)aniline in the form of a colourless oil. ¹H NMR (300 MHz, DMSO) δ 7.35 – 7.09 (m, 5H), 7.07 – 7.01 (m, 2H), 6.82 (d, *J* = 8.2 Hz, 1H), 6.60 (t, *J* = 7.4 Hz, 1H), 5.37 (br. s, 2H). ¹³C NMR (75 MHz, DMSO) δ 150.33, 130.01, 136.79, 131.10, 129.07, 126.39, 125.41, 116.80, 114.99, 112.02. GCMS-EI (m/z): [M]⁺ calcd for C₁₂H₁₁NS, 201; found, 201.

3-(phenylthio)pyridine (4g)^[6]

Prepared according to general procedure. Purified by column chromatography (PE) to give 3-(phenylthio)pyridine in the form of a yellow oil. ¹H NMR (400 MHz, DMSO) δ 8.41 (dd, J = 4.8, 1.0 Hz, 1H), 7.65 (td, J = 8.0, 1.9 Hz, 1H), 7.58 (dd, J = 6.4, 3.2 Hz, 2H), 7.52 – 7.44 (m, 3H), 7.15 (ddd, J = 7.4, 4.8, 0.9 Hz, 1H), 6.96 (d, J = 8.1 Hz, 1H). ¹³C NMR (101 MHz, DMSO) δ 160.36, 150.05, 137.87, 135.09, 130.73, 130.31, 129.73, 121.58, 120.98. HRMS(EI) m/z: [M+H]⁺Calcd for C₁₁H₉NS, 187, found, 188.0522.

2-(phenylthio)thiophene (4h)^[10]

Prepared according to general procedure. Purified by column chromatography (PE) to give 2-(phenylthio)thiophene in the form of a yellow oil. ¹H NMR (400 MHz, DMSO) δ 7.83 (ddd, J = 16.5, 5.3, 1.2 Hz, 1H), 7.44 – 7.39 (m, 1H), 7.35 – 7.26 (m, 2H), 7.24 – 7.09 (m, 4H). ¹³C NMR (101 MHz, DMSO) δ 138.25, 137.13, 136.56, 134.36, 133.19, 129.80, 129.04, 128.86, 127.33, 126.89. GCMS-EI (m/z): [M]⁺ calcd for C₁₀H₈S₂, 192; found, 192.

butyl(phenyl)sulfane (4i)^[3]

Prepared according to general procedure. Purified by column chromatography (PE) to give butyl(phenyl)sulfane in the form of a yellow oil. ¹H NMR (400 MHz, DMSO) δ 7.31 (d, *J* = 4.2 Hz, 4H), 7.17 (dt, *J* = 8.6, 4.3 Hz, 1H), 3.00 – 2.90 (m, 2H), 1.61 – 1.34 (m, 4H), 0.88 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, DMSO) δ 137.01, 129.45, 128.41, 125.91, 32.16, 31.15, 21.75, 13.94. GCMS-EI (m/z): [M]⁺ calcd for C₁₀H₁₄S, 166; found, 166.

cyclohexyl(phenyl)sulfane (4j)^[1]

Prepared according to general procedure. Purified by column chromatography (PE) to give cyclohexyl(phenyl)sulfane in the form of a yellow oil. ¹H NMR (400 MHz, DMSO) δ 7.39 – 7.28 (m, 4H), 7.26 – 7.18 (m, 1H), 3.28 – 3.17 (m, 1H), 1.90 (dd, J = 9.3, 3.8 Hz, 2H), 1.70 (dd, J = 8.6, 4.0 Hz, 2H), 1.60 – 1.52 (m, 1H), 1.33 (ddd, J = 25.8, 11.9, 6.0 Hz, 5H). ¹³C NMR (101 MHz, DMSO) δ 135.26, 131.13, 129.47, 126.86, 45.48, 33.24, 25.75, 25.74. GCMS-EI (m/z): [M]⁺ calcd for C₁₂H₁₆S, 192; found, 192.

5. Spectroscopic Data

3a, CDCl₃, ¹H NMR 300 MHz

3c, CDCl₃, ¹H NMR 300 MHz

3d, CDCl₃, ¹H NMR 300 MHz

3d, CDCl₃, ¹³C NMR 75 MHz

00 00	700000	70
00	-1-0000	10 CV
e o	0 t c o o c	10 10
0 0	NNNNN	27
		V
1.1		¥.

3d, CDCl₃, ¹⁹F NMR 377 MHz

---114.06

3e, DMSO-*d*₆, ¹H NMR 400 MHz

F ↓ ↓

S27

3e, DMSO-*d*₆, ¹⁹F NMR 377 MHz

--60.94

3f, CDCl₃, ¹H NMR 300 MHz

3f, CDCl₃, ¹³C NMR 75 MHz

65	40000040	59
45.	1220.0334	80
Ī	Shirt I	Ĩ

3g, CDCl₃, ¹H NMR 300 MHz

3g, CDCl₃, ¹³C NMR 75 MHz

011202220001120200120012001200000000000	69
228.00.3347.	02
	Ĩ

-53.08

3i, CDCl₃, ¹H NMR 300 MHz

10 アファア

3j, CDCl₃, ¹H NMR 300 MHz

733388

-3.88

MeOOC

3j, CDCl₃, ¹³C NMR 75 MHz

N	NN000400	
40	<u>00000040</u>	9
Q	4 0 0 0 0 0 V V	O,
Q	4000000	~
-	<u></u>	40

3k, CDCl₃, ¹H NMR 300 MHz

3k, CDCl₃, ¹³C NMR 75 MHz

01004040
10770400
0001-4000
-700000
11 11/1/

-158.39

31, DMSO-*d*₆, ¹H NMR 300 MHz

31, DMSO-*d*₆, ¹H NMR 75 MHz

88 51 51 51 51 51 51 51 51 51 51 51 51 51	6
228333332	20.
	1

3m, CDCl₃, ¹H NMR 300 MHz

U H₂N

-3.74

3m, CDCl₃, ¹³C NMR 75 MHz

86	59	250 250 250 250 250 250 250 250 250 250
46.	30.33	15.25.78
ī	TT	17251

3n, DMSO-*d*₆, ¹H NMR 400 MHz

 $\xi_{1.28}^{1.30}$

3n, DMSO-*d*₆, ¹³C NMR 101 MHz

30, CDCl₃, ¹H NMR 300 MHz

-2.31

		_	-	-	11	-	-		
-	-		-	-		1	_	_	_
-	-	-	-	-	-	-	-	-	-
3	3	3	3	3	2	N	2	N	2
σ	6	40	-	0	σ	00	00	~	Q
9	2	Σ.	w	5	9	0	CA	0	w
N	g	ω	2	0	œ	00	00	ŝ	2

-21.26

3p, CDCl₃, ¹³C NMR 75 MHz

-20.52

3q, CDCl₃, ¹H NMR 300 MHz

 $<^{2.25}_{2.23}$

3q, CDCl₃, ¹³C NMR 75 MHz

 $<^{19.66}_{19.43}$

3r, CDCl₃, ¹³C NMR 300 MHz

7.227 7.239 7

3r, CDCl₃, ¹³C NMR 75 MHz

8	17	80	8	36	33	88	0
24	2	50	8	8	8	20.	20.
Ť	T	T	T	7	5	T	5
	_	_			_		

3s, CDCl₃, ¹³C NMR 75 MHz

46	45	8304759588 82047595
61.	49.	230.334.
ĩ	Ĩ	シントン

3t, DMSO-*d*₆, ¹H NMR 400 MHz

S59

4b, DMSO-*d*₆, ¹H NMR 400 MHz

~

Me

-2.31

-21.12

4c, DMSO-*d*₆, ¹H NMR 400 MHz

4c, DMSO-*d*₆, ¹³C NMR 101 MHz

83	39	46	36	78	5	96	38	
25	34	32.	32	3	30.	29	28	
1	1	1	4	2	-	5	5	

4d DMSO-*d*₆, ¹H NMR 400 MHz

4d, DMSO-*d*₆, ¹³C NMR 101 MHz

44	82	444	333
20	36.	26.29	<u>5</u> .0
ī	ΪĪ	377	V

4e, CDCl₃, ¹H NMR 300 MHz

000-000	2225	19223	010	00440	29222	8885568
~~~~~			NNN			





**4e**, CDCl₃, ¹³C NMR 75 MHz







**4f**, DMSO-*d*₆, ¹H NMR 300 MHz





**4f**, DMSO-*d*₆, ¹³C NMR 75 MHz

33	020001000000000000000000000000000000000
20	1240503301
-	
1	MANY VI





**4g**, DMSO-*d*₆, ¹H NMR 400 MHz




**4g**, DMSO-*d*₆, ¹³C NMR 101 MHz

36	02	98 98 98 98 73 73 73 73 73 73 73 73 73 73 73 73 73
60.	50.	20.230.337.
-	-	
1	1	<< く<



**4h**, DMSO-*d*₆, ¹H NMR 400 MHz







**4h**, DMSO-*d*₆, ¹³C NMR 101 MHz

132	36	80	880	8333
338	36.	33.	28	27
		11	1	







S76

**4j**, DMSO-*d*₆, ¹H NMR 400 MHz









## 6. Green metrics for the C-S bond cross-coupling

 Table S2 Calculation of green metrics for the mechanochemical to synthesize diphenyl sulfide

 (3a)



EcoScale points	Factor	Penalty
1 Yield	86%	7
2 Price (to obtain 10 mmol of end product)	diphenyl sulfide = $1.28 \text{ g} = \text{CNY } 2.36$ bromobenzene = $2.77 \text{ g} = \text{CNY } 0.803$ NiI ₂ ·6H ₂ O = $0.29 \text{ g} = \text{CNY } 0.11$ 2,2'-Dipyridyl = $0.276 \text{ g} = \text{CNY } 0.243$ Zinc Powder = $3.08 \text{ g} = \text{CNY } 0.055$ NaI = $4.407 \text{g} = \text{CNY } 6.699$ DMF = $2.94 \text{ ml} = \text{CNY } 0.185$	0
3 Safety	CNY 10.46 < 10\$ diphenyl disulfide (N) NiI ₂ ·6H ₂ O (N) 2,2'-Dipyridyl (T) Zinc Powder (F) NaI (N) DMF (T)	5 5 5 5 5 5 5
4 Technical setup	common setup	0
5 Temperature/time	room temperature, 100 min	1
6 Workup and purification	classic chromatography	10
Penalty points total		48
$E_{2} = C_{2} = 1_{2} = 100 - 40 = 52$		

Table S3 Calculation of EcoScale score for the mechanochemical to synthesize diphenyl sulfide <u>(3a</u>)

EcoScale = 100 - 48 = 52

 Table S4 Calculation of green metrics for the solution methods for the synthesis of diphenyl sulfide (3a) in air from phenyl disulfide and bromobenzene



E factor - total waste	0.1092 + 0.2355 + 0.0237 + 0.0234 + 0.2615 + 0.3747 + 0.944) - 0.0391	
total product	0.0391	- 49.4

0.944

0.0391

12.9 mmol

0.21 mmol

FW 73.09

FW 186.05

N,N-Dimethylformamide

diphenylsulfane

Solvent:

Product:

EcoScale points	Factor	Penalty
1 Yield	21%	39.5
2 Price (to obtain 10 mmol of end product)	diphenyl sulfide = $1.28 \text{ g} = \text{CNY } 2.36$ bromobenzene = $2.77 \text{ g} = \text{CNY } 0.803$ NiI ₂ ·6H ₂ O = $0.29 \text{ g} = \text{CNY } 0.11$ 2,2'-Dipyridyl = $0.276 \text{ g} = \text{CNY } 0.243$ Zinc Powder = $3.08 \text{ g} = \text{CNY } 0.055$ NaI = $4.407\text{g} = \text{CNY } 6.699$ DMF = $166.50 \text{ ml} = \text{CNY } 10.47$ CNY 20 74 $\leq 10$ \$	0
3 Safety	diphenyl disulfide (N) NiI ₂ ·6H ₂ O (N) 2,2'-Dipyridyl (T) Zinc Powder (F) NaI (N) DMF (T)	5 5 5 5 5 5
4 Technical setup	common setup	0
5 Temperature/time	room temperature, 100 min	1
6 Workup and purification	classic chromatography	10
Penalty points total		80.5

Table S5 Calculation of EcoScale score for the solution methods for the synthesis of diphenyl sulfide (3a) in air from phenyl disulfide and bromobenzene

EcoScale = 100 - 80.5 = 19.5 (< 50; so, it is an inacceptable synthesis)

-

**Table S6** Calculation of green metrics for the solution methods for the synthesis of diphenyl sulfide (**3a**) in N₂ from phenyl disulfide and bromobenzene



## Yield of desired product (3a) = 13%

Reaction	mass efficiend	cy (RME) = <u>mass of product</u> mass of stoichiometric	reactants × 10	$00 = \frac{0.024}{0.1092 + 0.000}$	2 0.2355 × 100 = 7%
Carbon efficiency (CE) = $\frac{\text{amount of carbon in product}}{\text{total carbon present in reactants}} \times 100 = \frac{12 \times 2}{12 + (3 \times 6)} \times 100 = 80\%$					
	Reactant 1:	diphenyl disulfide	0.1092	0.5 mmol	FW 218.34
	Reactant 2:	bromobenzene	0.2355	1.5 mmol	FW 157.01
	Catalyst:	Nil ₂ ·6H ₂ O	0.0237	0.1 mmol	FW 237.69
	Catalyst:	2,2'-Dipyridyl	0.0234	0.15 mmol	FW 156.19
	Catalyst:	Zinc Powder	0.2615	4 mmol	FW 65.38
	Additive:	Nal	0.3747	2.5 mmol	FW 149.89
	Solvent:	N,N-Dimethylformamide	0.944	12.9 mmol	FW 73.09
	Product:	diphenylsulfane	0.0242	0.13 mmol	FW 186.05

 $\mathbf{E}\text{-factor} = \frac{\text{total waste}}{\text{total product}} = \frac{(0.1092 + 0.2355 + 0.0237 + 0.0234 + 0.2615 + 0.3747 + 0.944) - 0.0242}{0.0242} = 80.5$ 

EcoScale points	Factor	Penalty
1 Yield	13%	43.5
2 Price (to obtain 10 mmol of end product)	diphenyl sulfide = $1.28 \text{ g} = \text{CNY } 2.36$ bromobenzene = $2.77 \text{ g} = \text{CNY } 0.803$ NiI ₂ ·6H ₂ O = $0.29 \text{ g} = \text{CNY } 0.11$ 2,2'-Dipyridyl = $0.276 \text{ g} = \text{CNY } 0.243$ Zinc Powder = $3.08 \text{ g} = \text{CNY } 0.055$ NaI = $4.407 \text{g} = \text{CNY } 6.699$ DMF = $166.50 \text{ ml} = \text{CNY } 10.47$ CNY 20.74 < $10$ \$	0
3 Safety	diphenyl disulfide (N) NiI ₂ ·6H ₂ O (N) 2,2'-Dipyridyl (T) Zinc Powder (F) NaI (N) DMF (T)	5 5 5 5 5 5
4 Technical setup	common setup	0
5 Temperature/time	room temperature, 100 min	1
6 Workup and purification	classic chromatography	10
Penalty points total		84.5

Table S7 Calculation of EcoScale score for the solution methods for the synthesis of diphenyl sulfide (3a) in N₂ from phenyl disulfide and bromobenzene

EcoScale = 100 - 80.5 = 15.5 (< 50; so, it is an inacceptable synthesis)

-

## References

[1] A. C. Jones, W. I. Nicholson, H. R. Smallman and D. L. Browne, A Robust Pd-Catalyzed C–S Cross-Coupling Process Enabled by Ball-Milling, *Org. Lett.*, 2020, **22**, 7433.

[2] E. Cui , D. Qiao, H. Li, L. Guo, C.-H. Tung and Y. Wang, Engaging Ag(0) single atoms in silver(I) salts-mediated C-B and C-S coupling under visible light irradiation, *J Catal.*, 2021, 402, 255.

[3] K. D. Jones, D. J. Power, D. Bierer, K. M. Gericke and S. G. Stewart, Nickel Phosphite/Phosphine-Catalyzed C–S Cross-Coupling of Aryl Chlorides and Thiols, *Org. Lett.*, 2018, **20**, 208.

[4] M. Jiang, H. Li, H. Yang and H. Fu, Room-Temperature Arylation of Thiols: Breakthrough with Aryl Chlorides, *Angew. Chem. Int. Ed.*, 2016, **55**, 1.

[5] R. Sikari, S. Sinha, S. Das, A. Saha, G. Chakraborty, R. Mondal and N. D. Paul, Achieving Nickel Catalyzed C-S Cross Coupling under Mild Conditions using Metal-Ligand Cooperativity, *J. Org. Chem.*, 2019, **84**, 4072.

[6] R. Panigrahi, S. K. Sahu, P. K. Behera, S. Panda and L. Rout, CuMoO₄ Bimetallic Nanoparticles, An Efficient Catalyst for Room Temperature C-S Cross-coupling of Thiols and Haloarenes, *Chem. Eur. J.*, 2020, **26**, 620.

[7] G. Shen, Q. Lu, Z. Wang, W. Sun, Y. Zhang, X. Huang, M. Sun and Z. Wang, Environmentally Friendly and Recyclable CuCl₂-Mediated C–S Bond Coupling Strategy Using DMEDA as Ligand, Base, and Solvent, *Synthesis*, 2022, **54**, 184.

[8] A. Kumar, B. S. Bhakuni, C. D. Prasad, S. Kumar and S. Kumar, Potassium tert-butoxide-mediated synthesis of unsymmetrical diaryl ethers, sulfides and selenides from aryl bromides, *Tetrahedron*, 2013, **69**, 5383.

[9] C.-W. Chen, Y.-L. Chen, D. M. Reddy, K. Du, C.-E. Li, B.-H. Shih, Y.-J. Xue and C.-F. Lee, CuI/Oxalic Diamide-Catalyzed Cross-Coupling of Thiols with Aryl Bromides and Chlorides, *Chem. Eur. J.*, 2017, **23**, 10087.

[10] M. A. Fernández-Rodríguez and J. F. Hartwig, A General, Efficient, and Functional-Group-Tolerant Catalyst System for the Palladium-Catalyzed Thioetherification of Aryl Bromides and Iodides, *J. Org. Chem.*, 2009, **74**, 1663.

[11] Y.-C. Wong, T. T. Jayanth and C.-H. Cheng, Cobalt-Catalyzed Aryl–Sulfur Bond Formation, *Org. Lett.*, 2006, **8**, 5613.

[12] A. C. S. Reddy and P. Anbarasan, Rhodium-Catalyzed Rearrangement of S/Se-Ylides for the Synthesis of Substituted Vinylogous Carbonates, *Org. Lett.*, 2019, **21**, 9965.

[13] A. M. Wagner and M. S. Sanford, Transition-Metal-Free Acid-Mediated Synthesis of Aryl Sulfides from Thiols and Thioethers, *J. Org. Chem.*, 2014, **79**, 2263.