Supporting Information for:

Access to Enantioenriched Dihydroquinoxalinones via

Cu-Catalyzed Propargylic Substitutions

Yuxi Zhang, [&] Xiao Shu,[&] and Wusheng Guo*

Frontier Institute of Science and Technology (FIST)

Xi'an Jiaotong University, China

E-mail: wusheng.guo@mail.xjtu.edu.cn

[&] These authors contributed equally to this work

Contents:

Page S2	General comments
Page S2	Synthesis of L4
Page S3	Selected screening data
Page S6	Typical procedure for the synthesis of dihydroquinoxalinones
Page S7	Gram-scale reaction
Page S7	Synthetic transformations of 1
Page S9	Characterization data of all the new compounds
Page S33	X-ray crystallographic information of product 1
Page S40	References
Page S41	NMR spectra

General comments

Commercially available reagents and solvents were purchased from Energy, J&K, TCI, Aladdin or Daicel, and used without further purification. ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were recorded at room temperature on a Bruker AV-400 spectrometer and referenced to the residual deuterated solvent signals. All reported NMR values are given in parts per million (ppm). FT-IR measurements were carried out on a Thermo Fisher Nicolet 6700 FT-IR spectrometer or Bruker ALPHA II. High resolution mass spectra (HRMS) were obtained on a WATERS I-Class VION IMS Qtof Spectrometer. The X-ray analysis of product **1** was collected at 100 K on a Rigaku Oxford Diffraction Supernova Dual Source, Cu at Zero equipped with an AtlasS2 CCD using Cu K α radiation. Ligands L1, L3 were synthesized according to a reported procedure.^[1]

Synthesis of L4

Compound I (305.8mg, 1.37 mmol) was suspended in dry DCM (15 mL). Commercially available compound II (1R,2S)-2-amino-2-(3,5-dimethylphenyl)-1-phenylethan-1-ol (662.75 mg, 2.75 mmol)^[2] was added and the mixture was refluxed for 72 h. The solvent was evaporated and the remaining solid was washed with water (15 mL) and MeOH (15 mL). Followed a recrystallization precedure in ethyl acetate to afford the desired products as a white crystalline solid (465.7 mg, 56%).

Selected screening data

Aco	$H_{2} = \frac{1}{1} + \frac{1}{1$	$\begin{array}{c} \text{EA (1.2 eq)} \\ \text{(b)}_2 (5 \text{ mol}\%) \\ \text{(6 mol}\%) \\ \text{en to air} \end{array} \qquad \begin{array}{c} \text{H} \\ \text{N} \\ \text{H} \\ \text{H} \\ \text{Ph} \\ \text{H} \end{array}$	$\equiv \bigvee_{Ph}^{O} \bigvee_{N}^{N} \downarrow_{L2}^{N}$	N N Ph
Entry	Solvent	Conv. (%)	Yield (%)	ee (%)
1	THF	100	0	-
2	1,4-Dioxane	100	0	-
3	2-Methoxyethanol	100	0	-
4	H ₂ O	100	0	-
5	ACN	100	0	-
6	DMF	100	0	-
7	DMSO	100	0	-
8	Hexane	95	70	0
9	Benzene	100	0	-
10	EtOH	100	63	40
11	MeOH	100	75	64
12	DCM	100	0	-
13	Ethyl acetate	100	0	-
14	Benzotrifluoride	100	0	-
15	TOL	100	0	-
16	TFE	100	82	80
17	TFE/ACN=3/1	100	78	83

Table S1. Investigation of the solvent effect^{*a*, *b*, *c*}

^{*a*} Reaction conditions until otherwise noted: the **A1** (0.1 mmol), **B1** (0.12 mmol, 1.2 eq), solvent (0.5 mL). ^{*b*} The yield was determined by ¹H NMR spectrum of the reaction crude in the presence of 2-methylnaphthalene as internal standard. ^{*c*} The *ee* value was determined by HPLC equipped with a chiral column.

Act	A1 B1	DIPEA (1.2 eq) [Cu] (5 mol%) L2 (6 mol%) TFE, 0 °C, 12 h open to air		N L2 Ph
Entry	[M]	Conv. (%)	Yield (%)	ee (%)
1	Cupric acetylacetonat	e 100	68	80
2	CuI	100	74	80
3	Cu(OTf) ₂	100	79	80
4	Cu(MeCN) ₄ PF ₆	100	55	80
5	Cu(MeCN) ₄ BF ₄	100	72	80
6	CuCl	100	80	80
7	CuBr ₂	100	51	71
8	CuBr	100	79	80
9	CuSO ₄ 5H ₂ O	100	67	80
10	CuCN	100	50	80
11	Cu(ClO ₄) ₂ 6H ₂ O	100	85	75
12	Cu(OAc) ₂	100	82	80

Table S2. Investigation of the effect of copper source *a*, *b*, *c*

^{*a*} Reaction conditions until otherwise noted: the **A1** (0.1 mmol), **B1** (0.12 mmol, 1.2 eq), solvent (0.5 mL). ^{*b*} The yield was determined by ¹H NMR spectrum of the reaction crude in the presence of 2-methylnaphthalene as internal standard. ^{*c*} The *ee* value was determined by HPLC equipped with a chiral column.

AcO CO	DOMe Bas $+$ H_2 H_2 $Cu(OA)$ H_2 H_2	e (1.2 eq) c) ₂ (5 mol%) (6 mol%) 0 °C, 12 h en to air	$Ph \underbrace{\downarrow}_{Dh} \underbrace{\downarrow}_{L2} \underbrace{\downarrow}_{Dh} \underbrace$
Entry	Base	Yield (%)	<i>ee</i> (%)
1	CsCO ₃	17	82
2	K_2CO_3	60	82
3	NaHCO ₃	48	40
4	NaOAc	37	42
5	Na ₂ CO ₃	71	66
6	K ₂ HPO ₄	68	80
7	K_3PO_4	51	80
8	NaH ₂ PO ₄	37	25
9	Na ₂ HPO ₄	36	26
10	Et ₃ N	80	80
11	DBU	63	80
12	-	51	16
13	DABCO	67	80
14	NEM	61	46
15	Cy ₂ NMe	19	82
16	TBD	27	81
17	Quinuclidine	66	82
18	Pyridine	53	35
19	Triphenylguanidine	81	83
20	Piperazine	54	81

Table S3. Investigation of the base effect *a, b, c*

^{*a*} Reaction conditions until otherwise noted: the **A1** (0.1 mmol), **B1** (0.12 mmol, 1.2 eq), solvent (0.5 mL). ^{*b*} The yield was determined by ¹H NMR spectrum of the reaction crude in the presence of 2-methylnaphthalene as internal standard. ^{*c*} The *ee* value was determined by HPLC equipped with a chiral column.

AcO COOMe	θ + NH ₂ NH ₂ B1	TPG (1.2 eq) Cu(OAc) ₂ (5 mol%) L1 (6 mol%) TFE:ACN = 3:1, T , time	$ \begin{array}{c} H \\ N \\ H \\ H \\ Ph \end{array} $ Ph $ \begin{array}{c} Ph \\ Ph \end{array} $ Ph	
Entry	T (°C)	Time (h)	Yield (%)	ee (%)
1	0	12	78	84
2	-20	36	87	87
3	-30	36	70	90
4	-40	72	85	87

014-

Table S4. Investigation of the effect of temperature ^{*a, b, c*}

^{*a*} Reaction conditions until otherwise noted: the **A1** (0.1 mmol), **B1** (0.12 mmol, 1.2 eq), solvent (0.5 mL). ^{*b*} The yield was determined by ¹H NMR spectrum of the reaction crude in the presence of 2-methylnaphthalene as internal standard. ^{*c*} The *ee* value was determined by HPLC equipped with a chiral column.

Typical procedure for the synthesis of dihydroquinoxalinones

A mixture of Cu(OAc)₂ (0.9 mg, 0.005 mmol, 5 mol%) and L1 (3.3 mg, 0.006 mmol, 6 mol%) in TFE/CH₂ClCN (3/1, v/v, 0.5 mL) was stirred for 1 h at room temperature. Then, a solution of propargylic acetate A1 (23.2 mg, 0.1 mmol, 1.0 eq.), *o*-phenylenediamine (13.0)0.12 mmol. 1.2 eq.) and TPG mg, (1,2,3-triphenylguanidine) (34.4 mg, 0.12 mmol, 1.2 eq.) in a mixed solvent TFE/CH₂ClCN (3/1, v/v, 0.5 mL) was added dropwise. The resulting mixture was stirred at -30 °C for 36 h. After that, the reaction mixture was filtered through a silica plug and concentrated under vacuo. The resultant crude was purified by column chromatography (PE:EA = 2:1) to afford the desired product 1 as a white solid (21.3) mg, 86%, 94% ee).

Gram-scale reactions

A mixture of Cu(OAc)₂ (45 mg, 0.25 mmol, 5 mol%) and L1 (165 mg, 0.3 mmol, 6 mol%) in TFE/CH₂ClCN (3/1, v/v, 25 mL) was stirred for 1 h at room temperature. Then, a solution of propargylic acetate A1 (1.16 g, 5 mmol, 1.0 eq.), *o*-phenylenediamine (650 mg, 6 mmol, 1.2 eq.) and TPG (1,2,3-triphenylguanidine) (1.72 g, 6 mmol, 1.2 eq.) in the mixed solvent TFE/CH₂ClCN (3/1, v/v, 25 mL) was added dropwise. The mixture was stirred at -30 °C for 36 h, and then filtered through a silica plug, concentrated in vacuo. The resultant crude was purified by column chromatography (PE:EA = 2:1) to afford the desired product **1** as a white solid (0.92 g, 74%, 92% *ee*).

Synthetic transformations of product 1

In a N₂-filled glovebox, a 2 mL of screw-capped vial was charged with **1** (0.1 mmol, 24.8 mg, 1.0 eq.), iodobenzene (24.4 mg, 0.12 mmol, 1.2 eq.), Pd(PPh₃)₄ (5.7 mg, 0.005 mmol, 5.0 mol%), CuI (1.0 mg, 0.006 mmol, 6.0 mol%), TEA (42 μ L, 0.3 mmol, 3.0 eq.) and THF (0.5 mL). The reaction mixture was stirred at 60 °C for 12 h. After the completion of the reaction (monitored by TLC), the mixture was filtered through a silica plug and concentrated under reduced pressure. The resultant crude product was purified by column chromatography (PE:EA = 5:1) to afford the product **20** as a yellow solid (24.3 mg, 75%, 94% *ee*).

To a solution of 1 (24.8 mg, 0.1 mmol, 1.0 eq.) in EtOH (2 mL) was carefully added Pd/C (1.1 mg, 10 mol%) under nitrogen atmosphere. The reaction mixture was degassed and purged with hydrogen. The reaction is allowed to stir for 4 h at room

temperature. After the completion of the reaction, the mixture was filtered through a celite pad and washed with ethyl acetate. The solvents were removed and concentrated under reduced pressure. The resultant crude mixture was purified by column chromatography (PE:EA = 5:1) to afford the product **21** as a yellow solid (20.2 mg, 80%, 94% *ee*).

To a pressure tubing was added amide **1** (62.0 mg, 0.25 mmol), $B(C_6F_5)_3$ (2.56 mg, 2 mol%), NH₃•BH₃ (30.87 mg, 1.0 mmol, 4.0 eq.), BF₃•OEt₂ (10.64 mg, 30 mol%) and DCM (1.5 mL). Then the reaction mixture was stirred at 60 °C for 24 h. After cooling to ambient temperature, the mixture was diluted with ethyl acetate (5 mL). Then aqueous NaOH (5 mL, 4 M) was added to the reaction mixture, and then was extracted with ethyl acetate (5 mL). The combined organic phases were dried over Na₂SO₄, filtered and evaporated under reduced pressure. After removal of volatile materials by rotary evaporation, the resultant mixture was purified by column chromatography (PE:EA = 5:1) to afford the corresponding pure product **22** as a yellow solid (42.7 mg, 73%, 97% *ee*).

A screw-capped vial was charged with **1** (24.8 mg, 0.1 mmol), zidovudine (31 mg, 0.11 mmol) and ^tBuOH (0.5 mL). Afterward, a freshly prepared solution of sodium ascorbate (9.9 mg, 0.05 mmol) and CuSO₄ 5H₂O (12.5 mg, 0.05 mmol) in H₂O (0.5 mL) was added. The reaction mixture was stirred at room temperature for 24 h and then was extracted with EA (5 mL). The combined organic layer was dried over Na₂SO₄ and concentrated under vacuum. The residue was then purified by column chromatography (DCM/MeOH = 25:1) to offord the desired product **23** (48.1 mg, 93%, 95% *ee*) as a white solid.

Characterization data of all the new compounds

(*R*)-3-ethynyl-3-phenyl-3,4-dihydroquinoxalin-2(1*H*)-one (1): white solid; mp 154-155 °C; 21.4 mg, 86% yield; 94% *ee*; $R_f = 0.4$ (PE:EA = 2:1); $[\alpha]_D^{20} = -353.94$ (*c* = 1.65, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.03 (s, 1H), 7.85-7.76 (m, 2H), 7.47-7.37 (m, 3H), 6.99 (td, *J* = 7.6, 1.3 Hz, 1H), 6.88 (td, *J* = 7.6, 1.2 Hz, 1H), 6.79 (dd, *J* = 7.1, 4.9 Hz, 2H), 4.42 (s, 1H), 2.69 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 165.3, 138.3, 132.2, 129.1, 128.6, 127.8, 125.5, 124.2, 120.8, 115.7, 115.0, 81.2, 76.8, 61.4; IR (neat, cm⁻¹) 3277, 1685, 1607, 1505, 1448, 1355, 1312, 749, 699; HRMS (ESI): *m/z*: calcd for C₁₆H₁₂N₂ONa [M+Na]⁺: 271.0847, found: 271.0852.

The *ee* was determined by HPLC analysis: CHIRALPAK ODH (4.6 mm i.d. \times 250 mm); hexane/2-propanol = 85/15; flow rate 0.5 mL/min; 35 °C; 235 nm; retention time: 26.7 min (minor) and 42.7 min (major).

(*R*)-3-ethynyl-3-(p-tolyl)-3,4-dihydroquinoxalin-2(1*H*)-one (2): white solid; mp 91-93 °C; 21.2 mg, 81% yield; 92% *ee*; $R_f = 0.4$ (PE:EA = 2:1); $[\alpha]_D^{20} = -112.73$ (*c* = 1.10, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.34 (s, 1H), 7.68 (d, *J* = 8.2 Hz, 2H), 7.23 (d, *J* = 8.0 Hz, 2H), 6.97 (td, *J* = 7.6, 1.3 Hz, 1H), 6.86 (td, *J* = 7.6, 1.2 Hz, 1H), 6.78 (d, *J* = 7.8 Hz, 2H), 4.40 (s, 1H), 2.66 (s, 1H), 2.37 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.3, 139.0, 135.4, 132.3, 129.3, 127.6, 125.5, 124.1, 120.7, 115.5, 115.0, 81.3, 76.6, 61.2, 21.3; IR (neat, cm⁻¹) 3279, 3057, 1684, 1607, 1505, 1447, 1353, 1311, 1227, 812, 744; HRMS (ESI): *m/z*: calcd for C₁₇H₁₄N₂ONa [M+Na]⁺: 285.1004, found: 285.1010.

The *ee* was determined by HPLC analysis: CHIRALPAK ODH (4.6 mm i.d. \times 250 mm); hexane/2-propanol = 85/15; flow rate 0.5 mL/min; 35 °C; 235 nm; retention time: 28.7 min (minor) and 43.0 min (major).

(*R*)-3-(4-(tert-butyl)phenyl)-3-ethynyl-3,4-dihydroquinoxalin-2(1*H*)-one (3): white solid; mp 82-83 °C; 21.9 mg, 72% yield; 93% *ee*; $R_f = 0.4$ (PE:EA = 2:1); $[\alpha]_D^{20} = -233.68$ (*c* = 0.95, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.74 (s, 1H), 7.73 (d, *J* = 8.5 Hz, 2H), 7.44 (d, *J* = 8.5 Hz, 2H), 6.96 (td, *J* = 7.6, 1.2 Hz, 1H), 6.84 (t, *J* = 7.5 Hz, 1H), 6.81-6.72 (m, 2H), 4.42 (s, 1H), 2.66 (s, 1H), 1.33 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 165.5, 152.0, 135.4, 132.3, 127.4, 125.6, 125.5, 124.1, 120.6, 115.7, 114.9, 81.4, 76.5, 61.1, 34.7, 31.4; IR (neat, cm⁻¹) 3283, 2952, 1686, 1608, 1506, 1459, 1360, 1311, 735; HRMS (ESI): *m/z*: calcd for C₂₀H₂₀N₂ONa [M+Na]⁺: 327.1473, found: 327.1473.

The *ee* was determined by HPLC analysis: CHIRALPAK ODH (4.6 mm i.d. \times 250 mm); hexane/2-propanol = 85/15; flow rate 0.5 mL/min; 35 °C; 235 nm; retention time: 22.6 min (minor) and 29.4 min (major).

(*R*)-3-([1,1'-biphenyl]-4-yl)-3-ethynyl-3,4-dihydroquinoxalin-2(1*H*)-one (4): white solid; mp 59-61 °C; 24.3 mg, 75% yield; 93% *ee*; $R_f = 0.3$ (PE:EA = 2:1); $[\alpha]_D^{20} = -128.18$ (*c* = 1.10, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.67 (s, 1H), 7.96-7.83 (m, 2H), 7.74-7.54 (m, 4H), 7.52-7.41 (m, 2H), 7.41-7.34 (m, 1H), 6.98 (td, *J* = 7.6, 1.5 Hz, 1H), 6.86 (td, *J* = 7.7, 1.2 Hz, 1H), 6.83-6.75 (m, 2H), 4.47 (s, 1H), 2.71 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 165.3, 142.0, 140.7, 137.3, 132.2, 128.9, 128.2, 127.7, 127.4, 127.3, 125.5, 124.2, 120.8, 115.7, 115.0, 81.2, 76.9, 61.2; IR (neat, cm⁻¹) 3283, 3058, 2925, 1685, 1607, 1505, 1355, 1311, 909, 733, 697, 655; HRMS (ESI): *m/z*: calcd for C₂₂H₁₆N₂ONa [M+Na]⁺: 347.1160, found: 347.1161.

The *ee* was determined by HPLC analysis: CHIRALPAK ODH (4.6 mm i.d. \times 250 mm); hexane/2-propanol = 85/15; flow rate 0.5 mL/min; 35 °C; 235 nm; retention time: 46.8 min (minor) and 57.7 min (major).

(R)-3-ethynyl-3-(4-(trifluoromethoxy)phenyl)-3,4-dihydroquinoxalin-2(1H)-one

(5): yellow solid; mp 94-95 °C; 25.2 mg, 76% yield; 89% *ee*; $R_f = 0.3$ (PE:EA = 2:1); $[\alpha]_D^{20} = -228.57$ (*c* = 1.05, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.25 (s, 1H), 7.86 (d, *J* = 8.7 Hz, 2H), 7.31-7.26 (m, 2H), 7.00 (t, *J* = 7.6 Hz, 1H), 6.90 (t, *J* = 7.6 Hz, 1H), 6.85-6.75 (m, 2H), 4.40 (s, 1H), 2.70 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 164.7, 149.8, 136.8, 132.0, 129.6, 125.4, 124.4, 121.1, 120.84, 120.6 (q, *J* = 258.6 Hz), 115.6, 115.2, 80.7, 77.3, 61.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -57.72; IR (neat, cm⁻¹) 3289, 3068, 1686, 1609, 1506, 1258, 1167, 748; HRMS (ESI): *m/z*: calcd for C₁₇H₁₁N₂O₂NaF₃ [M+Na]⁺: 355.0670, found: 355.0676.

The *ee* was determined by HPLC analysis: CHIRALPAK ODH (4.6 mm i.d. \times 250 mm); hexane/2-propanol = 85/15; flow rate 0.5 mL/min; 35 °C; 235 nm; retention time: 17.2 min (minor) and 22.9 min (major).

(*R*)-3-ethynyl-3-(4-(trifluoromethyl)phenyl)-3,4-dihydroquinoxalin-2(1*H*)-one (6): yellow solid; mp 75-76 °C; 25.3 mg, 80% yield; 89% *ee*; $R_f = 0.4$ (PE:EA = 2:1); $[\alpha]_D^{20} = -264.00 \ (c = 0.50, CHCl_3)$; ¹H NMR (400 MHz, CDCl_3) δ 8.28 (s, 1H), 7.96 (d, *J* = 8.2 Hz, 2H), 7.69 (d, *J* = 8.3 Hz, 2H), 7.01 (t, *J* = 7.6 Hz, 1H), 6.90 (t, *J* = 7.5 Hz, 1H), 6.81 (t, *J* = 7.6 Hz, 2H), 4.42 (s, 1H), 2.72 (s, 1H); ¹³C NMR (100 MHz, CDCl_3) one carbon signal was overlapped δ 164.4, 142.1, 131.9, 131.3 (q, *J* = 32.3 Hz), 128.4, 125.6 (q, *J* = 4.0 Hz), 125.3, 124.4, 121.2, 115.7, 115.3, 109.6 (q, *J* = 269.8 Hz), 80.5, 61.2; ¹⁹F NMR (376 MHz, CDCl_3) δ -62.67; IR (neat, cm⁻¹) 3293, 1687, 1609, 1506, 1411, 1325, 1167, 1069, 749; HRMS (ESI): *m/z*: calcd for C₁₇H₁₁N₂OF₃Na [M+Na]⁺: 339.0721, found: 339.0724.

The *ee* was determined by HPLC analysis: CHIRALPAK ODH (4.6 mm i.d. \times 250 mm); hexane/2-propanol = 85/15; flow rate 0.5 mL/min; 35 °C; 235 nm; retention time: 19.1 min (minor) and 25.8 min (major).

(*R*)-3-ethynyl-3-(4-fluorophenyl)-3,4-dihydroquinoxalin-2(1*H*)-one (7): yellow solid; mp 90-92 °C; 21.5 mg, 81% yield; 90% *ee*; $R_f = 0.4$ (PE:EA = 2:1); $[\alpha]_D^{20} = -159.41$ (*c* = 1.20, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.26 (s, 1H), 7.69 (d, *J* = 8.6 Hz, 2H), 7.55 (d, *J* = 8.6 Hz, 2H), 7.00 (t, *J* = 7.6 Hz, 1H), 6.89 (t, *J* = 7.6 Hz, 1H), 6.80 (t, *J* = 6.6 Hz, 2H), 4.39 (s, 1H), 2.69 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 165.0, 163.2 (d, *J* = 247.0 Hz), 134.0 (d, *J* = 3.0 Hz), 132.1, 129.8 (d, *J* = 9.1 Hz), 125.4, 124.3, 121.0, 115.6 (d, *J* = 7.1 Hz), 115.4, 115.1, 81.0, 77.1, 60.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -113.08; IR (neat, cm⁻¹) 3290, 3063, 1684, 1606, 1505, 1355, 1312, 1226, 837, 746; HRMS (ESI): *m/z*: calcd for C₁₆H₁₁N₂OFNa [M+Na]⁺: 289.0753, found: 289.0756.

The *ee* was determined by HPLC analysis: CHIRALPAK ODH (4.6 mm i.d. \times 250 mm); hexane/2-propanol = 85/15; flow rate 0.5 mL/min; 35 °C; 235 nm; retention time: 24.4 min (minor) and 32.9 min (major).

(*R*)-3-(4-bromophenyl)-3-ethynyl-3,4-dihydroquinoxalin-2(1*H*)-one (8): yellow solid; mp 113-115 °C; 25.4 mg, 78% yield; 92% *ee*; $R_f = 0.3$ (PE:EA = 2:1); $[\alpha]_D^{20} = -231.18$ (*c* = 1.70, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.27 (s, 1H), 7.69 (d, *J* = 8.7 Hz, 2H), 7.55 (d, *J* = 8.7 Hz, 2H), 6.99 (td, *J* = 7.6, 1.3 Hz, 1H), 6.89 (td, *J* = 7.6, 1.2 Hz, 1H), 6.80 (t, *J* = 6.5 Hz, 2H), 4.39 (s, 1H), 2.69 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) one carbon signal was overlapped δ 164.6, 137.3, 132.0, 131.7, 129.6, 125.4, 124.3, 123.5, 121.1, 115.6, 115.2, 80.7, 61.1; IR (neat, cm⁻¹) 3287, 1686, 1608, 1505, 1486, 1312, 1074, 1011, 748; HRMS (ESI): *m/z*: calcd for C₁₆H₁₁N₂ONa⁷⁹Br [M+Na]⁺: 348.9952, found: 348.9958.

The *ee* was determined by HPLC analysis: CHIRALPAK ODH (4.6 mm i.d. \times 250 mm); hexane/2-propanol = 85/15; flow rate 0.5 mL/min; 35 °C; 235 nm; retention time: 27.9 min (minor) and 36.4 min (major).

(*R*)-3-ethynyl-3-(3-methoxyphenyl)-3,4-dihydroquinoxalin-2(1*H*)-one (9): white solid; mp 63-64 °C; 24.5 mg, 88% yield; 92% *ee*; $R_f = 0.3$ (PE:EA = 2:1); $[\alpha]_D^{20} = -192.73$ (*c* = 2.20, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.14 (s, 1H), 7.55-7.29 (m, 3H), 7.12-6.61 (m, 5H), 4.43 (s, 1H), 3.82 (s, 3H), 2.68 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 164.9, 159.7, 139.8, 132.2, 129.6, 125.4, 124.2, 120.8, 120.1, 115.5, 115.1, 114.8, 113.4, 100.1, 81.2, 61.4, 55.5; IR (neat, cm⁻¹) 3271, 2923, 1686, 1606, 1506, 1488, 1312, 749; HRMS (ESI): *m*/*z*: calcd for C₁₇H₁₄N₂O₂Na [M+Na]⁺: 301.0953, found: 301.0956.

The *ee* was determined by HPLC analysis: CHIRALPAK ODH (4.6 mm i.d. \times 250 mm); hexane/2-propanol = 85/15; flow rate 0.5 mL/min; 35 °C; 235 nm; retention time: 35.6 min (minor) and 64.3 min (major).

(*R*)-3-ethynyl-3-(3-fluorophenyl)-3,4-dihydroquinoxalin-2(1*H*)-one (10): yellow solid; mp 79-80 °C; 21.3 mg, 80% yield; 93% *ee*; $R_f = 0.4$ (PE:EA = 2:1); $[\alpha]_D^{20} = -230.64$ (*c* = 2.35, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.48 (s, 1H), 7.61 (d, *J* = 7.9 Hz, 1H), 7.58-7.52 (m, 1H), 7.44-7.35 (m, 1H), 7.09 (td, *J* = 8.3, 2.1 Hz, 1H), 6.99 (td, *J* = 7.7, 1.1 Hz, 1H), 6.88 (td, *J* = 7.6, 1.0 Hz, 1H), 6.84-6.73 (m, 2H), 4.42 (s, 1H), 2.70 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 164.7, 162.8 (d, *J* = 247.5 Hz), 140.8 (d, *J* = 7.1 Hz), 131.9, 130.1 (d, *J* = 8.1 Hz), 125.3, 124.3, 123.6 (d, *J* = 3.0 Hz), 121.0, 116.1 (d, *J* = 21.2 Hz), 115.7, 115.4, 115.1, 80.8, 77.1, 61.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -112.33; IR (neat, cm⁻¹) 3290, 2925, 1686, 1609, 1505, 1442, 1355, 1311, 748; HRMS (ESI): *m*/*z*: calcd for C₁₆H₁₁N₂ONaF [M+Na]⁺: 289.0753, found: 289.0754.

The *ee* was determined by HPLC analysis: CHIRALPAK ODH (4.6 mm i.d. \times 250 mm); hexane/2-propanol = 85/15; flow rate 0.5 mL/min; 35 °C; 235 nm; retention time: 21.9 min (minor) and 35.3 min (major).

(*R*)-3-ethynyl-3-(naphthalen-2-yl)-3,4-dihydroquinoxalin-2(1*H*)-one (11): yellow solid; mp 142-143 °C; 25.3mg, 85% yield; 90% *ee*; $R_f = 0.3$ (PE:EA = 2:1); $[\alpha]_D^{20} = -202.44$ (*c* = 2.05, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.57 (s, 1H), 8.33 (s, 1H), 8.00-7.76 (m, 4H), 7.59-7.45 (m, 2H), 7.04-6.91 (m, 1H), 6.91-6.67 (m, 3H), 4.49 (s, 1H), 2.76 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 165.2, 135.6, 133.6, 132.9, 132.2, 128.7, 128.5, 127.8, 127.2, 126.9, 126.5, 125.5, 125.4, 124.2, 120.8, 115.7, 115.0, 81.1, 77.0, 61.6; IR (neat, cm⁻¹) 3287, 3057, 1686, 1607, 1505, 1354, 1311, 749; HRMS (ESI): *m/z*: calcd for C₂₀H₁₄N₂ONa [M+Na]⁺: 321.0998, found: 321.1013.

The *ee* was determined by HPLC analysis: CHIRALPAK ODH (4.6 mm i.d. \times 250 mm); hexane/2-propanol = 85/15; flow rate 0.5 mL/min; 35 °C; 235 nm; retention time: 48.5 min (minor) and 54.6 min (major).

(*S*)-3-ethynyl-3-methyl-3,4-dihydroquinoxalin-2(1*H*)-one (12): yellow solid; mp 50-51 °C; 11.2 mg, 60% yield; 60% *ee*; $R_f = 0.3$ (PE:EA = 2:1); $[\alpha]_D^{20} = -231.00$ (*c* = 0.50, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.85 (s, 1H), 6.96 (td, *J* = 7.6, 1.4 Hz, 1H), 6.87 (td, *J* = 7.6, 1.3 Hz, 1H), 6.79 (dd, *J* = 8.9, 4.4 Hz, 2H), 4.16 (s, 1H), 2.36 (s, 1H), 1.80 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) one carbon signal was overlapped δ 165.5, 132.5, 125.9, 124.1, 120.9, 115.4, 115.2, 73.3, 53.2, 25.1; IR (neat, cm⁻¹) 3325, 3270, 1664, 1604, 1507, 1388, 1314, 1146, 746, 663; HRMS (ESI): *m/z*: calcd for C₁₁H₁₁N₂O [M+H]⁺: 187.0871, found: 187.0874.

The *ee* was determined by HPLC analysis: CHIRALPAK ADH (4.6 mm i.d. \times 250 mm); hexane/2-propanol = 90/10; flow rate 1.0 mL/min; 35 °C; 250 nm; retention time: 19.2 min (minor) and 37.4 min (major).

(*S*)-3-cyclohexyl-3-ethynyl-3,4-dihydroquinoxalin-2(1*H*)-one (13): yellow solid; mp 138-139 °C; 17.8 mg, 70% yield; 30% *ee*; $R_f = 0.3$ (PE:EA = 2:1); $[\alpha]_D^{20} = -26.00$ (*c* = 0.50, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.62-8.42 (m, 1H), 6.97-6.86 (m, 1H), 6.86-6.66 (m, 3H), 4.10 (s, 1H), 2.47 (s, 1H), 2.22-2.03 (m, 2H), 1.89-1.66 (m, 4H), 1.34-1.15 (m, 5H).; ¹³C NMR (100 MHz, CDCl₃) δ 165.4, 131.9, 124.9, 124.2, 120.1, 115.2, 114.7, 81.7, 74.8, 61.3, 43.4, 27.2, 26.9, 26.5, 26.3, 26.2; IR (neat, cm⁻¹) 3279, 2929, 2853, 1681, 1607, 1505, 1449, 1362, 1313, 744; HRMS (ESI): *m/z*: calcd for C₁₆H₁₈N₂ONa [M+Na]⁺: 277.1317, found: 277.1322.

The *ee* was determined by HPLC analysis: CHIRALPAK ASH (4.6 mm i.d. \times 250 mm); hexane/2-propanol = 97/3; flow rate 1.5 mL/min; 35 °C; 235 nm; retention time: 37.1 min (major) and 48.1 min (minor).

(*R*)-3-ethynyl-6,7-dimethyl-3-phenyl-3,4-dihydroquinoxalin-2(1*H*)-one (14): white solid; mp 60-61 °C; 16.6 mg, 60% yield; 74% *ee*; $R_f = 0.3$ (PE:EA = 2:1); $[\alpha]_D^{20} = -144.76$ (*c* = 1.05, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.53 (s, 1H), 7.86-7.77 (m, 2H), 7.46-7.36 (m, 3H), 6.56 (s, 2H), 4.27 (s, 1H), 2.68 (s, 1H), 2.19 (s, 3H), 2.16 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.3, 138.6, 132.3, 129.9, 129.0, 128.8, 128.5, 127.8, 123.2, 116.8, 116.3, 81.5, 76.5, 61.6, 19.5, 19.1; IR (neat, cm⁻¹) 3276, 2944, 1685, 1516, 1447, 1382, 1348, 1020, 871, 698; HRMS (ESI): *m/z*: calcd for C₁₈H₁₆N₂ONa [M+Na]⁺: 299.1160, found: 299.1164.

The *ee* was determined by HPLC analysis: CHIRALPAK ODH (4.6 mm i.d. \times 250 mm); hexane/2-propanol = 85/15; flow rate 0.5 mL/min; 35 °C; 235 nm; retention time: 30.0 min (minor) and 34.9 min (major).

(*R*)-6,7-dichloro-3-ethynyl-3-phenyl-3,4-dihydroquinoxalin-2(1*H*)-one (15): yellow solid; mp 181-182 °C; 25.3 mg, 81% yield; 96% *ee*; $R_f = 0.4$ (PE:EA = 2:1); $[\alpha]_D^{20} = -185.33$ (*c* = 1.50, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.73 (s, 1H), 7.84-7.68 (m, 2H), 7.51-7.36 (m, 3H), 6.86 (s, 2H), 4.49 (s, 1H), 2.74 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) one carbon signal was overlapped δ 165.0, 137.5, 131.9, 129.5, 128.8, 127.7, 127.1, 125.2, 123.5, 116.9, 116.2, 80.4, 61.1; IR (neat, cm⁻¹) 3291, 2924, 1688, 1498, 1355, 1261, 1211, 868, 697; HRMS (ESI): *m/z*: calcd for C₁₆H₁₀N₂ONa³⁵Cl₂ [M+Na]⁺: 339.0068, found: 339.0071.

The *ee* was determined by HPLC analysis: CHIRALPAK ODH (4.6 mm i.d. \times 250 mm); hexane/2-propanol = 85/15; flow rate 0.5 mL/min; 35 °C; 235 nm; retention time: 22.8 min (minor) and 28.2 min (major).

(*R*)-6,7-dibromo-3-ethynyl-3-phenyl-3,4-dihydroquinoxalin-2(1*H*)-one (16): yellow solid; mp 190-191 °C; 32.3 mg, 80% yield; 97% *ee*; $R_f = 0.4$ (PE:EA = 2:1); $[\alpha]_D^{20} = -172.00$ (*c* = 0.75, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.24 (s, 1H), 7.86-7.69 (m, 2H), 7.53-7.35 (m, 3H), 7.04 (d, *J* = 9.5 Hz, 2H), 4.49 (s, 1H), 2.74 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) one carbon signal was overlapped δ 164.6, 137.4, 132.6, 129.5, 128.8, 127.7, 125.9, 119.6, 119.3, 118.6, 114.6, 80.4, 61.1; IR (neat, cm⁻¹) 3293, 2924, 2853, 1689, 1605, 1494, 1351, 1287, 757; HRMS (ESI): *m/z*: calcd for C₁₆H₁₀N₂ONa⁷⁹Br₂ [M+Na]⁺: 426.9058, found: 426.9057.

The *ee* was determined by HPLC analysis: CHIRALPAK ODH (4.6 mm i.d. \times 250 mm); hexane/2-propanol = 85/15; flow rate 0.5 mL/min; 35 °C; 235 nm; retention time: 25.3 min (minor) and 31.0 min (major).

(*R*)-3-ethynyl-3-phenyl-3,4-dihydrobenzo[g]quinoxalin-2(1*H*)-one (17): yellow solid; mp 95-96 °C; 26.5 mg, 89% yield; 95% *ee*; $R_f = 0.4$ (PE:EA = 2:1); $[\alpha]_D^{20} = -94.67$ (*c* = 1.50, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.36 (s, 1H), 7.92-7.81 (m, 2H), 7.72-7.60 (m, 2H), 7.50-7.28 (m, 5H), 7.17 (d, *J* = 15.1 Hz, 2H), 4.67 (s, 1H), 2.67 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 165.8, 138.1, 132.4, 131.3, 129.3, 129.1, 128.7, 127.7, 127.0, 126.7, 126.2, 125.5, 124.3, 111.8, 110.3, 81.1, 76.8, 61.6; IR (neat, cm⁻¹) 3268, 1687, 1530, 1483, 1448, 1334, 846, 745; HRMS (ESI): *m/z*: calcd for C₁₆H₁₂N₂O₂Na [M+Na]⁺: 321.0998, found: 321.0997.

The *ee* was determined by HPLC analysis: CHIRALPAK OZH (4.6 mm i.d. \times 250 mm); hexane/2-propanol = 85/15; flow rate 0.8 mL/min; 35 °C; 235 nm; retention time: 32.7 min (minor) and 50.0 min (major).

(*R*)-3-ethynyl-1-methyl-3-phenyl-3,4-dihydroquinoxalin-2(1*H*)-one (18a): white solid; mp 128-129 °C; 15.7 mg, 60% yield; 96% *ee*; $R_f = 0.4$ (PE:EA = 2:1); $[\alpha]_D^{20} = -282.70$ (*c* = 1.85, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, *J* = 6.7 Hz, 2H), 7.49-7.33 (m, 3H), 7.12-6.92 (m, 3H), 6.91-6.72 (m, 1H), 4.45 (s, 1H), 3.44 (s, 3H), 2.61 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 164.6, 138.8, 133.6, 129.0, 130.0, 128.5, 127.7, 123.9, 120.9, 115.2, 114.9, 81.4, 76.3, 61.5, 30.3; IR (neat, cm⁻¹) 3297, 1669, 1600, 1507, 1374, 1306, 1145, 748; HRMS (ESI): *m*/*z*: calcd for C₁₇H₁₄N₂ONa [M+Na]⁺: 285.1004, found: 285.1003.

The *ee* was determined by HPLC analysis: CHIRALPAK ODH (4.6 mm i.d. \times 250 mm); hexane/2-propanol = 85/15; flow rate 0.5 mL/min; 35 °C; 235 nm; retention time: 25.2 min (minor) and 34.5 min (major).

(*R*)-3-ethynyl-4-methyl-3-phenyl-3,4-dihydroquinoxalin-2(1*H*)-one (18b): white solid; mp 173-174 °C; 7.9 mg, 30% yield; 37% *ee*; $R_f = 0.4$ (PE:EA = 2:1); $[\alpha]_D^{20} = -96.00$ (*c* = 0.25, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.48 (s, 1H), 7.77-7.67 (m, 2H), 7.46-7.35 (m, 3H), 7.10-7.02 (m, 1H), 6.90-6.72 (m, 3H), 2.72 (s, 1H), 2.63 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.5, 138.4, 134.8, 128.9, 128.7, 128.0, 125.3, 124.6, 120.1, 115.2, 113.7, 78.0, 78.0, 67.7, 33.5; IR (neat, cm⁻¹) 3244, 1688, 1601, 1505, 1305, 1000, 747, 660, 588; HRMS (ESI): *m/z*: calcd for C₁₇H₁₄N₂ONa [M+Na]⁺: 285.1004, found: 285.1009.

The *ee* was determined by HPLC analysis: CHIRALPAK ODH (4.6 mm i.d. $\times 250$ mm); hexane/2-propanol = 85/15; flow rate 0.5 mL/min; 35 °C; 235 nm; retention time: 20.0 min (minor) and 25.0 min (major).

(*R*)-3-ethynyl-1,4-dimethyl-3-phenyl-3,4-dihydroquinoxalin-2(1*H*)-one (19): yellow solid; mp 180-181 °C; 19.9 mg, 72% yield; 40% *ee*; $R_f = 0.4$ (PE:EA = 2:1); $[\alpha]_D^{20} = -81.90$ (*c* = 1.05, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.74-7.68 (m, 2H), 7.45-7.34 (m, 3H), 7.16-7.10 (m, 1H), 7.07-6.96 (m, 2H), 6.90-6.84 (m, 1H), 3.46 (s, 3H), 2.64 (s, 1H), 2.62 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.2, 139.0, 136.2, 129.0, 128.7, 128.6, 128.0, 124.3, 120.2, 114.3, 113.8, 78.0, 77.6, 67.8, 33.8, 30.3; IR (neat, cm⁻¹) 3276, 1675, 1506, 1376, 1302, 1158, 1134, 1049, 1008, 745; HRMS (ESI): *m/z*: calcd for C₁₈H₁₆N₂ONa [M+Na]⁺: 299.1160, found: 299.1166.

The *ee* was determined by HPLC analysis: CHIRALPAK ODH (4.6 mm i.d. \times 250 mm); hexane/2-propanol = 85/15; flow rate 0.5 mL/min; 35 °C; 235 nm; retention time: 18.9 min (minor) and 20.9 min (major).

(*S*)-3-phenyl-3-(phenylethynyl)-3,4-dihydroquinoxalin-2(1*H*)-one (20): yellow solid; mp 154-155 °C; 24.3 mg, 75% yield; 94% *ee*; $R_f = 0.4$ (PE:EA = 5:1); $[\alpha]_D^{20} = -256.33$ (*c* = 3.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.75 (s, 1H), 7.99-7.81 (m, 2H), 7.47-7.21 (m, 8H), 6.99-6.89 (m, 1H), 6.87-6.71 (m, 3H), 4.49 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 165.8, 139.0, 132.6, 132.0, 129.0, 128.9, 128.5, 128.3, 128.0, 125.6, 124.0, 122.0, 120.6, 115.7, 115.0, 88.7, 86.5, 62.0; IR (neat, cm⁻¹) 3241, 3078, 1685, 1607, 1505, 1447, 1350, 1310, 752, 691; HRMS (ESI): *m/z*: calcd for $C_{22}H_{16}N_2ONa [M+Na]^+$: 347.1160, found: 347.1162.

The *ee* was determined by HPLC analysis: CHIRALPAK ODH (4.6 mm i.d. \times 250 mm); hexane/2-propanol = 85/15; flow rate 0.5 mL/min; 35 °C; 235 nm; retention time: 20.7 min (major) and 25.8 min (minor).

(*R*)-3-ethyl-3-phenyl-3,4-dihydroquinoxalin-2(1*H*)-one (21): yellow solid; mp 130-131 °C; 20.2 mg, 80% yield; 94% *ee*; $R_f = 0.4$ (PE:EA = 5:1); $[\alpha]_D^{20} = -165.71$ (*c* = 1.05, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.00 (s, 1H), 7.44 (m, 2H), 7.30-7.21 (m, 3H), 6.97-6.82 (m, 2H), 6.70 (m, 1H), 6.59 (m, 1H), 4.34 (s, 1H), 2.46 (dq, *J* = 14.5, 7.3 Hz, 1H), 1.97 (dq, *J* = 14.7, 7.4 Hz, 1H), 1.01 (t, *J* = 7.4 Hz, 3H).; ¹³C NMR (100 MHz, CDCl₃) δ 168.3, 141.9, 133.3, 128.6, 127.7, 125.8, 125.0, 124.1, 119.3, 115.1, 114.1, 64.9, 33.0, 8.6; IR (neat, cm⁻¹) 3374, 2992, 1676, 1503, 1441, 1364, 1311, 746, 702; HRMS (ESI): *m/z*: calcd for C₁₆H₁₆N₂ONa [M+Na]⁺: 275.1160, found: 275.1162.

The *ee* was determined by HPLC analysis: CHIRALPAK ODH (4.6 mm i.d. \times 250 mm); hexane/2-propanol = 85/15; flow rate 0.5 mL/min; 35 °C; 235 nm; retention time: 17.6 min (minor) and 20.8 min (major).

(*R*)-2-ethynyl-2-phenyl-1,2,3,4-tetrahydroquinoxaline (22): yellow solid; mp 114-115 °C; 17.1 mg, 73% yield; 97% *ee*; $R_f = 0.4$ (PE:EA = 5:1); $[\alpha]_D^{20} = -225.00$ (*c* = 0.40, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.92-7.60 (m, 2H), 7.52-7.31 (m, 3H), 6.84-6.46 (m, 4H), 4.11 (s, 2H), 3.38 (dd, *J* = 30.1, 11.8 Hz, 2H), 2.54 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 141.3, 133.2, 131.7, 128.7, 128.4, 126.6, 119.9, 119.9, 116.6, 115.8, 84.9, 73.3, 55.2, 53.1; IR (neat, cm⁻¹) 3349, 3285, 3051, 2991, 2854, 1598, 1504, 1298, 1128, 746, 693, 651; HRMS (ESI): *m/z*: calcd for C₁₆H₁₅N₂ [M+H]⁺: 234.1157, found: 234.1158.

The *ee* was determined by HPLC analysis: CHIRALPAK ODH (4.6 mm i.d. \times 250 mm); hexane/2-propanol = 85/15; flow rate 0.5 mL/min; 35 °C; 235 nm; retention time: 20.5 min (minor) and 21.9 min (major).

1-((*2R*,4*S*,5*S*)-5-(hydroxymethyl)-4-(4-((*S*)-3-oxo-2-phenyl-1,2,3,4-tetrahydroquin oxalin-2-yl)-1*H*-1,2,3-triazol-1-yl)tetrahydrofuran-2-yl)-5-methyldihydropyrimid ine-2,4(1*H*,3*H*)-dione (23): white solid; mp 146-147 °C; 47.9 mg, 93% yield; 95% *ee*; $R_f = 0.3$ (DCM:MeOH = 25:1); $[\alpha]_D^{20} = -43.08$ (*c* = 0.65, CHCl₃); ¹H NMR (400 MHz, DMSO) δ 11.35 (s, 1H), 10.63 (s, 1H), 8.10 (d, *J* = 4.7 Hz, 1H), 7.79 (s, 1H), 7.47 (d, *J* = 7.7 Hz, 2H), 7.40-7.11 (m, 4H), 6.99 (d, *J* = 7.8 Hz, 1H), 6.78 (t, *J* = 7.6 Hz, 1H), 6.66 (d, *J* = 7.4 Hz, 1H), 6.58 (t, *J* = 7.5 Hz, 1H), 6.41 (t, *J* = 6.5 Hz, 1H), 5.36 (dt, *J* = 11.3, 5.6 Hz, 1H), 5.27 (q, *J* = 5.2 Hz, 1H), 4.20 (d, *J* = 4.3 Hz, 1H), 3.75-3.51 (m, 2H), 2.77-2.55 (m, 2H), 1.80 (s, 3H); ¹³C NMR (100 MHz, DMSO) δ 165.5, 163.8, 150.5, 149.1, 141.0, 136.3, 133.5, 128.1, 127.5, 126.8, 125.6, 123.8, 123.0, 118.2, 114.6, 114.3, 109.6, 84.4, 83.8, 62.8, 60.7, 59.1, 37.1, 12.3; IR (neat, cm⁻¹) 3244, 2106, 1675, 1505, 1445, 1312, 1269, 1100, 1056, 750, 700; HRMS (ESI): *m/z*: calcd for C₂₆H₂₅N₇O₅Na [M+Na]⁺: 538.1815, found: 538.1810.

The *ee* was determined by HPLC analysis: CHIRALPAK IGH (4.6 mm i.d. \times 250 mm); hexane/2-propanol = 60/40; flow rate 1.0 mL/min; 35 °C; 235 nm; retention time: 62.5 min (minor) and 74.8 min (major).

(4*S*,4'*S*,5*R*,5'*R*)-2,2'-(4-methoxypyridine-2,6-diyl)bis(4-(3,5-dimethylphenyl)-5-ph enyl-4,5-dihydrooxazole) (L4): Purified by recrystallization to afford L4, white solid; mp 199-200 °C; 465.7 mg, 56% yield; $[\alpha]_D^{20} = -97.14$ (*c* = 1.05, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.98 (s, 2H), 7.14-6.85 (m, 10H), 6.64 (s, 2H), 6.54 (s, 4H), 6.08 (d, *J* = 10.3 Hz, 2H), 5.70 (d, *J* = 10.3 Hz, 2H), 4.02 (s, 3H), 2.09 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 166.9, 164.0, 148.9, 137.1, 137.0, 136.3, 128.7, 127.5, 126.7, 126.0, 112.7, 86.4, 74.5, 56.2, 21.2; IR (neat, cm⁻¹) 2920, 1642, 1459, 1394, 1297, 1212, 1091, 1038, 970, 860, 738, 697; HRMS (ESI) *m/z*: calcd for C₄₀H₃₈N₃O₃ [M+H]⁺: 608.2908; Found: 608.2908.

X-ray crystallographic information of product 1

The crystal was obtained by recrystallization in CH_2Cl_2/n -hexane at room temperature for four days.

Figure 1. Molecular structure of product 1 with thermal ellipsoid of 50% probability

Table 1 Crystal data and structure refinement for 1.

Identification code	416
Empirical formula	$C_{16}H_{12}N_2O$
Formula weight	248.28
Temperature/K	169.99(10)
Crystal system	orthorhombic
Space group	P212121
a/Å	7.96470(10)
b/Å	10.1591(2)

c/Å	15.9845(3)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	1293.37(4)
Z	4
$\rho_{calc}g/cm^3$	1.275
µ/mm ⁻¹	0.648
F(000)	520.0
Crystal size/mm ³	0.16 imes 0.12 imes 0.1
Radiation	Cu Ka (λ = 1.54184)
20 range for data collection/	° 10.318 to 147.326
Index ranges	$-9 \le h \le 9, -12 \le k \le 12, -19 \le l \le 19$
Reflections collected	15891
Independent reflections	2583 [$R_{int} = 0.0304$, $R_{sigma} = 0.0159$]
Data/restraints/parameters	2583/0/177
Goodness-of-fit on F ²	1.051
Final R indexes [I>=2σ (I)]	$R_1 = 0.0291, wR_2 = 0.0789$
Final R indexes [all data]	$R_1 = 0.0317, wR_2 = 0.0805$
Largest diff. peak/hole / e Å ⁻	³ 0.14/-0.12
Flack/Hooft parameter	-0.13(9)/-0.10(9)

Crystal structure determination of [1]

Crystal Data for C₁₆H₁₂N₂O (M =248.28 g/mol): orthorhombic, space group P2₁2₁2₁ (no. 19), a = 7.96470(10) Å, b = 10.1591(2) Å, c = 15.9845(3) Å, V =

1293.37(4) Å³, Z = 4, T = 169.99(10) K, μ (Cu K α) = 0.648 mm⁻¹, Dcalc = 1.275 g/cm³, 15891 reflections measured (10.318° $\leq 2\Theta \leq 147.326^{\circ}$), 2583 unique ($R_{int} = 0.0304$, $R_{sigma} = 0.0159$) which were used in all calculations. The final R_1 was 0.0291 (I > 2 σ (I)) and wR_2 was 0.0805 (all data).

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for 1. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	у	z	U(eq)
01	7078.9(15)	1244.4(12)	2424.0(8)	48.3(3)
N1	4961.7(16)	4036.1(15)	3249.8(9)	42.1(3)
N2	6364.7(18)	1777.1(14)	3747.4(10)	45.1(3)
C1	5223.3(19)	3883.7(16)	4106.6(11)	40.4(4)
C2	4732(2)	4798.7(18)	4699.7(13)	47.0(4)
C3	4881(2)	4514(2)	5544.7(13)	51.7(5)
C4	5554(3)	3321(2)	5803.1(12)	55.7(5)
C5	6079(2)	2412(2)	5215.3(12)	51.2(4)
C6	5912(2)	2691.6(18)	4373.3(11)	42.9(4)
C7	6593.0(19)	2058.2(16)	2934.5(11)	41.0(4)
C8	6232.3(19)	3501.8(16)	2681.6(11)	39.0(4)
C9	5519(2)	3530.9(17)	1798.2(11)	43.1(4)
C10	6333(2)	4130(2)	1147.8(11)	51.2(4)
C11	5641(3)	4150(2)	346.8(13)	63.1(6)
C12	4133(3)	3543(2)	201.2(15)	69.5(7)
C13	3295(3)	2948(2)	854.9(16)	69.8(7)
C14	3967(2)	2934(2)	1655.0(14)	57.8(5)
C15	7869(2)	4201.7(17)	2747.9(11)	42.2(4)

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for 1. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	у	Z	U(eq)
C16	9173(3)	4739(2)	2826.6(12)	53.2(5)

Table 3 Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for 1. The Anisotropicdisplacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U ₁₁	\mathbf{U}_{22}	U ₃₃	U ₂₃	U ₁₃	U ₁₂
01	42.2(6)	37.2(7)	65.6(8)	-7.1(5)	1.3(5)	3.6(5)
N1	36.3(7)	33.7(7)	56.2(8)	1.4(6)	2.9(6)	4.2(6)
N2	44.2(7)	30.3(7)	60.9(9)	4.1(7)	1.2(6)	2.8(6)
C1	29.9(7)	35.0(8)	56.2(9)	0.1(7)	2.2(6)	-3.3(6)
C2	36.0(8)	38.8(9)	66.2(12)	-4.3(8)	2.9(8)	0.5(7)
C3	41.7(9)	52.7(11)	60.7(11)	-8.7(9)	3.9(8)	-2.7(8)
C4	49.0(10)	61.4(12)	56.8(10)	-0.4(9)	0.3(8)	-3.6(9)
C5	45.4(9)	46.8(10)	61.4(11)	6.2(9)	-0.9(8)	1.9(8)
C6	34.4(8)	36.9(9)	57.3(10)	-0.9(7)	1.7(7)	-1.7(6)
C7	29.2(7)	33.9(8)	59.8(10)	-2.8(8)	-1.4(7)	-1.0(6)
C8	32.7(7)	32.8(8)	51.5(9)	-1.7(7)	1.0(6)	-1.7(6)
C9	36.2(8)	35.4(8)	57.5(10)	-6.8(7)	-5.2(7)	5.1(7)
C10	45.1(9)	56.3(11)	52.1(10)	-5.6(9)	-1.7(8)	5.6(8)
C11	64.8(12)	71.3(14)	53.0(11)	-8.1(10)	-2.3(9)	23.6(12)
C12	69.6(13)	72.9(15)	66.0(13)	-25.9(12)	-22.4(12)	32.5(12)

Table 3 Anisotropic Displacement Parameters (Å2×103) for 1. The Anisotropicdisplacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^{*b*}U_{12}+...]$.

Atom	U ₁₁	\mathbf{U}_{22}	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C13	53.1(11)	61.8(14)	94.7(17)	-25.5(12)	-29.1(11)	8.9(11)
C14	45.0(10)	50.6(11)	77.7(13)	-7.6(10)	-13.4(9)	-2.2(8)
C15	39.0(8)	38.6(9)	49.1(9)	2.3(7)	-1.7(7)	-3.2(7)
C16	44.8(9)	57.1(11)	57.8(11)	7.5(9)	-6.0(8)	-15.8(9)

Table 4 Bond Lengths for 1.

Aton	n Atom	Length/Å	Aton	n Atom	Length/Å
01	C7	1.224(2)	C7	C8	1.548(2)
N1	C1	1.394(2)	C8	C9	1.523(2)
N1	C8	1.464(2)	C8	C15	1.488(2)
N2	C6	1.412(2)	C9	C10	1.368(3)
N2	C7	1.343(2)	C9	C14	1.396(2)
C1	C2	1.384(2)	C10	C11	1.394(3)
C1	C6	1.396(2)	C11	C12	1.370(4)
C2	C3	1.386(3)	C12	C13	1.380(4)
C3	C4	1.388(3)	C13	C14	1.386(3)
C4	C5	1.382(3)	C15	C16	1.180(2)
C5	C6	1.382(3)			

Table 5 Bond Angles for 1.

Atom Atom Atom		n Atom	Angle/°		Atom Atom Atom			An	gle/°
C1	N1	C8		117.71(13)	N1	C8	C7		108.52(14)
C7	N2	C6		125.47(15)	N1	C8	C9		108.06(13)
N1	C1	C6		117.07(15)	N1	C8	C15		112.58(13)
C2	C1	N1		123.79(16)	C9	C8	C7		109.25(13)
C2	C1	C6		118.97(17)	C15	C8	C7		105.75(13)
C1	C2	C3		120.20(17)	C15	C8	C9		112.56(14)
C2	C3	C4		120.33(18)	C10	C9	C8		122.44(15)
C5	C4	C3		119.86(19)	C10	C9	C14		119.25(18)
C6	C5	C4		119.71(18)	C14	C9	C8		118.31(17)
C1	C6	N2		117.04(16)	C9	C10	C11		121.14(19)
C5	C6	N2		122.02(16)	C12	C11	C10		119.7(2)
C5	C6	C1		120.90(16)	C11	C12	C13		119.5(2)
01	C7	N2		122.97(16)	C12	C13	C14		121.1(2)
01	C7	C8		121.62(16)	C13	C14	C9		119.2(2)
N2	C7	C8		115.40(14)	C16	C15	C8		177.77(19)

Table 6 Torsion Angles for 1.

A B C D	Angle/°	A	B	С	D	Angle/°
O1 C7 C8 N1	152.43(15)	C4	C5	C6	C1	0.1(3)
O1 C7 C8 C9	34.8(2)	C6	N2	C7	01	175.68(16)
O1 C7 C8 C15	-86.56(18)	C6	N2	C7	C8	-3.2(2)

S38

Table 6 Torsion Angles for 1.

A B C D	Angle/°	A	B	С	D	Angle/°
N1 C1 C2 C3	173.32(16)	C6	C1	C2	C3	-1.8(2)
N1 C1 C6 N2	3.3(2)	C7	N2	C6	C1	17.8(2)
N1 C1 C6 C5	-174.34(16)	C7	N2	C6	C5	-164.54(17)
N1 C8 C9 C10	125.68(17)	C7	C8	C9	C10	-116.43(18)
N1 C8 C9 C14	-53.6(2)	C7	C8	C9	C14	64.25(19)
N2 C7 C8 N1	-28.72(18)	C8	N1	C1	C2	146.08(15)
N2 C7 C8 C9	-146.32(14)	C8	N1	C1	C6	-38.7(2)
N2 C7 C8 C15	92.30(17)	C8	C9	C10)C11	-179.43(16)
C1 N1 C8 C7	50.22(18)	C8	C9	C14	C13	-179.93(17)
C1 N1 C8 C9	168.59(14)	C9	C10)C11	C12	-1.1(3)
C1 N1 C8 C15	-66.48(19)	C10)C9	C14	+C13	0.7(3)
C1 C2 C3 C4	1.3(3)	C10)C11	C12	2C13	1.7(3)
C2 C1 C6 N2	178.78(14)	C11	C12	2C13	3C14	-1.1(3)
C2 C1 C6 C5	1.1(2)	C12	2C13	8C14	+C9	-0.1(3)
C2 C3 C4 C5	0.0(3)	C14	C9	C10)C11	-0.1(3)
C3 C4 C5 C6	-0.7(3)	C15	5C8	C9	C10	0.7(2)
C4 C5 C6 N2	-177.39(17)	C15	5C8	C9	C14	-178.59(15)

Table 7 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for 1.

U(eq)
U

Atom	x	у	z	U(eq)
H1	4450(30)	4830(20)	3073(14)	55(6)
H2	6509.05	954.06	3903.16	54
H2A	4291.94	5624.36	4527.28	56
H3	4521.04	5138.72	5948.96	62
H4	5653.6	3129.43	6382.74	67
Н5	6551.55	1598.07	5389.34	61
H10	7388.67	4538.22	1243.7	61
H11	6213.19	4583.39	-96.22	76
H12	3668.23	3532.56	-346.02	83
H13	2240.49	2540.41	755.05	84
H14	3377.41	2522.1	2100.69	69
H16	10223.27	5171.2	2889.98	64

Table 7 Hydrogen Atom Coordinates $(\text{\AA}\times10^4)$ and Isotropic Displacement Parameters $(\text{\AA}^2\times10^3)$ for 1.

References

[1] Liu, T.; Ni, S.; Guo, W. Practical Asymmetric Amine Nucleophilic Approach for the Modular Construction of Protected α -Quaternary Amino Acids. *Chem. Sci.* **2022**, *13*, 6806-6812.

[2] Shrestha, B.; Rose, B. T.; Olen, C. L.; Roth, A.; Kwong, A. C.; Wang, Y.; Denmark, S. E. A Unified Strategy for the Asymmetric Synthesis of Highly Substituted 1, 2-Amino Alcohols Leading to Highly Substituted Bisoxazoline Ligands. *J. Org. Chem.* **2021**, *86*, 3490-3534.

NMR spectra

¹³C NMR spectrum (100 MHz, CDCl₃)

S45

100 90 80 70 60 50 40

30 20 10

120 110 fl (ppm)

210 200 190 180 170 160 150 140 130

¹H NMR spectrum (400 MHz, CDCl₃)

S48

¹⁹F NMR spectrum (376 MHz, CDCl3)

¹H NMR spectrum (400 MHz, CDCl₃)

¹H NMR spectrum (400 MHz, CDCl₃)

S53

¹³C NMR spectrum (100 MHz, DMSO)

