Pd((R)-DTBM-SEGphos)Cl₂-catalyzed kinetic resolution of tertiary

propargylic alcohols

Jie Wang,^{ac} Wei-Feng Zheng,^{ac} Yuling Li,^b Yin-Long Guo,^{*b} Hui Qian,^{*a} Shengming Ma^{a,b}

^a Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China. E-mail: qian_hui@fudan.edu.cn

^b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China. E-mail: ylguo@sioc.ac.cn; masm@sioc.ac.cn

^c These authors are equal contribution

General information	S2
Experimental details and analytical data	S3-S53
Monitoring Experiment	S54-S55
SAESI-MS studies	S56
References	S57
¹ H and ¹³ C NMR and HPLC spectra of the products	S58-S313

General Information. NMR spectra were taken with Bruker Avance III spectrometer (400 MHz for ¹H NMR, 100 MHz for ¹³C NMR) in CDCl₃. All ¹H NMR experiments were measured with tetramethylsilane (0 ppm) in CDCl₃ as the internal reference; ¹³C NMR experiments were measured in relative to the signal of CDCl₃ (77.0 ppm). All reactions were carried out in Schlenk tubes. (R)- or (S)-DTBM-SEGphos was purchased from Strem Chemicals Inc.; (PhO)₂POOH was purchased from Energy Chemical, acidified with 1 N HCl under stirring, and extracted with dichloromethane, then the solvent was removed under vacuum. Petroleum ether (b.p. 60~90°C) was purchased from Shanghai Titan Scientific Co., Ltd. Toluene was used as received without further purification. The reaction should be conducted in a hood working efficiently with a CO detector due to the toxicity of CO gas. All the temperatures are referred to the oil baths used. Recoveries of substrates were determined by ¹H NMR analysis using dibromomethane as the internal standard. The tertiary propargylic alcohols¹ and racemic 2,3-allenoic acids² were prepared according to the literature methods. The optically active tertiary propargylic alcohols (S)-1a-(S)-1f, (S)-1h, (S)-1j-(S)-1l, (S)-1o-(S)-1t (S)-1j-(S)-1l³ and the chiral 2,3-allenoic acids (S)-2a-(S)-2v⁴ are known compounds.

Experimental details and analytical data

Synthesis of palladium complex

(1) Preparation of Pd((R)-DTBM-SEGphos)Cl₂ (zwf-6-135)⁵

Typical Procedure I: To a dry flask were added $[Pd(\pi-cinnamyl)Cl]_2$ (518.3 mg, 1 mmol) and (R)-DTBM-SEGphos (2.4077g, 2 mmol). Then THF (50 mL) were added under nitrogen atmosphere. After being stirred at rt for 6 h, removal of THF via evaporation and recrystalization from CH_2Cl_2/n -hexane afforded Pd((R)-DTBM-SEGphos)Cl₂ (1.0473 g, 39%). $[\alpha]_D^{25} = +263.1$ (*c* = 1.14, CHCl₃); solid; m.p. > 220 °C; ¹**H NMR** (rt, 400 MHz, CDCl₃): $\delta = 9.31-6.52$ (m, 8 H, Ar-H), 6.43-6.29 (m, 4 H, Ar-H), 5.87 (s, 2 H, CH₂), 5.66 (s, 2 H, CH₂), 3.69 (s, 6 H, 2 x CH₃), 3.62 (s, 6 H, 2 x CH₃), 1.43-1.29 (m, 72 H, 24 x CH₃); ¹³C NMR (100 MHz, CDCl₃): $\delta = 162.6$ (d, J =2.4 Hz), 161.5 (d, J = 2.4 Hz), 149.7 (d, J = 2.4 Hz), 146.2 (d, J = 12.6 Hz), 143.8 (d, J = 14.2 Hz), 142.6 (d, J = 11.8 Hz), 134.3 (d, J = 12.6 Hz), 129.4 (d, J = 8.7 Hz), 124.1 (d, J = 5.5 Hz), 124.0 (d, J = 64.0 Hz), 123.6 (d, J = 5.6 Hz), 119.2 (d, J = 56.1 Hz),117.3 (d, J = 2.4 Hz), 117.2 (d, J = 3.2 Hz), 108.0 (d, J = 11.8 Hz), 100.8, 64.3 (d, J = 2.3 Hz), 36.0, 35.9, 32.0, 31.8; ³¹**P** NMR (162 MHz, CDCl₃): $\delta = 29.1$; IR (neat): v =2959, 1440, 1393, 1264, 1227, 1207, 1182, 1140, 1115, 1046, 1007 cm⁻¹; MS (MALDI) m/z (%): 1319 (M(³⁵Cl)-Cl)⁺; Anal. Calcd. for C₇₀H₁₀₀Cl₂O₈P₂Pd: C 65.50, H 7.43; found: C 65.66, H 7.31. (Variable temperature ¹H-NMR spectra was given for explaining the hidden proton)

(2) Preparation of Pd((S)-DTBM-SEGphos)Cl₂ (zwf-7-124)

Following Typical Procedure I: the reaction of $[Pd(\pi-cinnamyl)Cl]_2$ (518.6 mg, 1 mmol), (*S*)-DTBM-SEGphos (2.4083g, 2 mmol) and THF (50 mL) afforded Pd((*S*)-DTBM-SEGphos)Cl₂ (1.3242 g, 49%). $[\alpha]_D^{26} = -260.3$ (c = 1.24, CHCl₃); solid; m.p. > 220 °C; ¹H NMR (rt, 400 MHz, CDCl₃): $\delta = 9.30-6.51$ (m, 8 H, Ar-H), 6.42-6.29 (m, 4 H, Ar-H), 5.87 (s, 2 H, CH₂), 5.66 (s, 2 H, CH₂), 3.69 (s, 6 H, 2 x CH₃), 3.62 (s, 6 H, 2

x CH₃), 1.42-1.30 (m, 72 H, 24 x CH₃); ¹³C NMR (100 MHz, CDCl₃): $\delta = 162.6$ (d, J = 2.4 Hz), 161.5 (d, J = 2.4 Hz), 149.7 (d, J = 2.4 Hz), 146.2 (d, J = 12.6 Hz), 143.8 (d, J = 12.7 Hz), 142.6 (d, J = 11.8 Hz), 134.3 (d, J = 11.8 Hz), 129.4 (d, J = 8.7 Hz), 124.1 (d, J = 5.5 Hz), 124.0 (d, J = 64.0 Hz), 123.6 (d, J = 4.8 Hz), 119.2 (d, J = 56.1 Hz), 117.3 (d, J = 2.4 Hz), 117.2 (d, J = 2.4 Hz), 108.0 (d, J = 11.8 Hz), 100.8, 64.3 (d, J = 2.3 Hz), 36.0, 35.9, 32.0, 31.8; ³¹P NMR (162 MHz, CDCl₃): $\delta = 29.0$; **IR** (neat): v = 2955, 2940, 1440, 1393, 1264, 1226, 1182, 1140, 1115, 1046, 1006 cm⁻¹; **MS** (MALDI) m/z (%): 1319 (M(³⁵Cl)-Cl)⁺; Anal. Calcd. for C₇₀H₁₀₀Cl₂O₈P₂Pd: C 65.50, H 7.43; found: C 65.71, H 7.30.

Synthesis of chiral tertiary propargylic alcohols

(1) Preparation of (S)-2-phenyloct-3-yn-2-ol ((S)-1a) (wj-1-015-1)

Typical Procedure II: To a Schlenk flask (25 mL) were added $[PdCl_2 \cdot (R)-DTBM-SEGphos]$ (13.4 mg, 0.01 mmol) and (PhO)₂PO₂H (12.7 mg, 0.05 mmol). After addition, the flask was degassed and refilled with Ar for three times to ensure the complete exclusion of air. Then *rac*-1a (100.3 mg, 0.5 mmol)/toluene (1.5 mL) and H₂O (180 µL, d = 1.0 g/mL, 180.0 mg, 10 mmol)/toluene (1.0 mL) were added sequentially. After that, the Ar gas line was closed. The resulting mixture was then frozen with a liquid nitrogen bath, degassed to remove the argon inside completely, and refilled with CO by a balloon of CO (about 1 L) for three times. Then the liquid nitrogen bath was removed and the resulting mixture was allowed to stand until completely thawed, vigorously stirred at 20 °C with a balloon of CO for 12 h, warmed up to room temperature, diluted with 5 mL of ethyl acetate, filtered through a short column silica gel (3 cm) eluted with ethyl acetate (20 mL), and concentrated. The crude product was analyzed by ¹H NMR with CH₂Br₂ (35 µL, 2.477 g/mL, 0.5 mmol) as the internal standard: 56% NMR yield of

(*S*)-2a, 1% of 1a', and 2% of (*E*)-2a' were formed with 43% of (*S*)-1a remained. The residue was purified by chromatography on silica gel to afford the product (*S*)-1a (36.4 mg, 36%) [eluent: petroleum ether / ethyl ether / dichloromethane = 30/1/1 (480mL), then petroleum ether / ethyl acetate = 10/1 (440 mL)]: 96% ee (HPLC conditions: AS-H column, hexane/^{*i*}PrOH = 98/2, 1.0 mL/min, λ = 214 nm, t_R (minor) = 7.2 min, t_R (major) = 11.0 min); oil; ¹H NMR (400 MHz, CDCl₃): δ = 7.65 (d, J = 7.6 Hz, 2 H, Ar-H), 7.35 (t, J = 7.6 Hz, 2 H, Ar-H), 7.30-7.23 (m, 1 H, Ar-H), 2.38 (d, J = 8.8 Hz, 1 H, OH), 2.27 (t, J = 7.0 Hz, 2 H, CH₂), 1.74 (s, 3 H, CH₃), 1.58-1.48 (m, 2 H, CH₂), 1.48-1.38 (m, 2 H, CH₂), 0.92 (t, J = 7.2 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 146.2, 128.1, 127.4, 124.9, 85.6, 83.7, 70.0, 33.5, 30.7, 21.9, 18.4, 13.5.

(2) Preparation of (S)-2-(2-methylphenyl)oct-3-yn-2-ol ((S)-1b) (wj-1-017-1)

Following Typical Procedure II, the reaction of [PdCl₂•(*R*)-DTBM-SEGphos] (13.6 mg, 0.01 mmol), (PhO)₂PO₂H (12.6 mg, 0.05 mmol), *rac*-1b (108.7 mg, 0.5 mmol), and H₂O (180 µL, d = 1.0 g/mL, 180.0 mg, 10.0 mmol) in toluene (2.5 mL) afforded the product (*S*)-1b (41.2 mg, 38%) (54% NMR yield of (*S*)-2b, and 3% of (*E*)-2b' were formed with 45% of (*S*)-1b remained based on ¹H NMR analysis of the crude product) [eluent: petroleum ether / diethyl ether / DCM = 30/1/1 (448 mL), then petroleum ether/ethyl acetate = 10/1 (440 mL)]: 97% ee (HPLC conditions: AS-H column, hexane/ⁱPrOH = 98/2, 1.0 mL/min, λ = 214 nm, *t*_R (minor) = 6.5 min, *t*_R (major) = 8.5 min); oil; ¹H NMR (400 MHz, CDCl₃): δ = 7.73-7.65 (m, 1 H, Ar-H), 7.21-7.10 (m, 3 H, Ar-H), 2.62 (s, 3 H, CH₃), 2.39-2.30 (m, 1 H, OH), 2.23 (t, *J* = 7.0 Hz, 2 H, CH₂), 1.80 (s, 3 H, CH₃), 1.56-1.45 (m, 2 H, CH₂), 1.45-1.34 (m, 2 H, CH₂), 0.90 (t, *J* = 7.2 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 142.8, 135.6, 132.2, 127.4, 125.6, 124.9, 85.2, 84.1, 69.7, 31.1, 30.6, 22.0, 21.2, 18.4, 13.5.

(3) Preparation of (S)-2-(3-methylphenyl)oct-3-yn-2-ol ((S)-1c) (wj-1-020-1)

Following Typical Procedure II, the reaction of $[PdCl_2 \cdot (R)-DTBM-SEGphos]$ (13.8 mg, 0.01 mmol), $(PhO)_2PO_2H$ (12.5 mg, 0.05 mmol), *rac*-1c (109.6mg, 0.5 mmol), and H₂O (180 µL, d = 1.0 g/mL, 180.0 mg, 10.0 mmol) in toluene (2.5 mL) afforded the product (*S*)-1c (44.4 mg, 41%) (55% NMR yield of (*S*)-2c, 1% of 1c', and 2% of (*E*)-2c' were formed with 43% of (*S*)-1c remained based on ¹H NMR analysis of the crude product) [eluent: petroleum ether / diethyl ether / DCM = 30/1/1 (480 mL), then petroleum ether/ethyl acetate = 10/1 (440 mL)]: 94% ee (HPLC conditions: AS-H column, hexane/^{*i*}PrOH = 98/2, 1.0 mL/min, λ = 214 nm, *t*_R (minor) = 6.6 min, *t*_R (major) = 8.8 min); oil; ¹H NMR (400 MHz, CDCl₃): δ = 7.51-7.39 (m, 2 H, Ar-H), 7.28-7.19 (m, 1 H, Ar-H), 7.12-7.02 (m, 1 H, Ar-H), 2.46-2.33 (m, 4 H, CH₃ and OH), 2.27 (t, *J* = 7.0 Hz, 2 H, CH₂) 1.73 (s, 3 H, CH₃), 1.58-1.38 (m, 4 H, 2 x CH₂), 0.93 (t, *J* = 7.2 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 146.2, 137.7, 128.2, 128.1, 125.6, 122.0, 85.5, 83.9, 70.0, 33.5, 30.7, 21.9, 21.5, 18.4, 13.5.

(4) Preparation of (S)-2-(3-methoxyphenyl)oct-3-yn-2-ol ((S)-1d) (wj-1-024-1)

Following Typical Procedure II, the reaction of $[PdCl_2 \cdot (R)-DTBM-SEGphos]$ (13.6 mg, 0.01 mmol), $(PhO)_2PO_2H$ (12.4 mg, 0.05 mmol), *rac-1d* (115.7 mg, 0.5 mmol), and H₂O (180 µL, d = 1.0 g/mL, 180.0 mg, 10 mmol) in toluene (2.5 mL) afforded the product (*S*)-1d (44.5 mg, 38%) (55% NMR yield of (*S*)-2d, 1% of 1d', and 2% of (*E*)-**2d'** were formed with 40% of (*S*)-**1d** remained based on ¹H NMR analysis of the crude product) [eluent: petroleum ether / ethyl ether / dichloromethane = 30/1/1 (480 mL), then petroleum ether / ethyl acetate = 10/1 (660 mL)]: 97% ee (HPLC conditions: AS-H column, hexane/^{*i*}PrOH = 98/2, 1.0 mL/min, λ = 214 nm, *t*_R (minor) = 13.0 min, *t*_R (major) = 18.8 min); oil; ¹H NMR (400 MHz, CDCl₃): δ = 7.29-7.18 (m, 3 H, Ar-H), 6.85-6.76 (m, 1 H, Ar-H), 3.81 (s, 3 H, CH₃), 2.46 (s, 1 H, OH), 2.27 (t, *J* = 7.0 Hz, 2 H, CH₂), 1.73 (s, 3 H, CH₃), 1.58-1.49 (m, 2 H, CH₂), 1.49-1.38 (m, 2 H, CH₂), 0.92 (t, *J* = 7.2 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 159.4, 148.0, 129.2, 117.3, 112.9, 110.7, 85.5, 83.7, 69.9, 55.2, 33.5, 30.7, 21.9, 18.4, 13.5.

(5) Preparation of (S)-2-(4-chlorophenyl)oct-3-yn-2-ol ((S)-1e) (wj-1-027-1)

Following Typical Procedure II, the reaction of $[PdCl_2 \cdot (R)$ -DTBM-SEGphos] (13.6 mg, 0.01 mmol), (PhO)₂PO₂H (12.4 mg, 0.05 mmol), *rac*-1e (118.0 mg, 0.5 mmol), and H₂O (180 µL, d = 1.0 g/mL, 180.0 mg, 10 mmol) in toluene (2.5 mL) afforded the product (*S*)-1e (49.1 mg, 42%) (48% NMR yield of (*S*)-2e, 1% of 1e^{*}, and 3% of (*E*)-2e^{*} were formed with 46% of (*S*)-1e remained based on ¹H NMR analysis of the crude product) [eluent: petroleum ether / ethyl ether / dichloromethane = 30/1/1 (480 mL), then petroleum ether / ethyl acetate = 10/1 (550 mL)]: 91% ee (HPLC conditions: AS-H column, hexane/¹PrOH = 98/2, 1.0 mL/min, λ = 214 nm, *t*_R (minor) = 8.1 min, *t*_R (major) = 11.1 min); oil; ¹H NMR (400 MHz, CDCl₃): δ = 7.57 (d, *J* = 8.8 Hz, 2 H, Ar-H), 7.30 (d, *J* = 8.4 Hz, 2 H, Ar-H), 2.48-2.38 (m, 1 H, OH), 2.26 (t, *J* = 7.0 Hz, 2 H, CH₂), 1.71 (s, 3 H, CH₃), 1.58-1.48 (m, 2 H, CH₂), 1.48-1.37 (m, 2 H, CH₂), 0.92 (t, *J* = 7.2 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 144.8, 133.2, 128.2, 126.5, 86.0, 83.3, 69.6, 33.6, 30.6, 21.9, 18.3, 13.5.

(6) Preparation of (S)-2-(4-bromophenyl)oct-3-yn-2-ol ((S)-1f) (wj-1-028-1)

Following Typical Procedure II, the reaction of $[PdCl_2 \cdot (R)$ -DTBM-SEGphos] (13.5 mg, 0.01 mmol), $(PhO)_2PO_2H$ (12.4 mg, 0.05 mmol), *rac*-**1f** (141.7 mg, 0.5 mmol), and H₂O (180 µL, d = 1.0 g/mL, 180.0 mg, 10 mmol) in toluene (2.5 mL) afforded the product (*S*)-**1f** (47.0 mg, 33%) (54% NMR yield of (*S*)-**2f**, 1% of **1f**², and 5% of (*E*)-**2f**² were formed with 39% of (*S*)-**1f** remained based on ¹H NMR analysis of the crude product) [eluent: petroleum ether / ethyl ether / dichloromethane = 30/1/1 (480 mL), then petroleum ether/ethyl acetate = 10/1 (440 mL)]: 99% ee (HPLC conditions: AS-H column, hexane/¹PrOH = 98/2, 1.0 mL/min, λ = 214 nm, t_R (minor) = 8.3 min, t_R (major) = 11.0 min); oil; ¹H NMR (400 MHz, CDCl₃): δ = 7.52 (d, *J* = 8.4 Hz, 2 H, Ar-H), 7.46 (d, *J* = 8.8 Hz, 2 H, Ar-H), 2.45-2.33 (m, 1 H, OH), 2.26 (t, *J* = 7.0 Hz, 2 H, CH₂), 1.70 (s, 3 H, CH₃), 1.57-1.48 (m, 2 H, CH₂), 1.48-1.36 (m, 2 H, CH₂), 0.92 (t, *J* = 7.2 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 145.4, 131.2, 126.9, 121.4, 86.0, 83.3, 69.6, 33.6, 30.6, 21.9, 18.3, 13.5.

Following Typical Procedure II, the reaction of $[PdCl_2 \cdot (R)-DTBM-SEGphos]$ (13.5 mg, 0.01 mmol), $(PhO)_2PO_2H$ (12.5 mg, 0.05 mmol), *rac-*1g (130.0 mg, 0.5 mmol), and H₂O (180 µL, d = 1.0 g/mL, 180.0 mg, 10.0 mmol) in toluene (2.5 mL)

afforded the product (*S*)-**1g** (58.4 mg, 45%) (52% NMR yield of (*S*)-**2g** was formed with 48% of (*S*)-**1g** remained based on ¹H NMR analysis of the crude product) [eluent: petroleum ether / diethyl ether / dichloromethane = 30/1/1 (480 mL), then petroleum ether / ethyl acetate = 20/1(840 mL), 10/1 (550 mL)]: 97% ee (HPLC conditions: AS-H column, hexane/^{*i*}PrOH = 90/10, 1.0 mL/min, $\lambda = 214 \text{ nm}$, t_R (major) = 6.8 min, t_R (minor) = 7.5 min); $[\alpha]_D^{25} = +4.8$ (c = 1.17, CHCl₃); oil; ¹H NMR (400 MHz, CDCl₃): $\delta = 8.00$ (d, J = 8.4 Hz, 2 H, Ar-H), 7.71 (d, J = 8.0 Hz, 2 H, Ar-H), 3.91 (s, 3 H, CH₃), 2.64 (s, 1 H, OH), 2.27 (t, J = 7.0 Hz, 2 H, CH₂), 1.73 (s, 3 H, CH₃), 1.58-1.48 (m, 2 H, CH₂), 1.48-1.37 (m, 2 H, CH₂), 0.92 (t, J = 7.2 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): $\delta = 166.9$, 151.2, 129.5, 129.2, 125.0, 86.1, 83.2, 69.8, 52.0, 33.6, 30.6, 21.9, 18.3, 13.5; **IR** (neat): v = 3461, 2956, 2932, 2873, 2243, 1723, 1707, 1610, 1437, 1407, 1278, 1184, 1113, 1059, 1019 cm⁻¹; **MS** (70 eV, EI) *m/z* (%): 245 ((M-CH₃)⁺, 100); **HRMS** (EI) calcd *m/z* for Cl₃H₁₇O₃ [M-CH₃]⁺: 245.1172, found: 245.1172.

(8) Preparation of (S)-2-(2-naphthyl)oct-3-yn-2-ol ((S)-1h) (wj-4-134)

Following Typical Procedure II, the reaction of $[PdCl_2 \cdot (R)-DTBM-SEGphos]$ (13.6 mg, 0.01 mmol), $(PhO)_2PO_2H$ (12.5 mg, 0.05 mmol), *rac*-1h (126.3 mg, 0.5 mmol), and H₂O (180 µL, d = 1.0 g/mL, 180.0 mg, 10.0 mmol) in toluene (2.5 mL) afforded (*S*)-1h (39.9 mg, 32%) (53% NMR yield of (*S*)-2h and 8% of 1h' were formed with 36% of (*S*)-1h remained based on ¹H NMR analysis of the crude product) [eluent: petroleum ether / ethyl ether / dichloromethane = 30/1/1 (640 mL)]: 98% ee (HPLC conditions: AS-H column, hexane/^{*i*}PrOH = 95/5, 1.0 mL/min, λ = 214 nm, *t*_R (minor) = 7.1 min, *t*_R (major) = 8.4 min); oil; ¹H NMR (400 MHz, CDCl_3): δ = 8.15-8.09 (m, 1 H, Ar-H), 7.89-7.78 (m, 3 H, Ar-H), 7.77-7.70 (m, 1 H, Ar-H), 7.52-7.42 (m, 2 H, Ar-H), 2.47 (s, 1 H, OH), 2.31 (t, *J* = 7.2 Hz, 2 H, CH₂), 1.82 (s, 3 H, CH₃), 1.60-1.51 (m, 2 H, CH₂),1.51-1.40 (m, 2 H, CH₂), 0.94 (t, *J* = 7.2 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 143.5, 133.0, 132.8, 128.3, 128.0, 127.5, 126.1, 125.9, 123.6, 123.3, 85.9, 83.8, 70.1, 33.4, 30.7, 22.0, 18.4, 13.6.

(9) Preparation of (S)-2-cyclohexyloct-3-yn-2-ol ((S)-1i) (wj-1-038-1)

Following Typical Procedure II, the reaction of [PdCl₂•(*R*)-DTBM-SEGphos] (13.7 mg, 0.01 mmol), (PhO)₂PO₂H (12.6 mg, 0.05 mmol), *rac*-1i (103.7 mg, 0.5 mmol), and H₂O (180 µL, d = 1.0 g/mL, 180.0 mg, 10.0 mmol) in toluene (2.5 mL) afforded the product (*S*)-1i (42.5 mg, 41%) (Feature peak overlap based on ¹H NMR analysis of the crude product) [eluent: petroleum ether / ethyl ether / dichloromethane = 30/1/1 (480 mL), then petroleum ether / ethyl acetate = 10/1 (330 mL)]: > 99% ee (HPLC conditions: AS-H column, hexane/^{*i*}PrOH = 98/2, 1.0 mL/min, λ = 214 nm, *t*_R (major) = 6.0 min); $[\alpha]_{D}^{25}$ = +6.6 (*c* = 1.25, CHCl₃); oil; ¹H NMR (400 MHz, CDCl₃): δ = 2.20 (t, *J* = 6.8 Hz, 2 H, CH₂), 2.00-1.75 (m, 5 H, 2 x CH₂ and OH), 1.54-1.03 (m, 14 H, CH and 5 x CH₂ and CH₃), 0.91 (t, *J* = 7.0 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 84.3, 83.4, 71.1, 48.9, 30.9, 27.9, 27.6, 27.3, 26.34, 26.31, 26.2, 21.9, 18.3, 13.5; **IR** (neat): ν = 3419, 2926, 2854, 1751, 1450, 1370, 1328, 1247, 1191, 1145, 1111, 1068, 1046 cm⁻¹; **MS** (ESI) *m/z*(%): 209 (M+H⁺)); **HRMS** (ESI) calcd for C₁₄H₂₅O [M+H⁺]: 209.1900, found: 209.1896.

Following Typical Procedure II, the reaction of [PdCl₂•(*R*)-DTBM-SEGphos](13.6

mg, 0.01 mmol), (PhO)₂PO₂H (12.5 mg, 0.05 mmol), *rac*-1j (92.4 mg, 0.5 mmol), and H₂O (180 μL, d = 1.0 g/mL, 180.0 mg, 10.0 mmol) in toluene (2.5 mL) afforded the product (*S*)-1j (31.0 mg, 34%) (51% NMR yield of (*S*)-2j with 48% of (*S*)-1j remained based on ¹H NMR analysis of the crude product) [eluent: petroleum ether / diethyl ether / DCM = 30/1/1 (320 mL), then petroleum ether / ethyl acetate = 10/1 (330 mL)]: 95% ee (HPLC conditions: IC column, hexane/^{*i*}PrOH = 98/2, 1.0 mL/min, λ = 214 nm, *t*_R (minor) = 4.2 min, *t*_R (major) = 4.5 min); oil; ¹H NMR (400 MHz, CDCl₃): δ = 2.20 (t, *J* = 6.8 Hz, 2 H, CH₂), 1.82 (s, 1 H, OH), 1.54-1.37 (m, 7 H, 2 x CH₂ and CH₃), 1.03 (s, 9 H, 3 x CH₃), 0.91 (t, *J* = 7.2 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 84.2, 83.8, 74.0, 38.2, 30.9, 25.1, 25.0, 21.9, 18.3, 13.5.

(11) Preparation of (S)-2-phenylnon-3-yn-2-ol ((S)-1k) (wj-1-051-1)

Following Typical Procedure II, the reaction of $[PdCl_2 \cdot (R)-DTBM-SEGphos]$ (13.7 mg, 0.01 mmol), $(PhO)_2PO_2H$ (12.5 mg, 0.05 mmol), *rac*-1k (108.5 mg, 0.5 mmol), and H₂O (180 µL, d = 1.0 g/mL, 180.0 mg, 10.0 mmol) in toluene (2.5 mL) afforded the product (*S*)-1k (45.6 mg, 42%) (54% NMR yield of (*S*)-2k, 1% of 1k', and 1% of (*E*)-2k' were formed with 46% of (*S*)-1k remained based on ¹H NMR analysis of the crude product) [eluent: petroleum ether / ethyl ether / dichloromethane = 30/1/1 (480 mL), then petroleum ether / ethyl acetate = 10/1 (440 mL)]: 91% ee (HPLC conditions: AS-H column, hexane/[†]PrOH = 98/2, 1.0 mL/min, λ = 214 nm, *t*_R (minor) = 6.5 min, *t*_R (major) = 9.4 min); oil; ¹H NMR (400 MHz, CDCl₃): δ = 7.65 (d, *J* = 7.6 Hz, 2 H, Ar-H), 7.34 (t, *J* = 7.4 Hz, 2 H, Ar-H), 7.30-7.23 (m, 1 H, Ar-H), 2.38 (m, 1 H, OH), 2.26 (t, *J* = 7.2 Hz, 2 H, CH₂), 1.74 (s, 3 H, CH₃), 1.55 (quint, *J* = 7.2 Hz, 2 H, CH₂), 1.44-1.27 (m, 4 H, 2 x CH₂), 0.91 (t, *J* = 7.0 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 146.2, 128.1, 127.4, 125.0, 85.7, 83.8, 70.0, 33.5, 31.1, 28.3, 22.1, 18.7, 13.9.

(12) Preparation of (S)-2-phenyldec-3-yn-2-ol ((S)-11) (wj-1-054-1)

Following Typical Procedure II, the reaction of $[PdCl_2 \cdot (R)$ -DTBM-SEGphos] (13.5 mg, 0.01 mmol), (PhO)₂PO₂H (12.4 mg, 0.05 mmol), *rac*-1l (116.0 mg, 0.5 mmol), and H₂O (180 µL, d = 1.0 g/mL, 180.0 mg, 10.0 mmol) in toluene (2.5 mL) afforded the product (*S*)-1l (44.8 mg, 39%) (55% NMR yield of (*S*)-2l, 1% of 1l', and 2% of (*E*)-2l' were formed with 40% of (*S*)-1l remained based on ¹H NMR analysis of the crude product) [eluent: petroleum ether / ethyl ether / dichloromethane = 30/1/1 (480 mL), then petroleum ether / ethyl acetate = 10/1 (440 mL)]: 90% ee (HPLC conditions: AS-H column, hexane/¹PrOH = 98/2, 1.0 mL/min, λ = 214 nm, *t*_R (minor) = 6.0 min, *t*_R (major) = 8.5 min); oil; ¹H NMR (400 MHz, CDCl₃): δ = 7.65 (d, *J* = 7.6 Hz, 2 H, Ar-H), 7.34 (t, *J* = 7.4 Hz, 2 H, Ar-H), 7.29-7.23 (m, 1 H, Ar-H), 2.43-2.33 (m, 1 H, OH), 2.26 (t, *J* = 7.2 Hz, 2 H, CH₂), 1.74 (s, 3 H, CH₃), 1.55 (quint, *J* = 7.2 Hz, 2 H, CH₂), 1.47-1.36 (m, 2 H, CH₂), 1.35-1.24 (m, 4 H, 2 x CH₂), 0.89 (t, *J* = 6.8 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 146.2, 128.2, 127.5, 125.0, 85.7, 83.8, 70.0, 33.5, 31.3, 28.6, 28.5, 22.5, 18.7, 14.0.

(13) Preparation of (S)-2-(o-tolyl)undec-3-yn-2-ol ((S)-1m) (wj-1-072-1)

Following Typical Procedure II, the reaction of $[PdCl_2 \cdot (R) - DTBM-SEGphos](13.7 mg, 0.01 mmol), (PhO)_2PO_2H (12.5 mg, 0.05 mmol),$ *rac*-1m (129.1 mg, 0.5 mmol), and H₂O (180 µL, d = 1.0 g/mL, 180.0 mg, 10.0 mmol) in toluene (2.5 mL) afforded the product (*S*)-1m (57.9 mg, 45%) (52% NMR yield of (*S*)-2m, 2% of 1m', and 2% of (*E*)-2m' were formed with 49% of (*S*)-1m remained based on ¹H NMR analysis of the

crude product) [eluent: petroleum ether / ethyl ether / dichloromethane = 30/1/1 (416 mL), then petroleum ether / ethyl acetate = 8/1 (360 mL)]: 91% ee (HPLC conditions: AS-H column, hexane/^{*i*}PrOH = 98/2, 1.0 mL/min, λ = 214 nm, t_R (minor)= 4.9 min, t_R (major) = 5.9 min); $[\alpha]_D^{26}$ = -2.4 (c = 1.02, CHCl₃); oil; ¹H NMR (400 MHz, CDCl₃): δ = 7.73-7.65 (m, 1 H, Ar-H), 7.21-7.07 (m, 3 H, Ar-H), 2.62 (s, 3 H, CH₃), 2.31 (s, 1 H, OH), 2.23 (t, J = 7.2 Hz, 2 H, CH₂), 1.80 (s, 3 H. CH₃), 1.52 (quint, J = 7.2 Hz, 2 H, CH₂), 1.42-1.20 (m, 8 H, 4 x CH₂), 0.88 (t, J = 6.8 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 142.9, 135.6, 132.2, 127.5, 125.6, 125.0. 85.3, 84.1, 69.7, 31.7, 31.1, 28.8, 28.7, 28.5, 22.6, 21.2, 18.7, 14.0; IR (neat): v = 3428, 2928, 2856, 2240, 1456, 1367, 1329, 1221, 1078, 1059, 1047cm⁻¹; MS (70 eV, EI) m/z (%): 258 (M⁺, 3.42), 243 (100); HRMS (EI) calcd for C₁₇H₂₃O [M-CH₃]⁺: 243.1743, found: 243.1742.

(14) Preparation of (S)-2-(4-chlorophenyl)dodec-3-yn-2-ol ((S)-1n) (wj-1-069-1)

Following Typical Procedure II, the reaction of [PdCl₂•(*R*)-DTBM-SEGphos] (13.7 mg, 0.01 mmol), (PhO)₂PO₂H (12.4 mg, 0.05 mmol), *rac*-1n (146.3 mg, 0.5 mmol), and H₂O (180 µL, d = 1.0 g/mL, 180.0 mg, 10.0 mmol) in toluene (2.5 mL) afforded the product (*S*)-1n (48.0 mg, 33%) (57% NMR yield of (*S*)-2n, 1% of 1n', and 7% of (*E*)-2n' were formed with 37% of (*S*)-1n remained based on ¹H NMR analysis of the crude product) [eluent: petroleum ether / ethyl ether / dichloromethane = 30/1/1 (480 mL), then petroleum ether / ethyl acetate = 10/1 (660 mL)]: 99% ee (HPLC conditions: AS-H column, hexane/^{*i*}PrOH = 98/2, 1.0 mL/min, $\lambda = 214$ nm, t_R (minor) = 5.4 min, t_R (major) = 6.6 min); $[\alpha]_D^{27} = -2.5$ (*c* = 1.16, CHCl₃); oil; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.58$ (d, *J* = 8.0 Hz, 2 H, Ar-H), 7.30 (d, *J* = 8.0 Hz, 2 H, Ar-H), 2.39 (s, 1 H, OH), 2.25 (t, *J* = 7.0 Hz, 2 H, CH₂), 1.71 (s, 3 H, CH₃), 1.59-1.47 (m, 2 H, CH₂), 1.45-1.34 (m, 2 H, CH₂), 1.34-1.16 (m, 8 H, 4 x CH₂), 0.94-0.78 (m, 3 H, CH₃); ¹³C NMR (100

MHz, CDCl₃): δ = 144.8, 133.2, 128.2, 126.5, 86.1, 83.3, 69.6, 33.6, 31.8, 29.2, 29.0, 28.9, 28.5, 22.6, 18.7, 14.1; **IR** (neat): v = 3393, 2926, 2855, 2243, 1489, 1466, 1400, 1368, 1329, 1229, 1173, 1092, 1015cm⁻¹; **MS** (70 eV, EI) *m/z* (%):294 (M⁺(³⁷Cl), 0.76), 292 (M⁺(³⁵Cl), 2.04), 277 (100); **HRMS** (EI) calcd for C₁₇H₂₂³⁵ClO [M-CH₃]⁺: 277.1354, found: 277.1357.

(15) Preparation of (S)-7-methyl-2-phenyloct-3-yn-2-ol ((S)-10) (wj-1-120-1)

Following Typical Procedure II, the reaction of $[PdCl_2 \cdot (R)$ -DTBM-SEGphos] (13.5 mg, 0.01 mmol), $(PhO)_2PO_2H$ (15.1 mg, 0.06 mmol), *rac*-10 (107.0 mg, 0.5 mmol), and H₂O (180 µL, d = 1.0 g/mL, 180.0 mg, 10.0 mmol) in toluene (2.5 mL) afforded the product (*S*)-10 (33.2 mg, 31%) (56% NMR yield of (*S*)-20 and 4% of 10' were formed with 38% of (*S*)-10 remained based on ¹H NMR analysis of the crude product) [eluent: petroleum ether / ethyl ether / dichloromethane = 30/1/1 (448 mL), then petroleum ether / ethyl acetate = 8/1 (450 mL)]: 97% ee (HPLC conditions: AS-H column, hexane/^{*i*}PrOH = 98/2, 1.0 mL/min, λ = 214 nm, *t*_R (minor) = 6.7 min, *t*_R (major) = 9.2 min); oil; ¹H NMR (400 MHz, CDCl₃): δ = 7.70-7.62 (m, 2 H, Ar-H), 7.39-7.31 (m, 2 H, Ar-H), 7.31-7.24 (m, 1 H, Ar-H), 2.35 (s, 1 H, OH), 2.28 (t, *J* = 7.4 Hz, 2 H, CH₂), 1.81-1.64 (m, 4 H, CH and CH₃), 1.45 (q, *J* = 7.3 Hz, 2 H, CH₂), 0.91 (d, *J* = 6.4 Hz, 6 H, 2 x CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 146.2, 128.1, 127.4, 124.9, 85.7, 83.6, 70.0, 37.6, 33.5, 27.3, 22.1, 16.7.

(16) Preparation of (S)-8-chloro-2-phenyloct-3-yn-2-ol ((S)-1p) (wj-1-057-1)

Following Typical Procedure II, the reaction of $[PdCl_2 \cdot (R)$ -DTBM-SEGphos] (13.5 mg, 0.01 mmol), $(PhO)_2PO_2H$ (12.5 mg, 0.05 mmol), *rac*-1p (118.7 mg, 0.5 mmol), and H₂O (180 µL, d = 1.0 g/mL, 180.0 mg, 10.0 mmol) in toluene (2.5 mL) afforded the product (*S*)-1p (44.4 mg, 37%) (53% NMR yield of (*S*)-2p, 2% of 1p', and 4% of (*E*)-2p' were formed with 42% of (*S*)-1p remained based on ¹H NMR analysis of the crude product) [eluent: petroleum ether / ethyl ether / dichloromethane = 30/1/1 (704 mL), then petroleum ether / ethyl acetate = 8/1 (630 mL)]: 97% ee (HPLC conditions: AS-H column, hexane/^{*i*}PrOH = 95/5, 1.0 mL/min, λ = 214 nm, *t*_R (minor) = 9.1 min, *t*_R (major) = 15.8 min); oil; ¹H NMR (400 MHz, CDCl₃): δ = 7.64 (d, *J* = 7.6 Hz, 2 H, Ar-H), 7.35 (t, *J* = 7.4 Hz, 2 H, Ar-H), 7.31-7.23 (m, 1 H, Ar-H), 3.56 (t, *J* = 6.6 Hz, 2 H, CH₂), 2.49-2.14 (m, 3 H, OH and CH₂), 1.91 (quint, *J* = 7.0 Hz, 2 H, CH₂), 1.77-1.64 (m, 5 H, CH₂ and CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 146.0, 128.2, 127.5, 124.9, 84.6, 84.5, 70.0, 44.4, 33.4, 31.6, 25.7, 18.0.

(17) Preparation of (S)-2,6-diphenylhex-3-yn-2-ol ((S)-1q) (wj-1-111-1)

Following Typical Procedure II, the reaction of $[PdCl_2\bullet(R)-DTBM-SEGphos]$ (13.6 mg, 0.01 mmol), $(PhO)_2PO_2H$ (15.1 mg, 0.06 mmol), *rac*-1q (125.0 mg, 0.5 mmol), and H₂O (180 µL, d = 1.0 g/mL, 180.0 mg, 10.0 mmol) in toluene (2.5 mL) afforded the product (*S*)-1q (39.0 mg, 31%) (51% NMR yield of (*S*)-2q, 6% of 1q², and 7% of (*E*)-2q² were formed with 37% of (*S*)-1q remained based on ¹H NMR analysis of the crude product) [eluent: petroleum ether / ethyl ether / dichloromethane = 30/1/1 (790 mL), then petroleum ether / ethyl acetate = 8/1 (450 mL)]: 89% ee (HPLC conditions: AS-H column, hexane/^{*i*}PrOH = 98/2, 1.0 mL/min, λ = 214 nm, *t*_R (minor) = 12.9 min, *t*_R (major) = 16.6 min); oil; ¹H NMR (400 MHz, CDCl₃): δ = 7.59-7.52 (m, 2 H, Ar-H), 7.37-7.17 (m, 8 H, Ar-H), 2.86 (t, *J* = 7.4 Hz, 2 H, CH₂), 2.57 (t, *J* = 7.4 Hz, 2 H, CH₂), 2.30 (s, 1 H, OH), 1.71 (s, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ =

(18) Preparation of (S)-7-cyano-2-phenylhept-3-yn-2-ol ((S)-1r)) (wj-1-082-1)

Following Typical Procedure II, the reaction of $[PdCl_2 \cdot (R)-DTBM-SEGphos]$ (13.6 mg, 0.01 mmol), $(PhO)_2PO_2H$ (12.5 mg, 0.05 mmol), *rac*-1r (106.0 mg, 0.5 mmol), and H₂O (180 µL, d = 1.0 g/mL, 180.0 mg, 10.0 mmol) in toluene (2.5 mL) afforded the product (*S*)-1r (36.8 mg, 35%) (48% NMR yield of (*S*)-2r and 8% of (*E*)-2r' were formed with 43% of (*S*)-1r remained based on ¹H NMR analysis of the crude product) [eluent: petroleum ether / ethyl acetate = 8/1 (1080 mL) to 5/1(840 mL)]: 94% ee (HPLC conditions: AS-H column, hexane/^{*i*}PrOH = 90/10, 1.0 mL/min, λ = 214 nm, t_R (minor) = 17.1 min, t_R (major) = 29.4 min); oil; ¹H NMR (400 MHz, CDCl_3): δ = 7.62 (d, *J* = 7.2 Hz, 2 H, Ar-H), 7.36 (t, *J* = 7.4 Hz, 2 H, Ar-H), 7.32-7.24 (m, 1 H, Ar-H), 2.75-2.33 (m, 5 H, OH and 2 x CH₂), 1.89 (quint, *J* = 6.9 Hz, 2 H, CH₂), 1.75 (s, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 145.7, 128.2, 127.6, 124.7, 119.1, 85.9, 82.3, 69.8, 33.3, 24.3, 17.9, 16.2.

(19) Preparation of (S)-2-phenylhept-6-en-3-yn-2-ol ((S)-1s) (wj-1-134)

Following Typical Procedure II, the reaction of $[PdCl_2 \cdot (R) - DTBM-SEGphos]$ (13.6 mg, 0.01 mmol), $(PhO)_2PO_2H$ (12.6 mg, 0.05 mmol), *rac*-1s (93.1 mg, 0.5 mmol), and H₂O (180 µL, d = 1.0 g/mL, 180.0 mg, 10.0 mmol) in toluene (2.5 mL) afforded the product (*S*)-1s (27.3 mg, 29%) (57% NMR yield of (*S*)-2s was formed with 43% of (*S*)-1s remained based on ¹H NMR analysis of the crude product) [eluent: petroleum ether / ethyl ether / dichloromethane = 30/1/1 (960 mL): 96% ee (HPLC conditions: AS-H

column, hexane/^{*i*}PrOH = 98/2, 1.0 mL/min, λ = 214 nm, t_R (minor) = 10.0 min, t_R (major) = 12.4 min); oil; ¹H NMR (400 MHz, CDCl₃): δ = 7.66 (d, J = 7.6 Hz, 2 H, Ar-H), 7.36 (t, J = 7.6 Hz, 2 H, Ar-H), 7.31-7.23 (m, 1 H, Ar-H), 5.91-5.78 (m, 1 H, CH), 5.35 (dd, J_1 = 16.8 Hz, J_2 = 1.6 Hz, 1 H, one proton of =CH₂), 5.14 (dd, J_1 = 10.0 Hz, J_2 = 1.6 Hz, 1 H, one proton of =CH₂), 3.10-3.03 (m, 2 H, CH₂), 2.38 (s, 1 H, OH), 1.77 (s, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 145.9, 132.3, 128.2, 127.6, 124.9, 116.3, 86.2, 82.0, 70.0, 33.5, 23.0.

(20) Preparation of (S)-3-(o-tolyl)oct-4-yn-3-ol ((S)-1t) (wj-1-122-1)

Following Typical Procedure II, the reaction of [PdCl₂•(*R*)-DTBM-SEGphos] (13.7 mg, 0.01 mmol), (PhO)₂PO₂H (14.9 mg, 0.06 mmol), *rac*-1t (107.7 mg, 0.5 mmol), and H₂O (180 µL, d = 1.0 g/mL, 180.0 mg, 10.0 mmol) in toluene (2.5 mL) afforded the product (*S*)-1t (40.8 mg, 38%) (57% NMR yield of (*S*)-2t was formed with 43% of (*S*)-1t remained based on ¹H NMR analysis of the crude product) [eluent: petroleum ether / ethyl ether / dichloromethane = 50/1/1 (520 mL), then petroleum ether / ethyl acetate = 8/1 (360 mL)]: 95% ee (HPLC conditions: AS-H column, hexane/^{*i*}PrOH = 98/2, 1.0 mL/min, λ = 214 nm, *t_R* (minor) = 5.5 min, *t_R* (major) = 7.0 min); oil; ¹H NMR (400 MHz, CDCl₃): δ = 7.76-7.69 (m, 1 H, Ar-H), 7.21-7.12 (m, 3 H, Ar-H), 2.58 (s, 3 H, CH₃), 2.28-2.20 (m, 3 H, CH₂ and OH), 2.09-1.90 (m, 2 H, CH₂), 1.63-1.51 (m, 2 H, CH₂), 1.06-0.92 (m, 6 H, 2 x CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 142.0, 135.4, 132.2, 127.3, 126.2, 125.4, 86.5, 83.1, 73.8, 35.2, 22.0, 21.3, 20.8, 13.6, 8.9.

Synthesis of chiral 2,3-allenoic acids

(1) Preparation of (S)-2-butyl-4-phenyl-2,3-pentadienoic acid ((S)-2a) (wj-1-013-2)

Following Typical Procedure II, the reaction of $[PdCl_2 \cdot (R)$ -DTBM-SEGphos] (13.5 mg, 0.01 mmol), (PhO)₂PO₂H (12.4 mg, 0.05 mmol), *rac*-1a (102.5 mg, 0.5 mmol), and H₂O (180 µL, d = 1.0 g/mL, 18.0 mg, 10 mmol) in toluene (2.5 mL) afforded the product (*S*)-2a (51.2 mg, 44%) (46% NMR yield of (*S*)-2a, 1% of 1a', and 1% of (*E*)-2a' were formed with 54% of (*S*)-1a remained based on ¹H NMR analysis of the crude product) [eluent: petroleum ether / ethyl ether / dichloromethane = 30/1/1 (640 mL), then petroleum ether / ethyl acetate = 10/1 (440 mL)]: 90% ee (HPLC conditions: AS-H column, hexane/ⁱPrOH = 98/2, 1.0 mL/min, λ = 214 nm, *t*_R (major) = 8.6 min, *t*_R (minor) = 11.6 min); solid; ¹H NMR (400 MHz, CDCl₃): δ = 7.42-7.29 (m, 4 H, Ar-H), 7.28-7.21 (m, 1 H, Ar-H), 2.32 (t, *J* = 7.6 Hz, 2 H, CH₂), 2.19 (s, 3 H, CH₃), 1.52-1.42 (m, 2 H, CH₂), 1.40-1.29 (m, 2 H, CH₂), 0.88 (t, *J* = 7.2 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 212.6, 172.8, 135.0, 128.5, 127.6, 126.1, 105.2, 101.8, 30.2, 28.3, 22.2, 16.3, 13.8.

(2) Preparation of (S)-2-butyl-4-(2-methylphenyl)-2,3-pentadienoic acid ((S)-2b) (wj-1-016-2)

Following Typical Procedure II, the reaction of $[PdCl_2 \cdot (R) - DTBM-SEGphos](13.4 mg, 0.01 mmol)$, and $(PhO)_2PO_2H$ (12.6 mg, 0.05 mmol), *rac*-1b (108.1 mg, 0.5 mmol), and H₂O (180 µL, d = 1.0 g/mL, 18.0 mg, 10 mmol) in toluene (2.5 mL) afforded the product (*S*)-2b (50.2 mg, 41%) (47% NMR yield of (*S*)-2b and 3% of (*E*)-2b' were

formed with 51% of (*S*)-1**b** remained based on ¹H NMR analysis of the crude product) [eluent: petroleum ether / ethyl ether / dichloromethane = 30/1/1 (480 mL), then petroleum ether / ethyl acetate = 10/1 (440 mL)]: 92% ee (HPLC conditions: AS-H column, hexane/^{*i*}PrOH = 98/2, 1.0 mL/min, λ = 214 nm, t_R (major) = 7.1 min, t_R (minor) = 10.1 min); oil; ¹H NMR (400 MHz, CDCl₃): δ = 7.29-7.23 (m, 1 H, Ar-H), 7.21-7.14 (m, 3 H, Ar-H), 2.40 (s, 3 H, CH₃), 2.35-2.08 (m, 5 H, CH₂ and CH₃), 1.52-1.41 (m, 2 H, CH₂), 1.40-1.28 (m, 2 H, CH₂), 0.90 (t, *J* = 7.4 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 210.1, 173.4, 136.2, 136.0, 130.6, 127.9, 127.6, 125.9, 104.6, 98.9, 30.1, 28.1, 22.2, 20.3, 19.9, 13.8.

(3) Preparation of (S)-2-butyl-4-(3-methylphenyl)-2,3-pentadienoic acid ((S)-2c) (wj-1-019-2)

Following Typical Procedure II, the reaction of $[PdCl_{2} \cdot (R)$ -DTBM-SEGphos] (13.7 mg, 0.01 mmol), (PhO)₂PO₂H (12.5 mg, 0.05 mmol), *rac*-1c (109.0 mg, 0.5 mmol), and H₂O (180 µL, d = 1.0 g/mL, 180.0 mg, 10 mmol) in toluene (2.5 mL) afforded the product (*S*)-2c (48.5 mg, 39%) (43% NMR yield of (*S*)-2c, 2% of 1c', and 1% of (*E*)-2c' were formed with 56% of (*S*)-1c remained based on ¹H NMR analysis of the crude product) [eluent: petroleum ether / ethyl ether / dichloromethane = 30/1/1 (480 mL), then petroleum ether / ethyl acetate =10/1 (440 mL)]: 91% ee (HPLC conditions: AS-H column, hexane/ⁱPrOH = 98/2, 1.0 mL/min, λ = 214 nm, *t*_R (major) = 7.3 min, *t*_R (minor) = 9.3 min); solid; ¹H NMR (400 MHz, CDCl₃): δ = 7.26-7.12 (m, 3 H, Ar-H), 7.06 (d, *J* = 7.2 Hz, 1 H, Ar-H), 2.40-2.26 (m, 5 H, CH₂ and CH₃), 2.18 (s, 3 H, CH₃), 1.53-1.41 (m, 2 H, CH₂), 1.40-1.29 (m, 2 H, CH₂), 0.88 (t, *J* = 7.2 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 212.6, 172.8, 138.1, 134.9, 128.42, 128.38, 126.8, 123.2, 105.2, 101.6, 30.2, 28.3, 22.2, 21.4, 16.4, 13.8.

(4) Preparation of (S)-2-butyl-4-(4-methylphenyl)-2,3-pentadienoic acid ((S)-2w) (wj-1-022-2)

Following Typical Procedure II, the reaction of [PdCl₂•(*R*)-DTBM-SEGphos] (13.5 mg, 0.01 mmol), (PhO)₂PO₂H (12.6 mg, 0.05 mmol), *rac*-**1w** (108.7 mg, 0.5 mmol), and H₂O (180 µL, d = 1.0 g/mL, 180.0 mg, 10 mmol) in toluene (2.5 mL) afforded the product (*S*)-**2w** (45.7 mg, 37%) (37% NMR yield of (*S*)-**2w** and 10% of **1w**' were formed with 57% of (*S*)-**1w** remained based on ¹H NMR analysis of the crude product) [eluent: petroleum ether / ethyl ether / dichloromethane = 30/1/1 (480 mL), then petroleum ether / ethyl acetate = 10/1 (440 mL)]: 91% ee (HPLC conditions: AS-H column, hexane/^{*i*}PrOH = 98/2, 1.0 mL/min, λ = 214 nm, t_R (major) = 9.4 min, t_R (minor) = 10.7 min); solid; ¹H NMR (400 MHz, CDCl₃): δ = 7.27 (d, *J* = 8.0 Hz, 2 H, Ar-H), 7.14 (d, *J* = 7.6 Hz, 2 H, Ar-H), 2.37-2.25 (m, 5 H, CH₂ and CH₃), 2.17 (s, 3 H, CH₃), 1.50-1.40 (m, 2 H, CH₂), 1.40-1.28 (m, 2 H, CH₂), 0.87 (t, *J* = 7.2 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 212.4, 172.6, 137.4, 132.0, 129.3, 126.0, 105.1, 101.6, 30.2, 28.4, 22.2, 21.1, 16.3, 13.8.

(5) Preparation of (*S*)-2-butyl-4-(3-methoxypheny)-2,3-pentadienoic acid ((*S*)-2d) (wj-1-030-2)

Following Typical Procedure II, the reaction of $[PdCl_2 \cdot (R) - DTBM-SEGphos](13.7 mg, 0.01 mmol), (PhO)_2PO_2H (12.6 mg, 0.05 mmol),$ *rac*-1d (118.0 mg, 0.5 mmol), and H₂O (180 µL, d = 1.0 g/mL, 180.0 mg, 10 mmol) in toluene (2.5 mL) afforded the product (*S*)-2d (50.6 mg, 38%) (42% NMR yield of (*S*)-2d , 1% of 1d', and 1% of (*E*)-

2d' were formed with 56% of (*S*)-1d remained based on ¹H NMR analysis of the crude product) [eluent: petroleum ether / ethyl ether / dichloromethane = 30/1/1 (480 mL), then petroleum ether / ethyl acetate = 10/1 (660 mL)]: 91% ee (HPLC conditions: AS-H column, hexane/^{*i*}PrOH = 98/2, 1.0 mL/min, λ = 214 nm, t_R (major) = 12.0 min, t_R (minor) = 16.2 min); solid; ¹H NMR (400 MHz, CDCl₃): δ = 7.26 (t, *J* = 8.0 Hz, 1 H, Ar-H), 6.98 (d, *J* = 8.0 Hz, 1 H, Ar-H), 6.92 (s, 1 H, Ar-H), 6.80 (dd, *J*₁ = 8.0 Hz, *J*₂ = 2.0 Hz, 1 H, Ar-H), 3.80 (s, 3 H, OCH₃), 2.32 (t, *J* = 7.6 Hz, 2 H, CH₂), 2.18 (s, 3 H, CH₃), 1.51-1.40 (m, 2 H, CH₂), 1.40-1.29 (m, 2 H, CH₂), 0.88 (t, *J* = 7.2 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 212.6, 172.5, 159.8, 136.6, 129.5, 118.6, 112.9, 112.0, 105.2, 101.8, 55.2, 30.2, 28.3, 22.3, 16.4, 13.8.

(6) Preparation of (S)-2-butyl-4-(4-chlorophenyl)-2,3-pentadienoic acid ((S)-2e) (wj-1-025-2)

Following Typical Procedure II, the reaction of $[PdCl_{2}(R)-DTBM-SEGphos](13.5 mg, 0.01 mmol), (PhO)_2PO_2H (12.6 mg, 0.05 mmol),$ *rac*-1e (117.4 mg, 0.5 mmol), and H₂O (180 µL, d = 1.0 g/mL, 180.0 mg, 10 mmol) in toluene (2.5 mL) afforded the product (*S*)-2e (53.1 mg, 40%) (40% NMR yield of (*S*)-2e, 1% of 1e^{*}, and 2% of (*E*)-2e^{*} were formed with 54% of (*S* $)-1e remained based on ¹H NMR analysis of the crude product) [eluent: petroleum ether / ethyl ether / dichloromethane = 30/1/1 (480mL), then petroleum ether / ethyl acetate = 10/1 (550 mL)]: 91% ee (HPLC conditions: AS-H column, hexane/ⁱPrOH = 98/2, 1.0 mL/min, <math>\lambda$ = 214 nm, *t*_R (major) = 9.3 min, *t*_R (minor) = 12.4 min); solid; ¹H NMR (400 MHz, CDCl₃): δ = 7.30 (s, 4 H, Ar-H), 2.32 (t, *J* = 7.4 Hz, 2 H, CH₂), 2.17 (s, 3 H, CH₃), 1.50-1.40 (m, 2 H, CH₂), 1.39-1.28 (m, 2 H, CH₂), 0.88 (t, *J* = 7.2 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 212.4, 172.2, 133.6, 133.4, 128.7, 127.3, 104.4, 102.1, 30.2, 28.3, 22.2, 16.3, 13.8.

(7) Preparation of (S)-2-butyl-4-(4-bromophenyl)-2,3-pentadienoic acid ((S)-2f) (wj-1-031-2)

Following Typical Procedure II, the reaction of [PdCl₂•(*R*)-DTBM-SEGphos] (13.6 mg, 0.01 mmol), (PhO)₂PO₂H (12.5 mg, 0.05 mmol), *rac*-1f (140.1 mg, 0.5 mmol), and H₂O (180 µL, d = 1.0 g/mL, 180.0 mg, 10 mmol) in toluene (2.5 mL) afforded the product (*S*)-2f (70.9 mg, 46%) (47% NMR yield of (*S*)-2f and 2% of (*E*)-2f' were formed with 49% of (*S*)-1f remained based on ¹H NMR analysis of the crude product) [eluent: petroleum ether / ethyl ether / dichloromethane = 30/1/1 (480 mL), petroleum ether / ethyl acetate = 10/1 (440 mL)]: 93% ee (HPLC conditions: AS-H column, hexane/[/]PrOH = 98/2, 1.0 mL/min, λ = 214 nm, *t*_R (major) = 10.5 min, *t*_R (minor) = 15.0 min); solid; ¹H NMR (400 MHz, CDCl₃): δ = 7.46 (d, *J* = 8.4 Hz, 2 H, Ar-H), 7.24 (d, *J* = 8.4 Hz, 2 H, Ar-H), 2.32 (t, *J* = 7.4 Hz, 2 H, CH₂), 2.17 (s, 3 H, CH₃), 1.50-1.40 (m, 2 H, CH₂), 1.39-1.28 (m, 2 H, CH₂), 0.88 (t, *J* = 7.2 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 212.3, 171.9, 134.1, 131.7, 127.6, 121.6, 104.5, 102.1, 30.2, 28.3, 22.2, 16.3, 13.8.

(8) Preparation of (S)-2-butyl-4-(4-(methoxycarbonyl)phenyl)-2,3-pentadienoic acid ((S)-2g) (wj-1-032-2)

Following Typical Procedure II, the reaction of $[PdCl_2 \cdot (R) - DTBM-SEGphos](13.5 mg, 0.01 mmol), (PhO)_2PO_2H (12.5 mg, 0.05 mmol),$ *rac*-1g (130.0 mg, 0.5 mmol), and H₂O (180 µL, d = 1.0 g/mL, 180.0 mg, 10 mmol) in toluene (2.5 mL) afforded the product (*S*)-2g (74.6 mg, 52%) (52% NMR yield of (*S*)-2g was formed with 48% of

(*S*)-1g remained based on ¹H NMR analysis of the crude product) [eluent: petroleum ether / ethyl ether / dichloromethane = 30/1/1 (480 mL), then petroleum ether / ethyl acetate = 20/1 (840 mL), 10/1(550 mL)]: 96% ee (HPLC conditions: AS-H column, hexane/ⁱPrOH = 95/5, 1.0 mL/min, $\lambda = 214$ nm, t_R (major) = 13.9 min, t_R (minor) = 17.4 min); solid; ¹H NMR (400 MHz, CDCl₃): $\delta = 8.00$ (d, J = 8.4 Hz, 2 H, Ar-H), 7.44 (d, J = 8.0 Hz, 2 H, Ar-H), 3.92 (s, 3 H, OCH₃), 2.34 (t, J = 7.4 Hz, 2 H, CH₂), 2.21 (s, 3 H, CH₃), 1.52-1.41 (m, 2 H, CH₂), 1.40-1.28 (m, 2 H, CH₂), 0.88 (t, J = 7.2 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): $\delta = 213.1, 172.3, 166.8, 139.9, 129.8, 129.0, 125.9, 104.8, 102.3, 52.1, 30.1, 28.2, 22.2, 16.2, 13.8.$

(9) Preparation of (S)-2-butyl-4-(2-naphthyl)-2,3-pentadienoic acid ((S)-2h) (wj-1-047-2)

Following Typical Procedure II, the reaction of $[PdCl_2 \cdot (R)$ -DTBM-SEGphos](13.5 mg, 0.01 mmol), (PhO)₂PO₂H (12.5 mg, 0.05 mmol), *rac*-**1h** (127.0 mg, 0.5 mmol), and H₂O (180 µL, d = 1.0 g/mL, 180.0 mg, 10 mmol) in toluene (2.5 mL) afforded the product (*S*)-**2h** (42.5 mg, 30%) (41% NMR yield of (*S*)-**2h** and 2% of **1h**' were formed with 58% of (*S*)-**1h** remained based on ¹H NMR analysis of the crude product) [eluent: petroleum ether / ethyl ether / dichloromethane = 30/1/1 (480 mL), petroleum ether / ethyl acetate = 10/1 (660 mL)]: 90% ee (HPLC conditions: AS-H column, hexane/¹PrOH = 95/5, 1.0 mL/min, λ = 214 nm, t_R (major) = 6.0 min, t_R (minor) = 7.3 min); solid; ¹H NMR (400 MHz, CDCl₃): δ = 7.86-7.64 (m, 4 H, Ar-H), 7.55-7.34 (m, 3 H, Ar-H), 2.37 (t, *J* = 7.4 Hz, 2 H, CH₂), 2.30 (s, 3 H, CH₃); 1.36-1.44 (m, 2 H, CH₂), 1.43-1.31 (m, 2 H, CH₂), 0.88 (t, *J* = 7.2 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 213.2, 172.7, 133.5, 132.8, 132.4, 128.09, 128.06, 127.6, 126.3, 126.1, 124.8, 124.2, 105.5, 102.1, 30.2, 28.4, 22.3, 16.3, 13.8.

(10) Preparation of (S)-2-butyl-4-(thiophen-3-yl)-2,3-pentadienoic acid ((S)-2x) (wj-1-036-2)

Following Typical Procedure II, the reaction of $[PdCl_2 \cdot (R)$ -DTBM-SEGphos] (13.7 mg, 0.01 mmol), $(PhO)_2PO_2H$ (12.4 mg, 0.05 mmol), *rac*-1x (104.5 mg, 0.5 mmol), and H₂O (180 µL, d = 1.0 g/mL, 180.0 mg, 10 mmol) in toluene (2.5 mL) afforded the product (*S*)-2x (37.6 mg, 32%) (37% NMR yield of (*S*)-2x and 29% of 1x' were formed with 32% of (*S*)-1x remained based on ¹H NMR analysis of the crude product) [eluent: petroleum ether / ethyl ether / dichloromethane = 30/1/1 (480 mL), then petroleum ether / ethyl acetate = 10/1 (440 mL)]: 92% ee (HPLC conditions: AS-H column, hexane/^{*i*}PrOH = 98/2, 1.0 mL/min, λ = 214 nm, t_R (major) = 11.7 min, t_R (minor) = 16.3 min); solid; ¹H NMR (400 MHz, CDCl₃): δ = 7.31-7.22 (m, 1 H, one proton of thienyl), 7.18-7.12 (m, 1 H, one proton of thienyl), 7.04 (d, *J* = 4.8 Hz, 1 H, one proton of thienyl), 2.31 (t, *J* = 7.6 Hz, 2 H, CH₂), 2.17 (s, 3 H, CH₃), 1.53-1.41 (m, 2 H, CH₂), 1.40-1.30 (m, 2 H, CH₂), 0.88 (t, *J* = 7.2 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 212.8, 172.3, 136.6, 126.3, 125.9, 120.6, 101.4, 101.3, 30.3, 28.4, 22.2, 16.7, 13.8.

(11) Preparation of (S)-2-butyl-4-cyclohexyl-2,3-pentadienoic acid ((S)-2i) (wj-1-050-2)

Following Typical Procedure II, the reaction of $[PdCl_2 \cdot (R)-DTBM-SEGphos]$ (13.7 mg, 0.01 mmol), $(PhO)_2PO_2H$ (12.4 mg, 0.05 mmol), *rac-***1i** (104.5 mg, 0.5 mmol), and H₂O (180 µL, d = 1.0 g/mL, 180.0 mg, 10 mmol) in toluene (2.5 mL) afforded the product (*S*)-**2i** (45.6 mg, 38%) [eluent: petroleum ether / diethyl ether / dichloromethane = 30/1/1 (480 mL), then petroleum ether / ethyl acetate = 10/1 (330 mL)]: 97% ee (HPLC conditions: AS-H column, hexane/^{*i*}PrOH = 98/2, 1.0 mL/min, λ = 214 nm, t_R (major) = 5.4 min, t_R (minor) = 7.2 min); oil; ¹H NMR (400 MHz, CDCl₃): δ = 2.27-2.10 (m, 2 H, CH₂), 1.92-1.81 (m, 2 H, CH₂), 1.81-1.70 (m, 5 H, CH₂ and CH₃), 1.70-1.61 (m, 1 H, CH), 1.47-1.03 (m, 10 H, 5 x CH₂), 0.90 (t, *J* = 7.0 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 208.6, 174.0, 109.3, 99.9, 41.8, 31.8, 31.6, 30.4, 28.1, 26.32, 26.26, 26.2, 22.3, 16.4, 13.9.

(12) Preparation of (S)-2-butyl-4,5,5-trimethyl-2,3-hexadienoic acid ((S)-2j) (wj-1-055-2)

Following Typical Procedure II, the reaction of $[PdCl_2 \cdot (R)-DTBM-SEGphos]$ (13.6 mg, 0.01 mmol), $(PhO)_2PO_2H$ (12.5 mg, 0.05 mmol), *rac-***1j** (92.4 mg, 0.5 mmol), and H₂O (180 µL, d = 1.0 g/mL, 180.0 mg, 10 mmol) in toluene (2.5 mL) afforded the product (*S*)-**2j** (48.6 mg, 46%) (51% NMR yield of (*S*)-2**j** with 48% of (*S*)-1**j** remained based on 1H NMR analysis of the crude product) [eluent: petroleum ether / ethyl ether / dichloromethane = 30/1/1 (320 mL), then petroleum ether / ethyl acetate = 10/1 (330 mL)]: 98% ee (HPLC conditions: AD-H column, hexane/ⁱPrOH = 98/2, 1.0 mL/min, λ = 214 nm, t_R (minor) = 7.0 min, t_R (major) = 7.5 min); solid; ¹H NMR (400 MHz, CDCl₃): δ = 2.25-2.10 (m, 2 H, CH₂), 1.77 (s, 3 H, CH₃), 1.48-1.29 (m, 4 H, 2 x CH₂), 1.10 (s, 9 H, 3 x CH₃), 0.90 (t, *J* = 7.0 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 208.1, 174.2, 112.9, 99.5, 34.2, 30.4, 28.8, 28.0, 22.3, 14.0, 13.9.

(13) Preparation of (S)-2-pentyl-4-phenyl-2,3-pentadienoic acid ((S)-2k) (wj-1-046-2)

Following Typical Procedure II, the reaction of $[PdCl_2 \cdot (R)-DTBM-SEGphos]$ (13.6 mg, 0.01 mmol), $(PhO)_2PO_2H$ (12.5 mg, 0.05 mmol), *rac*-1k (107.4 mg, 0.5 mmol), and H₂O (180 µL, d = 1.0 g/mL, 180.0 mg, 10 mmol) in toluene (2.5 mL) afforded the product (*S*)-2k (40.6 mg, 33%) (36% NMR yield of (*S*)-2k, 2% of 1k², and 1% of (*E*)-2k² were formed with 64% of (*S*)-1k remained based on ¹H NMR analysis of the crude product) [eluent: petroleum ether / ethyl ether / dichloromethane = 30/1/1 (480 mL), then petroleum ether / ethyl acetate = 10/1 (440 mL)]: 91% ee (HPLC conditions: AS-H column, hexane/¹PrOH = 98/2, 1.0 mL/min, λ = 214 nm, *t*_R (major) = 7.8 min, *t*_R (minor) = 12.4 min); solid; ¹H NMR (400 MHz, CDCl₃): δ = 7.43-7.30 (m, 4 H, Ar-H), 7.29-7.23 (m, 1 H, Ar-H), 2.32 (t, *J* = 7.6 Hz, 2 H, CH₂), 2.20 (s, 3 H, CH₃), 1.54-1.42 (m, 2 H, CH₂), 1.35-1.22 (m, 4 H, 2 x CH₂), 0.84 (t, *J* = 6.8 Hz, 3 H, CH₃); 1³C NMR (100 MHz, CDCl₃): δ = 212.6, 172.7, 135.1, 128.5, 127.6, 126.1, 105.2, 101.8, 31.3, 28.6, 27.7, 22.4, 16.3, 14.0.

(14) Preparation of (S)-2-hexyl-4-phenyl-2,3-pentadienoic acid ((S)-2l) (wj-1-094-2)

Following Typical Procedure II, the reaction of $[PdCl_2 \cdot (R)-DTBM-SEGphos]$ (13.7 mg, 0.01 mmol), (PhO)₂PO₂H (12.6 mg, 0.05 mmol), *rac*-11 (115.0 mg, 0.5 mmol), and H₂O (180 µL, d = 1.0 g/mL, 180.0 mg, 10 mmol) in toluene (2.5 mL) afforded the product (*S*)-2I (42.0 mg, 33%) (34% NMR yield of (*S*)-2I and 1% of 1I' were formed with 66% of (*S*)-1I remained based on ¹H NMR analysis of the crude product) [eluent: petroleum ether / ethyl ether / dichloromethane = 30/1/1 (448 mL), then petroleum ether / ethyl acetate = 10/1 (660 mL)]: 90% ee (HPLC conditions: AS-H column, hexane/^{*i*}PrOH = 98/2, 1.0 mL/min, λ = 214 nm, *t*_R (major) = 7.5 min, *t*_R (minor) = 13.4 min); solid; ¹H NMR (400 MHz, CDCl₃): δ = 7.44-7.29 (m, 4 H, Ar-H), 7.28-7.22 (m, 1 H, Ar-H), 2.32 (t, *J* = 7.4 Hz, 2 H, CH₂), 2.19 (s, 3 H, CH₃), 1.55-1.41 (m, 2 H, CH₂), 1.37-1.18 (m, 6 H, 3 x CH₂), 0.84 (t, *J* = 6.6 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): $\delta = 212.5, 172.5, 135.0, 128.5, 127.6, 126.1, 105.2, 101.8, 31.6, 28.8, 28.6, 28.0, 22.6, 16.3, 14.0.$

(15) Preparation of (S)-2-heptyl-4-(2-methylphenyl)-2,3-pentadienoic acid ((S)-2m) (wj-1-070-2)

Following Typical Procedure II, the reaction of $[PdCl_2 \cdot (R)-DTBM-SEGphos]$ (13.5 mg, 0.01 mmol), (PhO)₂PO₂H (12.4 mg, 0.05 mmol), *rac*-1m (129.6 mg, 0.5 mmol), and H₂O (180 µL, d = 1.0 g/mL, 180.0 mg, 10 mmol) in toluene (2.5 mL) afforded the product (*S*)-2m (56.9 mg, 40%) (40% NMR yield of (*S*)-2m and 2% of (*E*)-2m' were formed with 62% of (*S*)-1m remained based on ¹H NMR analysis of the crude product) [eluent: petroleum ether / ethyl ether / dichloromethane = 30/1/1 (~420 mL), then petroleum ether / ethyl acetate = 8/1 (360 mL)]: 96% ee (HPLC conditions: AS-H column, hexane/^{*i*}PrOH = 98/2, 1.0 mL/min, λ = 214 nm, *t*_R (major) = 6.2 min, *t*_R (minor) = 10.3 min); oil; ¹H NMR (400 MHz, CDCl₃): δ = 7.29-7.22 (m, 1 H, Ar-H), 7.21-7.10 (m, 3 H, Ar-H), 2.40 (s, 3 H, CH₃), 2.34-2.15 (m, 2 H, CH₂), 2.13 (s, 3 H, CH₃), 1.54-1.40 (m, 2 H, CH₂), 1.35-1.15 (m, 8 H, 4 x CH₂), 0.87 (t, *J* = 6.8 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 210.2, 173.5, 136.3, 136.0, 130.6, 127.9, 127.6, 126.0, 104.6, 98.9, 31.8, 29.11, 29.06, 28.4, 28.0, 22.6, 20.3, 19.9, 14.1.

(16) Preparation of (S)-2-octyl-4-(4-chlorophenyl)-2,3-pentadienoic acid ((S)-2n) (wj-1-074-2)

Following Typical Procedure II, the reaction of $[PdCl_2 \cdot (R) - DTBM - SEGphos]$

(13.6 mg, 0.01 mmol), (PhO)₂PO₂H (12.4 mg, 0.05 mmol), *rac*-1n (146.1 mg, 0.5 mmol), and H₂O (180 µL, d = 1.0 g/mL, 180.0 mg, 10 mmol) in toluene (2.5 mL) afforded the product (*S*)-2n (68.0 mg, 42%) (47% NMR yield of (*S*)-2n, 1% of 1n', and 2% of (*E*)-2n' were formed with 50% of (*S*)-1n remained based on ¹H NMR analysis of the crude product) [eluent: petroleum ether / ethyl ether / dichloromethane = 30/1/1 (480 mL), then petroleum ether / ethyl acetate = 8/1 (630 mL)]: 91% ee (HPLC conditions: AS-H column, hexane/^{*i*}PrOH = 98/2, 1.0 mL/min, λ = 214 nm, *t*_R (major) = 6.4 min, *t*_R (minor) = 9.8 min); solid; ¹H NMR (400 MHz, CDCl₃): δ = 7.30 (s, 4 H, Ar-H), 2.31 (t, *J* = 7.4 Hz, 2 H, CH₂), 2.16 (s, 3 H, CH₃), 1.53-1.40 (m, 2 H, CH₂), 1.34-1.17 (m, 10 H, 5 x CH₂), 0.86 (t, *J* = 7.0 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 212.5, 172.5, 133.6, 133.4, 128.7, 127.3, 104.4, 102.1, 31.8, 29.3, 29.2, 29.1, 28.5, 28.0, 22.6, 16.3, 14.0.

(17) Preparation of (S)-2-(3-methybutyl)-4-phenyl-2,3-pentadienoic acid ((S)-20) (wj-1-066-2)

Following Typical Procedure II, the reaction of $[PdCl_2 \cdot (R)-DTBM-SEGphos]$ (13.7 mg, 0.01 mmol), $(PhO)_2PO_2H$ (12.6 mg, 0.05 mmol), *rac*-10 (107.9 mg, 0.5 mmol), and H₂O (180 µL, d = 1.0 g/mL, 180.0 mg, 10 mmol) in toluene (2.5 mL) afforded the product (*S*)-20 (47.3 mg, 39%) (46% NMR yield of (*S*)-20, 2% of 10², and 1% of (*E*)-20² were formed with 53% of (*S*)-10 remained based on ¹H NMR analysis of the crude product) [eluent: petroleum ether / ethyl ether / dichloromethane = 30/1/1 (384 mL), then petroleum ether / ethyl acetate = 10/1 (660 mL)]: 91% ee (HPLC conditions: AS-H column, hexane/^{*i*}PrOH = 98/2, 1.0 mL/min, λ = 214 nm, *t*_R (major) = 7.8 min, *t*_R (minor) = 11.0 min); solid; ¹H NMR (400 MHz, CDCl₃): δ = 7.42-7.29 (m, 4 H, Ar-H), 7.29-7.21 (m, 1 H, Ar-H), 2.33 (t, *J* = 7.8 Hz, 2 H, CH₃), 2.19 (s, 3 H, CH₃), 1.65-1.52 (m, 1 H, CH), 1.40-1.31 (m, 2 H, CH₂), 0.87 (t, *J* = 6.0 Hz, 6 H, 2 x CH₃); ¹³**C NMR** (100 MHz, CDCl₃): δ = 212.5, 172.8, 135.0, 128.5, 127.6, 126.1, 105.2, 102.0, 37.1, 27.6, 26.6, 22.44, 22.40, 16.3.

(18) Preparation of (S)-2-(4-chlorobutyl)-4-phenyl-2,3-pentadienoic acid ((S)-2p) (wj-1-064-2)

Following Typical Procedure II, the reaction of $[PdCl_2 \cdot (R)$ -DTBM-SEGphos] (13.6 mg, 0.01 mmol), $(PhO)_2PO_2H$ (12.4 mg, 0.05 mmol), *rac*-1p (117.7 mg, 0.5 mmol), and H₂O (180 µL, d = 1.0 g/mL, 180.0 mg, 10 mmol) in toluene (2.5 mL) afforded the product (*S*)-2p (60.2 mg, 46%) (45% NMR yield of (*S*)-2p, 1% of 1p', and 2% of (*E*)-2p' were formed with 53% of (*S*)-1p remained based on ¹H NMR analysis of the crude product) [eluent: petroleum ether / ethyl ether / dichloromethane = 30/1/1 (960 mL), then petroleum ether / ethyl acetate = 8/1 (900 mL)]: 91% ee (HPLC conditions: AS-H column, hexane/^{*i*}PrOH = 95/5, 1.0 mL/min, λ = 214 nm, *t*_R (major) = 8.0 min, *t*_R (minor) = 10.7 min); solid; ¹H NMR (400 MHz, CDCl₃): δ = 7.49-7.30 (m, 4 H, Ar-H), 7.30-7.22 (m, 1 H, Ar-H), 3.50 (t, *J* = 6.6 Hz, 2 H, CH₂), 2.36 (t, *J* = 7.4 Hz, 2 H, CH₂), 2.20 (s, 3 H, CH₃), 1.88-1.75 (m, 2 H, CH₂), 1.70-1.58 (m, 2 H, CH₂); ¹³C NMR (100 MHz, CDCl₃): δ = 212.5, 172.5, 134.7, 128.6, 127.8, 126.1, 105.7, 101.1, 44.6, 32.0, 27.8, 25.3, 16.3.

(19) Preparation of (S)-2-phenethyl-4-phenyl-2,3-pentadienoic acid ((S)-2q) (wj-1-056-2)

Following Typical Procedure II, the reaction of $[PdCl_2 \cdot (R)-DTBM-SEGphos]$ (13.7 mg, 0.01 mmol), $(PhO)_2PO_2H$ (12.5 mg, 0.05 mmol), *rac-***1q** (125.1 mg, 0.5

mmol), and H₂O (180 µL, d = 1.0 g/mL, 180.0 mg, 10 mmol) in toluene (2.5 mL) afforded the product (*S*)-**2q** (47.5 mg, 34%) (35% NMR yield of (*S*)-**2q**, 2% of **1q**', and 2% of (*E*)-**2p**' were formed with 63% of (*S*)-**1q** remained based on ¹H NMR analysis of the crude product) [eluent: petroleum ether / ethyl ether / dichloromethane = 22/1/1 (480 mL), then petroleum ether / ethyl acetate = 8/1 (450 mL)]: 92% ee (HPLC conditions: AS-H column, hexane/^{*i*}PrOH = 98/2, 1.0 mL/min, λ = 214 nm, *t*_R (major) = 14.3 min, *t*_R (minor) = 24.7 min); solid; ¹H NMR (400 MHz, CDCl₃): δ = 7.35-7.19 (m, 7 H, Ar-H), 7.19-7.11 (m, 3 H, Ar-H), 2.83 (t, *J* = 7.4 Hz, 2 H, CH₃), 2.75-2.60 (m, 2 H, CH₂), 2.02 (s, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 212.9, 172.5, 141.1, 134.7, 128.5, 128.3, 127.6, 126.1, 125.9, 105.6, 100.7, 34.1, 30.3, 16.1.

(20) Preparation of (S)-2-(3-cyanopropyl)-4-phenyl-2,3-pentadienoic acid ((S)-2r) (wj-1-073-2)

To a Schlenk flask (25 mL) were added [PdCl₂•(*R*)-DTBM-SEGphos] (13.6 mg, 0.01 mmol) and (PhO)₂PO₂H (12.5 mg, 0.05 mmol). After addition, the flask was degassed and refilled with Ar for three times to ensure the complete exclusion of air. Then *rac*-**1r** (106.4 mg, 0.5 mmol)/toluene (1.5 mL) and H₂O (180 μ L, d = 1.0 g/mL, 180.0 mg, 10 mmol)/toluene (1.0 mL) were added sequentially. After that, the Ar gas line was closed. The resulting mixture was then frozen with a liquid nitrogen bath, degassed to remove the argon inside completely, and refilled with CO by a balloon of CO (about 1 L) for three times. Then the liquid nitrogen bath was removed and the resulting mixture was allowed to stand until completely thawed, vigorously stirred at 20 °C with a balloon of CO for 24 h, warmed up to room temperature. And the crude product treated with H₂O₂ (20 μ L, d = 1.13 g/mL, 30 wt. % in H₂O) for 30 min before stopping the reaction, diluted with 5 mL of ethyl acetate, filtered through a short column silica gel (3 cm) eluted with ethyl acetate (20 mL), and concentrated. The crude product

was analyzed by ¹H NMR with CH₂Br₂ (35 µL, 2.477 g/mL, 0.5 mmol) as the internal standard: 36% NMR yield of (*S*)-**2r**, 1% of **1r**', and 5% of (*E*)-**2r**' were formed with 59% of (*S*)-**1r** remained. The residue was purified by chromatography on silica gel to afford the product (*S*)-**2r** (35.8 mg, 29%, purity: 97%) [eluent: petroleum ether / ethyl acetate = 6/1 (490 mL), 5/1 (1080 mL)]: 98% ee (HPLC conditions: AS-H column, hexane/^{*i*}PrOH = 90/10, 1.0 mL/min, λ = 214 nm, t_R (major) = 13.9 min, t_R (minor) = 16.7 min); solid; ¹H NMR (400 MHz, CDCl₃): δ = 7.41-7.23 (m[, 5 H, Ar-H), 2.48 (t, *J* = 7.4 Hz, 2 H, CH₂), 2.35 (t, *J* = 7.2 Hz, 2 H, CH₂), 2.22 (s, 3 H, CH₃), 1.86 (quint, *J* = 7.3 Hz, 2 H, CH₂); ¹³C NMR (100 MHz, CDCl₃): δ = 212.4, 171.9, 134.3, 128.7, 128.0, 126.1, 119.2, 106.4, 99.7, 27.7, 24.0, 16.5, 16.4.

(21) Preparation of (S)-2-allyl-4-phenyl-2,3-pentadienoic acid ((S)-2s) (wj-1-136)

Following Typical Procedure II, the reaction of $[PdCl_2 \cdot (R)-DTBM-SEGphos]$ (13.7 mg, 0.01 mmol), (PhO)₂PO₂H (12.4 mg, 0.05 mmol), *rac*-1s (93.2 mg, 0.5 mmol), and H₂O (180 µL, d = 1.0 g/mL, 180.0 mg, 10 mmol) in toluene (2.5 mL) afforded the product (*S*)-2s (29.9 mg, 28%) (32% NMR yield of (*S*)-2s was formed with 69% of (*S*)-1s remained based on ¹H NMR analysis of the crude product) [eluent: petroleum ether / ethyl acetate = 30/1 (940 mL), 10/1 (440 mL)]: 90% ee (HPLC conditions: AS-H column, hexane/^{*i*}PrOH = 98/2, 1.0 mL/min, λ = 214 nm, *t*_R (major) = 11.1 min, *t*_R (minor) = 14.3 min); solid; ¹H NMR (400 MHz, CDCl₃): δ = 7.47-7.30 (m, 4 H, Ar-H), 7.30-7.22 (m, 1 H, Ar-H), 5.93-5.80 (m, 1 H, =CH), 5.13 (d, *J* = 17.2 Hz, 1 H, one proton of =CH₂), 5.03 (d, *J* = 10.0 Hz, 1 H, one proton of =CH₂), 3.09 (d, *J* = 6.4 Hz, 2 H, CH₂), 2.19 (s, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 213.0, 172.2, 134.8, 134.7, 128.6, 127.7, 126.1, 116.5, 105.8, 100.2, 33.1, 16.2.

(22) Preparation of (S)-4-(4-bromophenyl)-2-isopropyl-2,3-pentadienoic acid ((S)-2u) (wj-1-115-2)

Following Typical Procedure II, the reaction of $[PdCl_2 \bullet(R)-DTBM-SEGphos]$ (27.2 mg, 0.02 mmol), $(PhO)_2PO_2H$ (12.4 mg, 0.05 mmol), *rac-*1u (133.6 mg, 0.5 mmol), and H₂O (180 µL, d = 1.0 g/mL, 180.0 mg, 10 mmol) in toluene (2.5 mL) afforded the product (*S*)-**2u** (68.3 mg, 46%) (54% NMR yield of (*S*)-**2u** and 2% of 1u' were formed with 44% of (*S*)-1u remained based on ¹H NMR analysis of the crude product) [eluent: petroleum ether / ethyl ether / dichloromethane = 50/1/1 (832 mL), 8/1 (450 mL)]: >99% ee (HPLC conditions: AS-H column, hexane/ⁱPrOH = 98/2, 1.0 mL/min, λ = 214 nm, *t*_R (major) = 11.5 min); solid; ¹H NMR (400 MHz, CDCl₃): δ = 7.46 (d, *J* = 8.8 Hz, 2 H, Ar-H), 7.25 (d, *J* = 8.8 Hz, 2 H, Ar-H), 2.85-2.74 (m, 1 H, CH), 2.18 (s, 3 H, CH₃), 1.09 (d, *J* = 6.8 Hz, 6 H, 2 x CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 211.3, 172.0, 134.0, 131.7, 127.5, 121.5, 109.0, 105.9, 28.2, 22.13, 22.06, 16.3.

(23) Preparation of (S)-2-propyl-4-(2-methylphenyl)-2,3-hexadienoic acid ((S)-2t) (wj-1-083-2)

Following Typical Procedure II, the reaction of $[PdCl_2 \cdot (R)-DTBM-SEGphos]$ (13.5 mg, 0.01 mmol), $(PhO)_2PO_2H$ (12.6 mg, 0.05 mmol), *rac*-1t (108.0 mg, 0.5 mmol), and H₂O (180 µL, d = 1.0 g/mL, 180.0 mg, 10 mmol) in toluene (2.5 mL) afforded the product (*S*)-2t (59.8 mg, 49%) (50% NMR yield of (*S*)-2t was formed with 49% of (*S*)-1t remained based on ¹H NMR analysis of the crude product) [eluent: petroleum ether / ethyl ether / dichloromethane = 60/1/1 (868 mL), then petroleum ether / ethyl acetate = 20/1 (420 mL)]: 92% ee (HPLC conditions: AS-H column, hexane/^{*i*}PrOH = 98/2, 1.0 mL/min, λ = 214 nm, t_R (major) = 6.4 min, t_R (minor) = 10.0 min); oil; ¹H NMR (400 MHz, CDCl₃): δ = 7.28-7.10 (m, 4 H, Ar-H), 2.50-2.33 (m, 5 H, CH₂ and CH₃), 2.33-2.12 (m, 2 H, CH₂), 1.60-1.42 (m, 2 H, CH₂), 1.12 (t, *J* = 7.2 Hz, 3 H, CH₃), 0.93 (t, *J* = 7.0 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 209.1, 173.9, 136.1, 136.0, 130.4, 128.4, 127.5, 125.8, 111.2, 100.5, 30.5, 27.1, 21.4, 20.1, 13.8, 12.2.

(24) Preparation of (S)-2-butyl-4-(2-methylphenyl)-2,3-hexadienoic acid ((S)-2v) (wj-1-112-2)

Following Typical Procedure II, the reaction of $[PdCl_2 \cdot (R)$ -DTBM-SEGphos] (13.5 mg, 0.01 mmol), $(PhO)_2PO_2H$ (12.5 mg, 0.05 mmol), *rac*-1v (115.2 mg, 0.5 mmol), and H₂O (180 µL, d = 1.0 g/mL, 180.0 mg, 10 mmol) in toluene (2.5 mL) afforded the product (*S*)-2v (38.6 mg, 30%) (36% NMR yield of (*S*)-2v was formed with 64% of (*S*)-1v remained based on ¹H NMR analysis of the crude product) [eluent: petroleum ether / ethyl ether / dichloromethane = 40/1/1 (420 mL), then petroleum ether / ethyl acetate = 10/1 (440 mL)]: 92% ee (HPLC conditions: AS-H column, hexane/PrOH = 98/2, 1.0 mL/min, λ = 214 nm, *t*_R (major) = 6.3 min, *t*_R (minor) = 10.5 min); oil; ¹H NMR (400 MHz, CDCl_3): δ = 7.29-7.12 (m, 4 H, Ar-H), 2.48-2.34 (m, 5 H, CH₂ and CH₃), 2.33-2.16 (m, 2 H, CH₂), 1.52-1.42 (m, 2 H, CH₂), 1.40-1.30 (m, 2 H, CH₂), 1.12 (t, *J* = 7.2 Hz, 3 H, CH₃), 0.90 (t, *J* = 7.2 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 209.1, 173.8, 136.06, 135.03, 130.4, 128.4, 127.5, 125.8, 111.3, 100.7, 30.3, 28.1, 27.1, 22.3, 20.1, 13.9, 12.2.

(25) Preparation of (S)-2-butyl-4,5-diphenyl-2,3-pentadienoic acid ((S)-2y) (wj-1-

Following Typical Procedure II, the reaction of [PdCl₂•(*R*)-DTBM-SEGphos] (13.5 g, 0.01 mmol), (PhO)₂PO₂H (12.5mg, 0.05 mmol), *rac*-**1y** (138.4 mg, 0.5 mmol), and H₂O (180 µL, d = 1.0 g/mL, 18.0 mg, 10 mmol) in toluene (2.5 mL) afforded the product (*S*)-**2y** (23.4 mg, 15%) (19% NMR yield of (*S*)-**2y** was formed with 82% of (*S*)-**1y** remained based on ¹H NMR analysis of the crude product) [eluent: petroleum ether / ethyl ether / dichloromethane = 30/1/1 (384 mL), then petroleum ether / ethyl acetate = 8/1 (450 mL)]: 71% ee (HPLC conditions: AS-H column, hexane/¹PrOH = 98/2, 1.0 mL/min, λ = 214 nm, *t*_R (major) = 10.0 min, *t*_R (minor) = 14.7 min); solid; m.p. 94.1-95.0 °C (petroleum ether/DCM); ¹H NMR (400 MHz, CDCl₃): δ = 7.44-7.15 (m, 10 H, Ar-H), 4.00-3.77 (m, 2 H, CH₂), 2.29-2.10 (m, 2 H, CH₂), 1.38-1.19 (m, 4 H, 2 x CH₂), 0.84 (t, *J* = 6.8 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 213.5, 172.5, 138.1, 134.3, 128.9, 128.6, 128.3, 127.7, 126.6, 126.5, 109.8, 103.3, 36.9, 30.2, 28.3, 22.3, 13.8; **IR** (neat): *v* = 3085, 3000, 2955, 2930, 2866, 2651, 2543, 1937, 1686, 1419, 1281 cm⁻¹; **MS** (70 eV, EI) *m/z* (%): 306 (M⁺, 9.32), 91 (100); **HRMS** (EI) calcd for C₂₁H₂₂O₂ [M⁺]: 306.1614, found: 306.1618.

Gram scale reactions

(1) 1-gram scale synthesis preparation of (S)-2-phenyloct-3-yn-2-ol ((S)-1a) (wj-1-159)

Following Typical Procedure II, the reaction of $[PdCl_2 \cdot (R)$ -DTBM-SEGphos] (135.9 mg, 0.1 mmol), (PhO)₂PO₂H (125.2 mg, 0.05 mmol), *rac*-1a (1.0263 g, 5.0 mmol), and H₂O (1.8 mL, d = 1.0 g/mL, 1.8 mg, 100.0 mmol) in toluene (25.0 mL) afforded the product (*S*)-1a (427.1 mg, 42%) (54% NMR yield of (*S*)-2a, 1% of enyne, and 2% of (*E*)-2a' were formed with 45% of (*S*)-1a remained based on ¹H NMR analysis of the crude product) [eluent: petroleum ether / ethyl ether / dichloromethane = 30/1/1 (2880 mL), then petroleum ether / ethyl acetate = 4/1 (750 mL)]: 92% ee (HPLC conditions: AS-H column, hexane/¹PrOH = 98/2, 1.0 mL/min, λ = 214 nm, t_R (minor) = 7.0 min, t_R (major) = 10.5 min); oil; ¹H NMR (400 MHz, CDCl₃): δ = 7.68-7.62 (m, 2 H, Ar-H), 7.38-7.31 (m, 2 H, Ar-H), 7.30-7.24 (m, 1 H, Ar-H), 2.35 (s, 1 H, OH), 2.28 (t, *J* = 7.0 Hz, 2 H, CH₂), 1.74 (s, 3 H, CH₃), 1.58-1.49 (m, 2 H, CH₂), 1.49-1.38 (m, 2 H, CH₂), 0.93 (t, *J* = 7.2 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 146.2, 128.2, 127.5, 124.9, 85.6, 83.7, 70.0, 33.5, 30.7, 22.0, 18.4, 13.6.

(2) 10-gram scale synthesis preparation of (S)-2-butyl-4-phenyl-2,3-pentadienoic acid ((S)-2a) (wj-1-178)

Following Typical Procedure II, the reaction of $[PdCl_2 \cdot (R)-DTBM-SEGphos]$ (1.0421 g, 0.77 mmol), (PhO)₂PO₂H (1.2533 g, 5.0 mmol), *rac*-1a (10.1185 mg, 50.0 mmol), and H₂O (18.0 mL, d = 1.0 g/mL, 18.0 g, 1.0 mol) in toluene (250 mL) afforded
(*S*)-**2a** (4.2417 g, 36%, purity: 98%) (53% NMR yield of (*S*)-**2a**, 4% of enyne, and 4% of (*E*)-**2a**' were formed with 41% of (*S*)-**1a** remained based on ¹H NMR analysis of the crude product) [eluent: petroleum ether / ethyl ether / dichloromethane = 30/1/1 (4800 mL), then petroleum ether / ethyl acetate = 4/1 (1500 mL)]: 90% ee (HPLC conditions: AS-H column, hexane/^{*i*}PrOH = 98/2, 1.0 mL/min, λ = 214 nm, t_R (major) = 8.5 min, t_R (minor) = 11.5 min); solid; ¹H NMR (400 MHz, CDCl₃): δ = 7.43-7.30 (m, 4 H, Ar-H), 7.28-7.23 (m, 1 H, Ar-H), 2.33 (t, *J* = 7.6 Hz, 2 H, CH₂), 2.20 (s, 3 H, CH₃), 1.55-1.42 (m, 2 H, CH₂), 1.41-1.28 (m, 2 H, CH₂), 0.88 (t, *J* = 7.2 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 212.5, 172.4, 135.0, 128.6, 127.6, 126.1, 105.2, 101.8, 30.2, 28.3, 22.3, 16.3, 13.8.

(3) 1-gram scale synthesis preparation of (S)-2-butyl-4-(4-bromophenyl)-2,3pentadienoic acid ((S)-2f) (wj-2-115)

Following Typical Procedure II, the reaction of $[PdCl_2 \cdot (R)-DTBM-SEGphos]$ (135.5 mg, 0.1 mmol), $(PhO)_2PO_2H$ (125.2 mg, 0.5 mmol), *rac*-**1f** (1.4062 g, 5.0 mmol), and H₂O (1.8 mL, d = 1.0 g/mL, 1.8 g, 100 mmol) in toluene (25 mL) afforded the product (*S*)-**2f** (605.7 mg, 39%) (44% NMR yield of (*S*)-**2f** was formed with 57% of (*S*)-**1f** remained based on ¹H NMR analysis of the crude product) [eluent: petroleum ether / ethyl ether / dichloromethane = 30/1/1 (2400 mL), then petroleum ether / ethyl acetate = 10/1 (1100 mL) to 5/1(840 mL)]: 94% ee (HPLC conditions: AS-H column, hexane/^{*i*}PrOH = 98/2, 1.0 mL/min, λ = 214 nm, *t*_R (major) = 10.5 min, *t*_R (minor) = 15.0 min); solid; ¹H NMR (400 MHz, CDCl₃): δ = 7.50-7.42 (m, 2 H, Ar-H), 7.27-7.20 (m, 2 H, Ar-H), 2.32 (t, *J* = 7.6 Hz, 2 H, CH₂), 2.17 (s, 3 H, CH₃); 1.49-1.39 (m, 2 H, CH₂), 1.39-1.28 (m, 2 H, CH₂), 0.88 (t, *J* = 7.2 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 212.4, 172.3, 134.1, 131.7, 127.6, 121.6, 104.5, 102.2, 30.2, 28.3, 22.2, 16.3, 13.8.And (*S*)-**1f** (707.1 mg, 50%): 76% ee (HPLC conditions: AS-H column, hexane/^{*i*}PrOH = 98/2, 1.0 mL/min, λ = 214 nm, t_R (minor) = 8.6 min, t_R (major) = 11.3 min); oil; ¹H **NMR** (400 MHz, CDCl₃): δ = 7.55-7.49 (m, 2 H, Ar-H), 7.49-7.43 (m, 2 H, Ar-H), 2.31 (s, 1 H, OH), 2.27 (t, J = 7.0 Hz, 2 H, CH₂), 1.71 (s, 3 H, CH₃), 1.57-1.48 (m, 2 H, CH₂), 1.48-1.36 (m, 2 H, CH₂), 0.92 (t, J = 7.2 Hz, 3 H, CH₃); ¹³C **NMR** (100 MHz, CDCl₃): δ = 145.3, 131.2, 126.9, 121.4, 86.0, 83.2, 69.6, 33.6, 30.6, 22.0, 18.4, 13.6.

(4) Successive kinetic resolutions preparation of (R)-2-butyl-4-(4-bromophenyl)2,3-pentadienoic acid ((R)-2f) (wj-2-119)

Following Typical Procedure II, the reaction of [PdCl₂•(*S*)-DTBM-SEGphos] (67.7 mg, 0.05 mmol), (PhO)₂PO₂H (62.6 mg, 0.25 mmol), (*S*)-**1f** (0.7035 g, 2.5 mmol, 76% ee), and H₂O (0.9 mL, d = 1.0 g/mL, 0.9 g, 50.0 mmol) in toluene (12.5 mL) afforded the product (*R*)-**2f** (615.6 mg, 80%) (86% NMR yield of (*R*)-**2f** and 3% of (*E*)-**2f**^{*} were formed with 13% of (*R*)-**1f** remained based on ¹H NMR analysis of the crude product) [eluent: petroleum ether / ethyl ether / dichloromethane = 30/1/1 (960 mL), then petroleum ether / ethyl acetate = 15/1 (480 mL) to 10/1(550 mL)]: 97% ee (HPLC conditions: AS-H column, hexane/^{*I*}PrOH = 98/2, 1.0 mL/min, λ = 214 nm, *t*_R (minor) = 10.9 min, *t*_R (major) = 14.2 min); $[\alpha]_D^{24}$ = -18.2 (*c* = 1.07, CHCl₃); solid; m.p. 124.5-125.3 °C (petroleum ether/DCM); ¹H NMR (400 MHz, CDCl₃): δ = 7.46 (d, *J* = 8.0 Hz, 2 H, Ar-H), 7.24 (d, *J* = 8.0 Hz, 2 H, Ar-H), 2.32 (t, *J* = 7.2 Hz, 2 H, CH₂), 2.17 (s, 3 H, CH₃), 1.52-1.40 (m, 2 H, CH₂), 1.40-1.28 (m, 2 H, CH₂), 0.88 (t, *J* = 7.0 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 212.4, 172.6, 134.1, 131.7, 127.6, 121.5, 104.5, 102.2, 30.2, 28.2, 22.2, 16.2, 13.8; **IR** (neat): ν = 3068, 2928, 2866, 2637, 2547, 1941, 1683, 1484, 1416, 1373, 1279, 1248, 1177, 1120, 1075, 1007 cm⁻¹; MS (70 eV, EI) *m/z* (%):

310 (M(^{81}Br)⁺, 2.06), 308 (M(^{79}Br)⁺, 1.83), 142 (100); Anal. Calcd. for C₁₅H₁₇BrO₂: C 58.27, H 5.54; found: C 57.98, H 5.54.

Synthetic transformations

(1) Preparation of (R,E)-3-(4-methoxycarbonylphenyl)-2-phenyloct-3-en-2-ol ((R,E)-3) (wj-1-163)⁶

Typical Procedure III: To a Schlenk flask covered with aluminium foil paper was added AgBF₄ (14.7 mg, 0.075 mmol) in a glove box. After transferring out of the glove box, [Cp*RhCl₂]₂ (7.7 mg, 0.012 mmol), NaOAc (8.4 mg, 0.10 mmol), (4-MeO₂C)C₆H₄B(OH)₂ (180.1 mg, 1.0 mmol), (S)-1a (100.9 mg, 0.5 mmol, 92% ee), and MeOH (2.5 mL) were sequentially added to the Schlenk flask without inert atmosphere protection. The resulting mixture was stirred at room temperature as monitored by TLC. After 12 h, the resulting mixture was filtered through a short column of celite (3 cm) eluted with MeOH (20 mL) and concentrated. The residue was purified by column chromatography on silica gel to afford the product (R, E)-3 (118.3 mg, 70%) [eluent: petroleum ether/ethyl acetate = 40/1 (1230 mL) to 10/1 (220 mL)]: 92% ee (HPLC conditions: AS-H column, hexane/PrOH = 95/5, 1.0 mL/min, λ = 214 nm, t_R (major) = 9.6 min, t_R (minor) = 10.8 min); $[\alpha]_D^{25}$ = -64.4 (c = 1.08, CHCl₃); oil; ¹H **NMR** (400 MHz, CDCl₃) δ = 7.98 (d, J = 8.4 Hz, 2 H, Ar-H), 7.56-51 (m, 2 H, Ar-H), 7.42-7.30 (m, 4 H, Ar-H), 7.28-7.22 (m, 1 H, Ar-H), 6.18 (s, 1 H, =CH), 3.91 (s, 3 H, CH₃), 2.48-2.36 (m, 2 H, CH₂), 2.04 (s, 1 H, OH), 1.74 (s, 3 H, CH₃), 1.07-0.81 (m, 4 H, 2 x CH₂), 0.64 (t, J = 7.0 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) $\delta = 167.0$, 148.5, 147.8, 144.3, 137.2, 129.6, 128.8, 128.2, 126.7, 126.7, 125.1, 74.2, 52.0, 33.7, 29.88, 29.85, 22.6, 13.7; **IR** (neat) v = 3509, 2955, 2928, 2859, 1720, 1706, 1605, 1435, 1276, 1180, 1105 cm⁻¹; MS (ESI) m/z: 361 (M+Na⁺); HRMS (ESI) calcd for C₂₂H₂₆O₃Na [M+Na⁺]: 361.1774, found: 361.1765.

(2) Preparation of (*E*)-3-(4-methoxycarbonylphenyl)-2-phenyloct-3-en-2-ol ((*E*)-3)

(wj-1-139)

Following Typical Procedure III: the reaction of AgBF₄ (14.5 mg, 0.074 mmol), [Cp*RhCl₂]₂ (7.6 mg, 0.012 mmol), NaOAc (8.2 mg, 0.10 mmol), (4-MeO₂C)C₆H₄B(OH)₂ (135.1 mg, 0.75 mmol), *rac*-**1a** (101.2 mg, 0.5 mmol), and MeOH (2.5 mL) afforded the product (*E*)-**3** (112.7 mg, 67%) [eluent: petroleum ether/ethyl acetate = 50/1 (1020 mL) to 10/1 (440 mL)]: oil; ¹H NMR (400 MHz, CDCl₃) δ = 7.98 (d, *J* = 8.4 Hz, 2 H, Ar-H), 7.61-49 (m, 2 H, Ar-H), 7.44-7.30 (m, 4 H, Ar-H), 7.29-7.23 (m, 1 H, Ar-H), 6.17 (s, 1 H, =CH), 3.91 (s, 3 H, CH₃), 2.53-2.37 (m, 2 H, CH₂), 2.10-2.00 (m, 1 H, OH), 1.74 (s, 3 H, CH₃), 1.06-0.82 (m, 4 H, 2 x CH₂), 0.64 (t, *J* = 7.0 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ = 167.0, 148.5, 147.8, 144.2, 137.3, 129.6, 128.7, 128.1, 126.7, 126.6, 125.1, 74.2, 52.0, 33.7, 29.9, 29.8, 22.6, 13.7; **IR** (neat) *v* = 3501, 2955, 2928, 2860, 1720, 1705, 1605, 1435, 1276, 1180, 1105 cm⁻¹; **MS** (ESI) *m/z*: 321 (M-OH)⁺; **HRMS** (ESI) calcd for C₂₂H₂₆O₃Na [M+Na⁺]: 361.1774, found: 361.1780.

(3) Preparation of (*R*,*E*)-2-phenyloct-3-en-2-ol ((*R*,*E*)-4) (wj-1-181)

To a flame-dried Schlenk tube were added (*S*)-**1a** (40.6 mg, 0.2 mmol, 92% ee) and ethyl ether (1 mL) under argon. The resulting mixture was then cooled down to -78 °C. To the reaction mixture was added a solution of Red-Al (70 wt% in toluene, 0.2 mL, 0.7 mmol) dropwise in 1 minute at -78 °C. Then the reaction mixture was stirred for 6 h at room temperature and subsequently quenched by dropwise addition of MeOH (2 mL) at -78 °C. To the mixture was added a saturated aqueous solution of potassium sodium tartrate (Rochelle's salt) (2 mL). After extraction with ethyl acetate (2 mL x 3), the organic layer was washed with brine (5 mL) and dried over anhydrous Na₂SO₄. After filtration and concentration under reduced pressure, the crude product was purified by column chromatography on silica gel to afford the product (*R*,*E*)-4⁷ (33.0 mg, 80%) [eluent: petroleum ether/ethyl acetate = 40/1 (410 mL)]: 91% ee (HPLC conditions: AS-H column, hexane/[/]PrOH = 98/2, 1.0 mL/min, λ = 214 nm, t_R (minor) = 6.1 min, t_R (major) = 6.9 min); oil; ¹H NMR (400 MHz, CDCl₃) δ = 7.50-7.43 (m, 2 H, Ar-H), 7.33 (t, *J* = 7.4 Hz, 2 H, Ar-H), 7.27-7.21 (m, 1 H, Ar-H), 5.77 (d, *J* = 15.6 Hz, 1 H, =CH), 5.67 (dt, *J*₁ = 15.6 Hz, *J*₂ = 6.5 Hz, 1 H, =CH), 2.06 (q, *J* = 6.8 Hz, 2 H, CH₂), 1.88 (s, 1 H, OH), 1.63 (s, 3 H, CH₃), 1.42-1.25 (m, 4 H, 2 x CH₂), 0.89 (t, *J* = 7.0 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ = 147.3, 136.8, 129.2, 128.1, 126.7, 125.2, 74.4, 31.9, 31.4, 29.9, 22.2, 13.9.

(4) Preparation of (R,Z)-4-phenoxy-2-phenyloct-3-en-2-ol ((R,Z)-5) (wj-1-166)⁸

Typical Procedure IV: To a Schlenk flask were added PPh₃AuNTf₂ (7.5 mg, 0.01 mmol), K₂CO₃ (69.3 mg, 0.5 mmol), and PhOH(58.0 mg, 0.6 mmol). After addition, the flask was degassed and refilled with Ar for three times to ensure the complete exclusion of air. Then (*S*)-**1a** (101.1 mg, 0.5 mmol, 92% ee) and CHCl₃ (0.3 mL) were added sequentially. The reaction was then stirred at 50 °C as monitored by TLC. After 16 h, the resulting mixture was diluted with 5 mL of ethyl acetate, filtered through a short column silica gel (3 cm) eluted with ethyl acetate (20 mL), and concentrated. The residue was purified by column chromatography on silica gel to afford the product (*R*,*Z*)-**5** (113.5 mg, 77%) [eluent: petroleum ether/ethyl acetate = 50/1 (510 mL)]: 91% ee (HPLC conditions: IC column, hexane/^{*i*}PrOH = 99.5/0.5, 0.5 mL/min, λ = 214 nm,

t_R (major) = 22.9 min, t_R (minor) = 24.3 min); $[\alpha]_D^{25}$ = +9.4 (*c* = 1.36, CHCl₃); oil; ¹H **NMR** (400 MHz, CDCl₃) δ = 7.52-7.45 (m, 2 H, Ar-H), 7.31-7.23 (m, 2 H, Ar-H), 7.23-7.13 (m, 3 H, Ar-H), 7.02-6.95 (m, 1 H, Ar-H), 6.80-6.72 (m, 2 H, Ar-H), 5.47 (s, 1 H, =CH), 3.85 (s, 1 H, OH), 2.13-1.98 (m, 2 H, CH₂), 1.65 (s, 3 H, CH₃), 1.40 (quint, *J* = 7.5 Hz, 2 H, CH₂), 1.32-1.21 (m, 2 H, CH₂), 0.84 (t, *J* = 7.2 Hz, 3 H, CH₃); ¹³C **NMR** (100 MHz, CDCl₃) δ = 154.8, 152.3, 149.1, 129.3, 127.9, 126.3, 124.8, 122.8, 121.7, 118.0, 73.6, 31.7, 31.3, 28.9, 21.9, 13.8; **IR** (neat) *v* = 3562, 3059, 3027, 2956, 2930, 2871, 1676, 1594, 1489, 1446, 1375, 1329, 1211, 1162, 1089, 1071, 1025 cm⁻¹; **MS** (ESI) *m/z*: 319 (M+Na⁺); **HRMS** (ESI) calcd for C₂₀H₂₄O₂Na [M+Na⁺]: 319.1669, found: 319.1661.

(5) Preparation of (Z)-4-phenoxy-2-phenyloct-3-en-2-ol ((Z)-5) (wj-1-156)

Following Typical Procedure IV, the reaction of PPh₃AuNTf₂ (8.2 mg, 0.01 mmol), K₂CO₃ (70.4 mg, 0.5 mmol), PhOH (56.9 mg, 0.60 mmol), *rac*-**1a** (101.6 mg, 0.5 mmol), and CHCl₃ (0.3 mL) afforded the product (*Z*)-**5** (106.2 mg, 71%) [eluent: petroleum ether/ethyl acetate = 50/1 (510 mL)]; oil; ¹H NMR (400 MHz, CDCl₃) δ = 7.53-7.45 (m, 2 H, Ar-H), 7.31-7.23 (m, 2 H, Ar-H), 7.23-7.14 (m, 3 H, Ar-H), 7.02-6.96 (m, 1 H, Ar-H), 6.80-6.73 (m, 2 H, Ar-H), 5.47 (s, 1 H, =CH), 3.86 (s, 1 H, OH), 2.12-1.99 (m, 2 H, CH₂), 1.65 (s, 3 H, CH₃), 1.40 (quint, *J* = 7.5 Hz, 2 H, CH₂), 1.32-1.21 (m, 2 H, CH₂), 0.84 (t, *J* = 7.2 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ = 154.8, 152.3, 149.1, 129.3, 127.9, 126.4, 124.8, 122.8, 121.7, 118.0, 73.6, 31.7, 31.3, 28.9, 21.9, 13.8; **IR** (neat) *v* = 3554, 3441, 3060, 3027, 2956, 2930, 2871, 1676, 1595, 1489, 1446, 1376, 1329, 1212, 1162, 1089, 1071, 1025 cm⁻¹; **MS** (ESI) *m/z*: 319 (M+Na⁺); **HRMS** (ESI) calcd for C₂₀H₂₄O₂Na [M+Na⁺]: 319.1669, found: 319.1658.

(6) Preparation of (*R*,*Z*)-2-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)oct-3-en-2-ol ((*R*,*Z*)-6) (wj-1-179, wj-2-193)⁹

Typical Procedure V: To an oven-dried Schlenk flask were sequentially added B₂Pin₂ (66.1 mg, 0.26 mmol), CuCl (3.0 mg, 0.03 mmol), NaO'Bu (2.9 mg, 0.03 mmol), and PCy₃ (10.1 mg, 0.036 mmol) in a glove box. After addition, the flask was degassed and refilled with Ar for three times to ensure the complete exclusion of air. Then (S)-1a $(40.3 \text{ mg}, 0.2 \text{ mmol}, 96\% \text{ ee})/\text{toluene} (0.5 \text{ mL}), \text{MeOH} (16.2 \mu\text{L}, \text{d} = 0.791 \text{ g/mL}, 0.4 \text{ ms})$ mmol)/toluene (0.1 mL) were added sequentially. And the reaction was stirred at room temperature for 12 h as monitored by TLC, quenched with MeOH (2 mL), filtered through a short column Celite (3 cm) eluted with ethyl acetate (10 mL), and concentrated. The residue was purified by column chromatography on silica gel to afford the product (R,Z)-6 (60.1 mg, 91%) [eluent: petroleum ether/ethyl acetate = 30/1 (465 mL) to 20:1 (420 mL)]: 96% ee (HPLC conditions: AD-H column, hexane/PrOH +8.9 (c = 1.50, CHCl₃); oil; ¹H NMR (400 MHz, CDCl₃) $\delta = 7.49$ (d, J = 7.6 Hz, 2 H, Ar-H), 7.30 (t, J = 7.6 Hz, 2 H, Ar-H), 7.24-7.18 (m, 1 H, Ar-H), 6.67 (s, 1 H, =CH), 2.04 (t, J = 7.4 Hz, 2 H, CH₂), 1.96 (s, 1 H, OH), 1.67 (s, 3 H, CH₃), 1.26 (s, 12 H, 4 x CH₃), 1.16-0.97 (m, 4 H, 2 x CH₂), 0.72 (t, J = 7.0 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, $CDCl_3$) $\delta = 149.5, 148.3, 128.0, 126.5, 125.2, 83.3, 74.9, 32.6, 31.6, 29.4, 24.70, 24.67, 125.2$ 22.9, 13.9; **IR** (neat) v = 3485, 2977, 2929, 1621, 1446, 1371, 1341, 1307, 1213, 1139, 1090, 1064, 1028 cm⁻¹; MS (70 eV, EI) *m/z*: 330 (M⁺), 217 (100); HRMS (EI) calcd for C₂₀H₃₁O₃¹⁰B [M⁺]: 329.2397, found: 329.2400.

(7) Preparation of (Z)-2-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)oct-3-en-2-ol ((Z)-6) (wj-1-168, wj-2-176)

Following Typical Procedure V, the reaction of B₂Pin₂ (165.0 mg, 0.65 mmol), CuCl (7.4mg, 0.075 mmol), NaO'Bu (7.3 mg, 0.076 mmol), and P(Cy)₃ (25.3 mg, 0.09 mmol), *rac*-**1a** (101.3 mg, 0.5 mmol)/toluene (1.0 mL), MeOH (40.5 μ L, d = 0.791 g/mL, 1.0 mmol)/toluene (0.5 mL) afforded the product (*Z*)-**6** (147.0 mg, 89%) [eluent: petroleum ether/ethyl acetate = 40/1 (410 mL) to 30:1 (620 mL)]; oil; ¹H NMR (400 MHz, CDCl₃) δ = 7.49 (d, *J* = 7.6 Hz, 2 H, Ar-H), 7.31 (t, *J* = 7.6 Hz, 2 H, Ar-H), 7.24-7.18 (m, 1 H, Ar-H), 6.67 (s, 1 H, =CH), 2.04 (t, *J* =7.4 Hz, 2 H, CH₂), 1.94 (s, 1 H, OH), 1.68 (s, 3 H, CH₃), 1.26 (s, 12 H, 4 x CH₃), 1.18-0.97 (m, 4 H, 2 x CH₂), 0.72 (t, *J* = 7.0 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ = 149.5, 148.3, 128.0, 126.5, 125.2, 83.3, 74.9, 32.6, 31.6, 29.4, 24.70, 24.67, 22.9, 13.9; IR (neat) *v* = 3491, 2977, 2870, 1621, 1446, 1371, 1341, 1307, 1214, 1138, 1090, 1063, 1028 cm⁻¹; MS (70 eV, EI) *m/z*: 330 (M⁺, 9.75), 217 (100); HRMS (EI) calcd for C₂₀H₃₁O₃¹⁰B [M⁺]: 329.2397, found: 329.2398.

(8) Preparation of (*R*)-5-(4-bromophenyl)-3-butyl-5-methylfuran-2(5*H*)-one ((*R*)-7) (wj-2-131)¹⁰

Typical Procedure VI: To an oven-dried Schlenk flask were added (*S*)-**2f** (154.7 mg, 0.5 mmol, 94% ee), and CuCl (2.1 mg, 0.02 mmol) in a glove box. After the flask

was degassed and refilled with Ar for three times to ensure the complete exclusion of air, MeOH (5.0 mL) was added sequentially. The resulting mixture was vigorously stirred at 60 °C for 1 h as monitored by TLC, diluted with ethyl acetate (2 mL), filtered through a short column of silica gel (3 cm) eluted with ethyl acetate (20 mL), and concentrated. The residue was purified by chromatography on silica gel to afford the product (*R*)-7 (148.1 mg, 96%) [eluent: petroleum ether / ethyl acetate = 15/1 (320 mL)]: 93% ee (HPLC conditions: OD-H column, hexane/ⁱPrOH = 99.5/0.5, 1.0 mL/min, λ = 214 nm, $t_{\rm R}$ (major) = 13.3 min, $t_{\rm R}$ (minor) = 14.7 min); $[\alpha]_{\rm D}^{25}$ = +124.0 (c = 1.09, CHCl₃); oil; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.53-7.45$ (m, 2 H, Ar-H), 7.30-7.22 (m, 2 H, Ar-H), 7.16 (t, J = 1.6 Hz, 1 H, =CH), 2.35-2.22 (m, 2 H, CH₂), 1.76 (s, 3 H, CH₃), 1.59-1.49 (m, 2 H, CH₂), 1.42-1.30 (m, 2 H, CH₂), 0.92 (t, *J* = 7.2 Hz, 3 H, CH₃); ¹³C **NMR** (100 MHz, CDCl₃): $\delta = 172.9$, 151.6, 139.3, 132.8, 131.8, 126.5, 122.1, 86.0, 29.4, 26.7, 24.7, 22.2, 13.7; **IR** (neat): *v* = 3075, 2957, 2929, 2866, 1752, 1487, 1459, 1395, 1283, 1248, 1225, 1121, 1078, 1043, 1007 cm⁻¹; MS (70 eV, EI) *m/z* (%): 310 $(M(^{81}Br)^+, 11.02), 308 (M(^{79}Br)^+, 11.24), 267 (100);$ HRMS (EI) calcd for C₁₅H₁₇⁷⁹BrO₂ [M⁺]: 308.0406, found: 308.0406.

(9) Preparation of 5-(4-bromophenyl)-3-butyl-5-methylfuran-2(5H)-one (rac-7) (wj-2-130)

Following Typical Procedure VI, the reaction of *rac*-**2f** (154.6 mg, 0.5 mmol), CuCl (2.1 mg, 0.02 mmol), and MeOH (5.0 mL) afforded the product *rac*-**7** (148.2 mg, 96%) [eluent: petroleum ether / ethyl acetate = 15/1 (320 mL)]; oil; ¹H NMR (400 MHz, CDCl₃): δ = 7.54-7.46 (m, 2 H, Ar-H), 7.30-7.22 (m, 2 H, Ar-H), 7.16 (t, *J* = 1.6 Hz, 1 H, =CH), 2.34-2.22 (m, 2 H, CH₂), 1.76 (s, 3 H, CH₃), 1.60-1.49 (m, 2 H, CH₂), 1.43-

1.30 (m, 2 H, CH₂), 0.92 (t, J = 7.2 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): $\delta = 172.9$, 151.6, 139.3, 132.8, 131.8, 126.5, 122.1, 86.0, 29.4, 26.7, 24.7, 22.2, 13.7; IR (neat): v = 3082, 2957, 2929, 2866, 1752, 1487, 1460, 1395, 1283, 1248, 1224, 1121, 1078, 1043, 1007 cm⁻¹; MS (70 eV, EI) m/z (%): 310 (M(⁸¹Br)⁺, 8.75), 308 (M(⁷⁹Br)⁺, 8.44), 265 (100); HRMS (EI) calcd for C₁₅H₁₇⁷⁹BrO₂ [M⁺]: 308.0406, found: 308.0408.

(10) Preparation of 8 (wj-2-134)¹¹

To an oven-dried Schlenk flask (25 mL) were added boronic acid (65.7 mg, 0.22 mmol), Pd(dppf)Cl₂ (14.6 mg, 0.02 mmol), and K₂CO₃ (55.3 mg, 0.4 mmol). After the flask was degassed and refilled with Ar for three times to ensure the complete exclusion of air, (R)-7 (61.8 mg, 0.2 mmol, 93% ee) and DMSO (2 mL) were added sequentially. The resulting mixture was stirred at 80 °C for 1.5 h as monitored by TLC, quenched with 2 mL of H₂O, and extracted with ethyl acetate (5 mL x 3). The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated. The residue was purified by chromatography on silica gel to afford the product 8 (73.1 mg, 76%) [eluent: petroleum ether / ethyl acetate = 10/1 (440 mL)]; $[\alpha]_{D}^{23}$ = +132.5 (c = 1.02, CHCl₃); solid; m.p. 100.8-101.7 °C (petroleum ether/DCM); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.57$ (d, J = 8.0 Hz, 2 H, Ar-H), 7.42 (d, J = 8.4 Hz, 2 H, Ar-H), 7.37 (s, 2 H, Ar-H), 7.31 (s, 1 H, Ar-H), 7.23 (s, 1 H, =CH), 3.00 (dd, $J_1 = 9.0$ Hz, $J_2 = 4.0$ Hz, 2 H, CH₂), 2.58-2.42 (m, 2 H, CH₂), 2.42-2.25 (m, 3 H, CH and CH₂), 2.22-1.95 (m, 4 H, 2 x CH₂), 1.82 (s, 3 H, CH₃), 1.71-1.45 (m, 8 H, 2 x CH and 3 x CH₂), 1.42- $32 (m, 2 H, CH_2), 0.97-0.90 (m, 6 H, 2 x CH_3); {}^{13}C NMR (100 MHz, CDCl_3): \delta = 220.8,$ 173.2, 152.1, 140.8, 139.2, 138.9, 137.8, 137.0, 132.5, 127.6, 127.2, 125.9, 125.2, 124.4, 86.5, 50.4, 47.9, 44.3, 38.1, 35.8, 31.5, 29.5, 29.4, 26.8, 26.4, 25.7, 24.8, 22.3, 21.5,

13.8, 13.7; **IR** (neat): v = 3026, 2927, 2861, 1739, 1492, 1457, 1372, 1338, 1255, 1115, 1041, 1008 cm⁻¹; **MS** (70 eV, EI) m/z (%): 482 (M⁺, 33.77), 117 (100); **HRMS** (EI) calcd for C₃₃H₃₈O₃ [M⁺]: 482.2815, found: 482.2816.

(11) Preparation of (S)-4-allyl-5-(4-bromophenyl)-3-butyl-5-methylfuran-2(5H)one ((S)-9) (wj-2-129)¹²

Typical Procedure VII: To an oven-dried Schlenk flask were added (S)-2f (154.5 mg, 0.5 mmol, 94% ee) and PdCl₂ (4.4 mg, 0.025 mmol). After the flask was degassed and refilled with Ar for three times to ensure the complete exclusion of air, DMA (3 mL) and allyl bromide (260 uL, d = 1.398 g/mL, 363.5 mg, 3.0 mmol) were added sequentially via a syringe under a flow of argon. The resulting mixture was vigorously stirred at 50 °C for 18 h as monitored by TLC, quenched with 5 mL of H₂O, and extracted with Et₂O (10 mL x 3). The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated. The residue was purified by chromatography on silica gel to afford the product (S)-9 (144.9 mg, 83%) [eluent: petroleum ether / ethyl acetate = 20/1 (420 mL)]: 93% ee (HPLC conditions: OD-H column, hexane/^{*i*}PrOH = 99.5/0.5, 1.0 mL/min, λ = 214 nm, $t_{\rm R}$ (major) = 12.6 min, $t_{\rm R}$ (minor) = 14.4 min); $[\alpha]_D^{24} = +155.7$ (c = 1.33, CHCl₃); oil; ¹H NMR (400 MHz, CDCl₃): δ = 7.52-7.43 (m, 2 H, Ar-H), 7.19-7.11 (m, 2 H, Ar-H), 5.55-5.42 (m, 1 H, =CH), 5.07-4.96 (m, 2 H, =CH₂), 2.99 (dd, J_1 = 15.6 Hz, J_2 = 5.6 Hz, 1 H, one proton of CH₂), 2.85 (dd, $J_1 = 15.6$ Hz, $J_2 = 7.2$ Hz, 1 H, one proton of CH₂); 2.29 (t, J = 7.8Hz, 2 H, CH₂), 1.81(s, 3 H, CH₃), 1.58-1.46 (m, 2 H, CH₂), 1.40-1.28 (m, 2 H, CH₂), 0.93 (t, J = 7.4 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): $\delta = 173.5$, 163.8, 137.6, 132.2, 131.8, 127.9, 127.3, 122.6, 117.9, 87.3, 30.6, 30.1, 23.5, 23.3, 22.6, 13.8; **IR** (neat): v = 3081, 2957, 2930, 2864, 1749, 1668, 1638, 1489, 1453, 1396, 1257, 1207, 1080, 1043, 1006 cm⁻¹; **MS** (70 eV, EI) m/z (%): 350 (M(⁸¹Br)⁺, 348 (M(⁷⁹Br)⁺, 25.73), 25.40), 307 (100); **HRMS** (EI) calcd for C₁₈H₂₁⁷⁹BrO₂ [M⁺]: 348.0719, found: 348.0718.

(12) Preparation of 4-allyl-5-(4-bromophenyl)-3-butyl-5-methylfuran-2(5H)-one (rac-9) (wj-2-126)

Following Typical Procedure VII: the reaction of *rac*-**2f** (154.7 mg, 0.5 mmol), PdCl₂ (4.4 mg, 0.025 mmol), DMA (3 mL), and allyl bromide (259.6 uL, d = 1.398 g/mL, 362.9 mg, 3.0 mmol) afforded *rac*-**9** (137.7 mg, 79%) [eluent: petroleum ether / ethyl acetate = 20/1 (420 mL)]; oil; ¹H NMR (400 MHz, CDCl₃): δ = 7.52-7.44 (m, 2 H, Ar-H), 7.18-7.12 (m, 2 H, Ar-H), 5.56-5.41 (m, 1 H, =CH), 5.07-4.97 (m, 2 H, =CH₂), 2.99 (ddt, *J*₁ = 15.6 Hz, *J*₂ = 5.6 Hz, *J*₃ = 1.6 Hz, 1 H, one proton of CH₂), 2.85 (dd, *J*₁ = 15.6 Hz, *J*₂ = 7.2 Hz, 1 H, one proton of CH₂); 2.29 (t, *J* = 7.8 Hz, 2 H, CH₂), 1.81(s, 3 H, CH₃), 1.59-1.46 (m, 2 H, CH₂), 1.40-1.28 (m, 2 H, CH₂), 0.92 (t, *J* = 7.4 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 173.5, 163.8, 137.6, 132.2, 131.8, 127.9, 127.3, 122.6, 117.9, 87.3, 30.6, 30.1, 23.5, 23.3, 22.6, 13.8; **IR** (neat): *v* = 3085, 2958, 2931, 2864, 1749, 1668, 1637, 1490, 1453, 1396, 1256, 1207, 1079, 1043, 1006 cm⁻¹; **MS** (70 eV, EI) *m/z* (%): 350 (M(⁸¹Br)⁺, 26.45), 348 (M(⁷⁹Br)⁺, 26.02), 183 (100); **HRMS** (EI) calcd for C₁₈H₂₁⁷⁹BrO₂ [M⁺]: 348.0719, found: 348.0723.

(13) Preparation of (R)-N-methoxy-N-methyl-2-butyl-4-(4-bromophenyl)-2,3-

pentadienamide ((R)-10) (wj-2-128)¹³

Typical Procedure VIII: To an oven-dried Schlenk flask were added (R)-2f (92.9 mg, 0.3 mmol, 97% ee), EDC•HCl (74.8 mg, 0.39 mmol), methyl methoxylamine hydrochloride (38.0 mg, 0.39 mmol), and DMAP (3.8 mg, 0.03 mmol). After the flask was degassed and refilled with Ar for three times to ensure the complete exclusion of air, NEt₃ (54.2 uL, d = 0.728 g/mL, 39.5 mg, 0.39 mmol) and DCM (1 mL) were added sequentially. The resulting mixture was vigorously stirred at 0 °C for 1 h, gradually warmed up to room temperature and stirred at room temperature for 2 h as monitored by TLC, diluted with ethyl acetate (2 mL), and washed with saturated NH₄Cl (10 mL x 3). The combined organic layer was washed with brine, dried over anhydrous Na_2SO_4 , filtered, and concentrated. The residue was purified by chromatography on silica gel to afford the product (*R*)-10 (94.0 mg, 89%) [eluent: petroleum ether / ethyl acetate = 10/1(220 mL)]: 97% ee (HPLC conditions: OD-H column, hexane/iPrOH = 99/1, 1.0 mL/min, $\lambda = 214$ nm, t_R (major) = 8.0 min, t_R (minor) = 9.4 min); $[\alpha]_D^{25} = -131.4$ (c = 0.99, CHCl₃); oil; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.49-7.42$ (m, 2 H, Ar-H), 7.30-7.20 (m, 2 H, Ar-H), 3.50 (s, 3 H, CH₃), 3.23 (s, 3 H, CH₃), 2.41 (t, J = 7.2 Hz, 2 H, CH₂), 2.14 (s, 3 H, CH₃), 1.49-1.31 (m, 4 H, 2 x CH₂), 0.89 (t, *J* = 7.0 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): $\delta = 206.2, 167.8, 135.1, 131.5, 127.4, 120.9, 101.4, 101.3,$ 61.1, 33.7, 30.1, 30.0, 22.3, 16.4, 13.9; **IR** (neat): v = 2956, 2929, 2860, 1942, 1637,1484, 1458, 1408, 1372, 1183, 1148, 1105, 1076, 1006 cm⁻¹; MS (ESI) m/z (%): 354 $(M(^{81}Br)+H^+)$, 352 $(M(^{79}Br)+H^+)$; **HRMS** (ESI) calcd for $C_{17}H_{23}$ ⁷⁹BrO₂N $[M+H^+]$: 352.0907, found: 352.0904.

(14) Preparation of N-methoxy-N-methyl-2-butyl-4-(4-bromophenyl)-2,3-

pentadienamide (rac-10) (wj-2-127)

Following Typical Procedure VIII, the reaction of *rac*-**2f** (92.7 mg, 0.3 mmol), EDC·HCl (74.8 mg, 0.39 mmol), methyl methoxylamine hydrochloride (38.0 mg, 0.39 mmol), DMAP (3.8 mg, 0.03 mmol), NEt₃ (54.2 uL, d = 0.728 g/mL, 39.5 mg, 0.39 mmol), and DCM (1 mL) afforded the product *rac*-**10** (88.0 mg, 83%) [eluent: petroleum ether / ethyl acetate = 10/1 (220 mL)]; oil; ¹H NMR (400 MHz, CDCl₃): δ = 7.48-7.42 (m, 2 H, Ar-H), 7.30-7.23 (m, 2 H, Ar-H), 3.50 (s, 3 H, CH₃), 3.22 (s, 3 H, CH₃), 2.41 (t, *J* = 7.4 Hz, 2 H, CH₂), 2.14 (s, 3 H, CH₃), 1.50-1.30 (m, 4 H, 2 x CH₂), 0.89 (t, *J* = 7.0 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 206.2, 167.8, 135.1, 131.5, 127.4, 120.9, 101.4, 101.3, 61.1, 33.7, 30.1, 30.0, 22.3, 16.4, 13.9; **IR** (neat): *v* = 2957, 2929, 2859, 1942, 1637, 1484, 1458, 1408, 1372, 1183, 1148, 1105, 1076, 1006 cm⁻¹; **MS** (ESI) *m/z* (%): 354 (M(⁸¹Br)+H⁺), 352 (M(⁷⁹Br)+H⁺); **HRMS** (ESI) calcd for C₁₇H₂₃⁷⁹BrO₂N [M+H⁺]: 352.0907, found: 352.0906.

(15) Preparation of (*R*)-3-butyl-5-(4-bromophenyl)-3,4-hexadien-2-one ((*R*)-11) (wj-2-136)

Typical Procedure IX: To an oven-dried Schlenk flask were added Weinreb aminde (R)-10 (70.7 mg, 0.2 mmol, 97% ee) and THF (2 mL) under Ar atmosphere and

cooled to -78 °C. Then MeMgBr (0.27 mL, 3.0 M in Et₂O, 0.8 mmol) was added into the solution dropwise with stirring. The resulting mixture was warmed up to 0 °C gradually, monitored by TLC, quenched with 2 mL of H₂O and extracted with ethyl acetate (10 mL x 3). The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated. The residue was purified by chromatography on silica gel to afford the product (R)-11 (51.5 mg, 84%) [eluent: petroleum ether / ethyl acetate = 15/1 (100 mL)]: 97% ee (HPLC conditions: OD-H column, hexane/^{*i*}PrOH = 99.5/0.5, 1.0 mL/min, λ = 214 nm, $t_{\rm R}$ (major) = 6.3 min, $t_{\rm R}$ (minor) = 7.4 min); $[\alpha]_D^{23}$ = -16.0 (c = 1.20, CHCl₃); oil; ¹H NMR (400 MHz, CDCl₃): δ = 7.48 (dt, J_1 = 8.4 Hz, J_2 = 2.2 Hz, 2 H, Ar-H), 7.29-7.21 (m, 2 H, Ar-H), 2.30 (t, J = 7.4 Hz, 2 H, CH₂), 2.24 (s, 3 H, CH₃), 2.21 (s, 3 H, CH₃), 1.45-1.28 (m, 4 H, 2 x CH₂), 0.88 (t, J = 7.0 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): $\delta = 213.6$, 198.5, 134.0, 131.8, 127.2, 121.5, 111.7, 104.2, 30.1, 27.3, 26.6, 22.4, 16.3, 13.8; **IR** (neat): *v* = 2956, 2926, 2859, 1931, 1678, 1486, 1461, 1355, 1228, 1117, 1075, 1007 cm⁻¹; MS (70 eV, EI) m/z (%): 308 (M(⁸¹Br)⁺, 6.39), 306 (M(⁷⁹Br)⁺, 6.71), 263 (100); HRMS (EI) calcd for C₁₆H₁₉⁷⁹BrO [M⁺]: 306.0614, found: 306.0617.

(16) Preparation of 3-butyl-5-(4-bromophenyl)-3,4-hexadien-2-one (*rac*-11) (wj-2-135)

Following Typical Procedure IX: the reaction of Weinreb aminde *rac*-10 (70.6 mg, 0.2 mmol), THF (2 mL) and MeMgBr (0.27 mL, 3.0 M in Et₂O, 0.8 mmol) afforded the product *rac*-11 (50.4 mg, 82%) [eluent: petroleum ether / ethyl acetate = 15/1 (100 mL)]; oil; ¹H NMR (400 MHz, CDCl₃): δ = 7.49 (dt, *J*₁ = 8.8 Hz, *J*₁ = 2.2 Hz, 2 H, Ar-H), 7.28-7.21 (m, 2 H, Ar-H), 2.3 (t, *J* = 7.4 Hz, 2 H, CH₂), 2.24 (s, 3 H, CH₃), 2.21 (s, 3 H,

CH₃), 1.45-1.28 (m, 4 H, 2 x CH₂), 0.88 (t, J = 7.0 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): $\delta = 213.6$, 198.5, 134.0, 131.8, 127.2, 121.5, 111.7, 104.2, 30.1, 27.3, 26.6, 22.4, 16.3, 13.9; **IR** (neat): v = 2956, 2926, 2860, 1931, 1678, 1486, 1461, 1355, 1228, 1117, 1075, 1007 cm⁻¹; **MS** (70 eV, EI) m/z (%): 308 (M(⁸¹Br)⁺, 5.44), 306 (M(⁷⁹Br)⁺, 5.66), 263 (100); **HRMS** (EI) calcd for C₁₆H₁₉⁷⁹BrO [M⁺]: 306.0614, found: 306.0618.

Monitoring Experiment⁴

¹H NMR Monitoring Experiment of the kinetic resolution reaction (wj-3-121)

To a Schlenk tube (25 mL) were added [PdCl₂•(R)-DTBM-SEGphos] (27.2 mg, 0.02 mmol), (PhO)₂PO₂H (24.9 mg, 0.1 mmol). After addition, the flask was degassed and refilled with Ar for three times to ensure the complete exclusion of air. Then rac-**1a** (202.4 mg, 1 mmol)/toluene- d_8 (3 mL), H₂O (360 µL, d = 1.0 g/mL, 360.0 mg, 20 mmol)/toluene- d_8 (2 mL) and CH₂Ph₂ (83.6 µL, d = 1.006 g/mL, 84.1 mg, 0.5 mmol) were added sequentially under argon. After that, the Ar gas line was closed. The resulting mixture was then frozen with a liquid nitrogen bath, degassed to remove the argon inside completely, and refilled with CO by a balloon of CO (about 1 L) for three times. Then the liquid nitrogen bath was removed and the mixture was allowed to stand until completely thawed, vigorously stirred at 20 °C with a balloon of CO. 0.2 mL each of the aliquot was taken with an Ar-purged syringes after 4 h, 8 h, 12 h, 16 h, 20 h. Then the mixture was analyzed by ¹H NMR spectra with CH₂Ph₂ as the internal standard to determine the yield of (S)-2a and the recoveries of 1a. The residues were purification by the preparative TLC (petroleum ether / ethyl acetate = 5/1) and the ee value were determined by HPLC analysis. And the data acquired were analyzed by Origin 9. Supplementary Table 1. ¹H NMR Monitoring Experiment of the kinetic resolution reaction

ⁿ Bu─────OH Me Ph <i>rac-</i> 1a	2 mol% [PdCl ₂ • <u>10 mol%</u> 20 equiv 0.5 m CO ball	(R)-DTBM-SEGphos] M $(PhO)_2POOH$ H_2O , toluene- d_8 F imol CH ₂ Ph ₂ loon, 20 °C, t h	$(S)-2a \qquad (S)-1a$	OH √⊓Me Ph
entry	time / h	NMR yield of (<i>S</i>)- 2a , ee of (<i>S</i>)- 2a / %	Recovery of 1a, ee of 1a / %	
1	4	14, 91	86, 12	
2	8	38, 90	61, 53	
3	12	56, 76	40, 98	
4	16	61, 62	32, 98	
5	20	65, 55	27, 99	

Supplementary Figure 2. The effect in the formation of (S)-2a via the kinetic resolution reaction.

Supplementary Figure 3. The effect in the recoveries of 1a via the kinetic resolution reaction.

SAESI-MS studies¹⁴

SAESI-MS conditions

SAESI-MS spectra were recorded on a Thermo TSQ Quantum Access triplequadrupole mass spectrometer (Thermo Fisher Scientific, Waltham, MA) equipped with a home-made SAESI ion source in positive mode. The basic SAESI conditions were: vacuum, 2.8×10⁻⁶ torr; spray voltage, 4000 V; capillary temperature, 275 °C; sheath gas pressure of two sprayers, 3 arb. units; the collision energy of CID, 20 eV. Data acquisition and analysis were done with the Xcalibur (version 2.0, Thermo Fisher Scientific) software package.

In solvent-assisted electrospray ionization mass spectrometric experiment, the angle (α) between the two sprayers is 45° and the distance (b) between the tip of sprayers and the inlet to the mass is 6 mm. The chemical solutions were injected by a 500- μ L air-tight syringe with a speed at 5 μ L/min to SAESI-MS. The assisted solvent of methanol was injected by another 500- μ L air-tight syringe with a speed at 5 μ L/min. SAESI-MS device.

Supplementary Figure 4. (a) Photographic image of SAESI apparatus. (b) Schematic representation of the SAESI. The angle (α) between the two sprayers is 45° and the distance (b) between the tip of sprayers and the inlet to the mass is 6 mm.

References:

- 1. Zhang, W.; Ma, S. Chem. Commun. 2018, 54, 6064-6067.
- Zheng, W.-F.; Zhang, W.; Huang, J.; Yu, Y.; Qian, H.; Ma, S. Org. Chem. Front. 2018, 5, 1900-1904.
- Wang, J.; Zhang, W.; Wu, P.; Huang, C.; Zheng, Y.; Zheng, W.-F; Qian, H.; Ma, S. Org. Chem. Front. 2020, 7, 3907-3911.
- Zheng, W.-F.; Zhang, W.; Huang, C.; Wu, P.; Qian, H.; Wang, L.; Guo, Y.-L.; Ma, S. *Nat. Catal.* 2019, *2*, 997-1005.
- 5. Song, S.; Zhou, J.; Fu, C.; Ma, S. Nat. Commun. 2019, 10, 507-515.
- 6. Wang, W.; Qian, H.; Ma, S. Chin. J. Chem. 2020, 38, 331-345.
- (a) Ueda, T.; Tanaka, K.; Ichibakase, T.; Orito, Y.; Nakajima, M. *Tetrahedron* 2010, 66, 7726-7731. (b) Zhang, W.; Ma, S. *Chem. Commun.* 2018, *54*, 6064-6067.
- 8. Laserna V.; Rojas C. J.; Sheppard T. D. Org. Lett. 2019, 21, 4443-4447.
- Moure A. L.; Arrayás R. G.; Cárdenas D. J.; Alonso I.; Carretero J. C. J. Am. Chem. Soc. 2012, 134, 7219-7222.
- 10. Ma, S.; Yu, Z.; Wu, S. Tetrahedron, 2001, 57, 1585-1588.
- 11. Miyaura, N.; Yanagi, T.; Suzuki, A. Synth. Commun. 1981, 11, 513-519.
- 12. Ma, S.; Yu, Z. J. Org. Chem. 2003, 68, 6149-6152.
- Melnykov, K. P.; Granat, D. S.; Volochnyuk, D. M.; Ryabukhin, S. V.; Grygorenko
 O. O. *Synthesis* 2018, *50*, 4949-4957.
- Zhang, J.-T.; Wang, H.-Y.; Zhu, W. Cai; T.-T. Guo, Y.-L. Anal. Chem. 2014, 86, 8937-8942.

	zwf-7-124-P Oct 27 2019 SOLVENT: CDCI3 NA = 16 F1 = 161.967499 MHz F2 = 1.000000 MHz	
ale production of the second data and the seco	Ar Ar = 3,5-('Bu) ₂ -4-OMe-C ₆ H ₂ (S)-DTBM-SEGphos	
		- 29.024
-1000 P M	\$62	

S65

Area Percent Report

sample

wj-1-015-1-AS-H-98-2-1.0-214

Data file: C:\Users\Public\Documents\ChemStation\1\Data\WJ_LC 2019-07-12 22-04-29\003-P2-C1-wj-1-015-1.D

Acquisition Data:

11.019

0.2683

104.3075

Sum

1808.7644

1842.8500

98.1504

100.0000

Area Percent Report

sample

wj-1-015-1-rac-AS-H-98-2-1.0-

214

Data file: C:\Users\Public\Documents\ChemStation\1\Data\WJ_LC 2019-07-12 22-04-29\004-P2-C2-wj-1-015-1-rac.D

Acquisition Data:

		•		
7.182	0.1838	1251.3541	14780.0400	49.4825
10.929	0.2866	820.3699	15089.1592	50.5175
		Sum	29869.1992	100.0000

S69

Area Percent Report

sample

wj-1-017-1-AS-H-98-2-1.0-214

Data file: C:\Users\Public\Documents\ChemStation\1\Data\WJ_LC 2019-07-13 22-07-09\003-P2-C1-wj-1-017-1.D

Acquisition Data:

8.456

0.2057

217.3427

Sum

2900.7468

2947.7741

98.4047

100.0000

Area Percent Report

sample

wj-1-017-1--rac-AS-H-98-2-1.0-

214

 Data file:
 C:\Users\Public\Documents\ChemStation\1\Data\WJ_LC 2019-07-13 22-07-09\004-P2-C2-wj-1-017-1-rac.D

Acquisition Data:

8.485

0.2092

475.5550

Sum

6409.4746

12840.3550

49.9166

100.0000

sample

wj-1-020-1-AS-H-98-2-1.0-214

Data file:

C:\Users\Public\Documents\ChemStation\1\Data\zwf-allenioc acid_LC 2019-07-17 08-33-24\018-P2-C1-wj-1-020-1.D

Acquisition Data:

100.0000

4872.6104

Sum

sample

wj-1-020-1-rac-AS-H-98-2-1.0-214

Data file:

C:\Users\Public\Documents\ChemStation\1\Data\zwf-allenioc acid_LC 2019-07-17 08-33-24\019-P2-C2-wj-1-020-1-rac.D

Area%	Area	Height	Width [min]	RT [min]
50.0367	4292.6299	384.6389	0.1757	6.538
49.9633	4286.3359	278.5787	0.2435	8.814
100.0000	8578.9658	Sum		

sample

wj-024-1-AS-H-98-2-1.0-214

Data file:

C:\Users\Public\Documents\ChemStation\1\Data\WJ_LC 2019-07-18 18-05-16\003-P2-C1-wj-1-024-1.D

iynai.	DAD	10, 36	J-2 14,4 1\CI-	.500,100	
RT [min]	Width	[min]	Height	Area	Area%
12.988		0.3349	1.5093	33.2290	1.2575
18.810		0.5153	79.4234	2609.1577	98.7425
			Sum	2642.3867	100.0000

sample

wj-024-1-rac-AS-H-98-2-1.0-214

Data file:

C:\Users\Public\Documents\ChemStation\1\Data\WJ_LC 2019-07-18 18-05-16\004-P2-C2-wj-1-024-1-rac.D

0	, 0	,	,	
RT [min]	Width [min]	Height	Area	Area%
12.904	0.3434	257.7123	5642.5371	49.9467
18.542	0.5142	173.5065	5654.5762	50.0533
		Sum	11297.1133	100.0000

sample

wj-1-027-1-AS-H-98-2-1.0-214

Sum

4062.6152

Data file: C:\Users\Public\Documents\ChemStation\1\Data\WJ_LC 2019-07-20 15-28-57\003-P2-C1-wj-1-027-1.D

Acquisition Data:

sample

wj-1-027-1-rac-AS-H-98-2-1.0-214

Sum

10474.6226

 Data file:
 C:\Users\Public\Documents\ChemStation\1\Data\WJ_LC 2019-07-20 15-28-57\004-P2-C2-wj-1-027-1-rac.D

Acquisition Data:

sample

wj-1-028-1-AS-H-98-2-1.0-214

Sum

5665.5790

 Data file:
 C:\Users\Public\Documents\ChemStation\1\Data\WJ_LC 2019-07-20 19-12-56\022-P2-C1-wj-1-028-1.D

Acquisition Data:

sample

wj-1-028-1-rac-AS-H-98-2-1.0-214

 Data file:
 C:\Users\Public\Documents\ChemStation\1\Data\WJ_LC 2019-07-20 19-12-56\023-P2-C2-wj-1-028-1-rac.D

Acquisition Data:

11.155

0.2989

222.6530

Sum

4253.4209

8502.0078

50.0284

sample

wj-1-032-1-AS-H-90-10-1.0-214

 Data file:
 C:\Users\Public\Documents\ChemStation\1\Data\WJ_LC 2019-07-24 08-34-00\030-P2-C3-wj-1-032

 1.D

Acquisition Data:

7.477

0.1532

3.1326

Sum

30.9439

2058.9142

1.5029

sample

wj-1-032-1-rac-AS-H-90-10-1.0-214

Data file:

C:\Users\Public\Documents\ChemStation\1\Data\WJ_LC 2019-07-24 08-34-00\031-P2-C4-wj-1-032-1-rac.D

Acquisition Data:

7.461

0.1618

36.8955

Sum

385.1939

772.0398

49.8930

sample

wj-4-134-AS-H-95-5-1.0-214

Data file: C:\Users\Public\Documents\ChemStation\1\Data\WJ_LC 2021-10-12 15-26-33\002-P2-C1-wj-4-134.D

Acquisition Data:

Sum 15369.8206 100.0000

sample

wj-4-134-rac-AS-H-95-5-1.0-214

Data file:

C:\Users\Public\Documents\ChemStation\1\Data\WJ_LC 2021-10-12 15-26-33\003-P2-C2-wj-4-134--rac.D

Acquisition Data:

100.0000

18172.8447

Sum

sample

wj-1-038-1-AS-H-98-2-1.0-214

Data file: C:\Users\Public\Documents\ChemStation\1\Data\DEF_LC 2019-09-04 09-57-05\035-P2-C1-wj-1-038 -1.D

Area%	Area	Height	RT [min] Width [min]		
100.0000	141.5171	17.3202	0.1273	5.962	
100.0000	141.5171	Sum			

sample

wj-1-038-1-rac-AS-H-98-2-1.0-214

 Data file:
 C:\Users\Public\Documents\ChemStation\1\Data\DEF_LC 2019-09-04 09-57-05\037-P2-C2-wj-1-038

 -1-rac.D
 -1

3		_ , ,	,	
RT [min]	Width [min]	Height	Area	Area%
4.508	0.0888	23.4767	134.3593	49.9786
5.967	0.1279	16.3616	134.4742	50.0214
		Sum	268.8335	100.0000

sample

wj-1-055-1-IC-98-2-1.0-214

Data file: C:\Users\Public\Documents\ChemStation\1\Data\wgl 2019-09-17 09-02-49\060-P2-C5-wj-1-055-1.D

Acquisition Data:

4.473

0.1379

49.5485

Sum

409.8443 420.2397

97.5263

sample

wj-1-055-1-rac-IC-98-2-1.0-214

Data file: C:\Users\Public\Documents\ChemStation\1\Data\wgl 2019-09-17 09-02-49\061-P2-C6-wj-1-055-1rac.D

			-	-
Area%	Area	Height	Nidth [min]	RT [min] W
49.7421	169.3124	21.6970	0.1301	4.217
50.2579	171.0677	21.6804	0.1315	4.461
100.0000	340.3801	Sum		

sample

wj-1-051-1-AS-H-98-2-1.0-214

Data file: C:\Users\Public\Documents\ChemStation\1\Data\WJ_LC 2019-09-12 22-38-10\003-P2-C1-wj-1-051-1.D

Acquisition Data:

9.410

0.1953

207.6289

Sum

2621.2363

2740.0679

95.6632

sample

wj-1-051-1-rac-AS-H-98-2-1.0-214

Data file: C:\Users\Public\Documents\ChemStation\1\Data\WJ_LC 2019-09-12 22-38-10\004-P2-C2-wj-1-051-1-rac.D

			-	-
Area%	Area	Height	Width [min]	RT [min]
49.7532	2104.3892	261.4917	0.1259	6.442
50.2468	2125.2681	170.4534	0.1935	9.338
100.0000	4229.6572	Sum		

S109

sample

wj-1-054-1-AS-H-98-2-1.0-214

Data file: C:\Users\Public\Documents\ChemStation\1\Data\WJ_LC 2019-09-16 20-02-18\003-P2-C1-wj-1-054-1.D

Acquisition Data:

8.499

0.1798

255.7857

Sum

2933.7458

3083.4516

95.1449

sample

wj-1-054-1-rac-AS-H-98-2-1.0-214

Data file: C:\Users\Public\Documents\ChemStation\1\Data\WJ_LC 2019-09-16 20-02-18\004-P2-C2-wj-1-054-1-rac.D

Area%	Area	Height	Width [min]	RT [min]
49.8856	3544.4277	459.4753	0.1286	5.952
50.1144	3560.6772	305.9164	0.1940	8.348
100.0000	7105.1050	Sum		

wj-1-072-1-AS-H-98-2-1.0-214

 Data file:
 C:\Users\Public\Documents\ChemStation\1\Data\zwf-allenioc acid_LC 2019-10-05 11-37-07\036-P2-C1-wj-1-072-1.D

nginai.	DRD I O, Olg	214,4100	000,100	
RT [min]	Width [min]	Height	Area	Area%
4.877	0.0977	28.5560	180.2966	4.3083
5.875	0.1241	496.5209	4004.5703	95.6917
		Sum	4184.8669	100.0000

wj-1-072-1-rac-AS-H-98-2-1.0-214

 Data file:
 C:\Users\Public\Documents\ChemStation\1\Data\zwf-allenioc acid_LC 2019-10-05 11-37-07\037-P2-C2-wj-1-072-1-rac.D

				-
Area%	Area	Height	Width [min]	RT [min]
49.6865	14895.3457	2244.5510	0.1031	4.878
50.3135	15083.3193	1795.0894	0.1317	5.880
100.0000	29978.6650	Sum		

sample

wj-1-069-1-AS-H-98-2-1.0-214

Data file: C:\Users\Public\Documents\ChemStation\1\Data\WJ_LC 2019-09-28 15-09-29\003-P2-C1-wj-1-069-1.D

	, e.g	,	,	
RT [min]	Width [min]	Height	Area	Area%
5.373	0.1068	5.2197	36.1348	0.5599
6.612	0.1403	704.2572	6417.6631	99.4401
		Sum	6453.7979	100.0000

sample

wj-1-069-1-rac-AS-H-98-2-1.0-214

 Data file:
 C:\Users\Public\Documents\ChemStation\1\Data\WJ_LC 2019-09-28 15-09-29\004-P2-C2-wj-1-069-1-rac.D

-	-			
RT [min]	Width [min]	Height	Area	Area%
5.534	0.1128	777.6021	5654.7524	49.9115
6.831	0.1470	596.2778	5674.8145	50.0885
		Sum	11329.5669	100.0000

sample

wj-1-120-1-AS-H-98-2-1.0-214

Data file: C:\Users\Public\Documents\ChemStation\1\Data\zwf-allenioc acid_LC 2019-12-03 19-19-43\002-P2-C1-wj-1-120-1.D

Acquisition Data:

9.224

0.2045

321.9935

Sum

4208.0449

4269.9813

98.5495

wj-1-120-1-rac-AS-H-98-2-1.0-214

Sum

4126.3862

 Data file:
 C:\Users\Public\Documents\ChemStation\1\Data\zwf-allenioc acid_LC 2019-12-03 19-19-43\003-P2-C2-wj-1-120-1-rac.D

Acquisition Data:

wj-1-057-1-AS-H-95-5-1.0-214

Sum

Data file: C:\Users\Public\Documents\ChemStation\1\Data\wgl 2019-09-18 08-46-24\053-P2-C1-wj-1-057-1.D

sample

wj-1-057-1-rac-AS-H-95-5-1.0-214

Data file: C:\Users\Public\Documents\ChemStation\1\Data\wgl 2019-09-18 08-46-24\054-P2-C2-wj-1-057-1rac.D

			-	-
Area%	Area	Height	Width [min]	RT [min]
49.8629	4366.1230	349.9830	0.2079	9.065
50.1371	4390.1318	183.6236	0.3709	15.777
100.0000	8756.2549	Sum		

sample

wj-1-111-1-AS-H-98-2-1.0-214

Sum

6413.9388

 Data file:
 C:\Users\Public\Documents\ChemStation\1\Data\YuanYuan 2019-11-11 18-50-01\017-P2-C1-wj-1-111-1.D

Acquisition Data:

wj-1-111-1-rac-AS-H-98-2-1.0-214

Sum

6914.6943

 Data file:
 C:\Users\Public\Documents\ChemStation\1\Data\YuanYuan 2019-11-11 18-50-01\018-P2-C2-wj-1-111-1-rac.D

Acquisition Data:

sample

wj-1-082-1-AS-H-90-10-1.0-214

Data file: C:\Users\Public\Documents\ChemStation\1\Data\WJ_LC 2019-10-17 17-55-02\004-P2-C1-wj-1-082-1.D

Acquisition Data:

29.431

0.7669

184.7821

Sum

9105.9668

9399.1500

96.8807

sample

wj-1-082-1-rac-AS-H-90-10-1.0-

214

Data file: C:\Users\Public\Documents\ChemStation\1\Data\WJ_LC 2019-10-17 17-55-02\005-P2-C2-wj-1-082-1-rac.D

Acquisition Data:

100.0000

Sum

sample

wj-1-134-AS-H-98-2-1.0-214

Data file: C:\Users\Public\Documents\ChemStation\1\Data\WJ_LC 2020-06-02 12-57-04\002-P2-C1-wj-1-134.D

Acquisition Data:

12.431

0.2487

246.7380

Sum

3990.7153

4065.0243

98.1720

sample

wj-1-134-rac-AS-H-98-2-1.0-214

Data file: C:\Users\Public\Documents\ChemStation\1\Data\WJ_LC 2020-06-02 12-57-04\003-P2-C2-wj-1-134rac.D

Acquisition Data:

12.792

0.2531

99.6525

Sum

1632.1830

3263.2881

50.0165

S140

wj-1-122-1-AS-H-98-2-1.0-214

Data file: C:\Users\Public\Documents\ChemStation\1\Data\zwf-allenioc acid_LC 2019-12-03 19-19-43\010-P2-C1-wj-1-122-1.D

		,	,	
RT [min]	Width [min]	Height	Area	Area%
5.543	0.1144	21.9182	162.2364	2.5587
6.979	0.1512	636.6016	6178.2861	97.4413
		Sum	6340.5225	100.0000

wj-1-122-1-rac-AS-H-98-2-1.0-

214

 Data file:
 C:\Users\Public\Documents\ChemStation\1\Data\zwf-allenioc acid_LC 2019-12-03 19-19-43\011-P2-C2-wj-1-122-1-rac.D

Acquisition Data:

6.985

0.1533

50.1100

100.0000

3116.1555 6218.6282

315.4018

Sum

S144

sample

wj-1-013-2-AS-H-98-2-1.0-214

Sum

20833.8429

 Data file:
 C:\Users\Public\Documents\ChemStation\1\Data\WJ_LC 2019-07-11 09-14-49\006-P2-C4-wj-1-013-2.D

Acquisition Data:

sample

wj-1-013-2-rac-AS-H-98-2-

1.0-214

 Data file:
 C:\Users\Public\Documents\ChemStation\1\Data\WJ_LC 2019-07-10 19-09-25\008-P2-C6-wj-1-013-2-rac.D

Acquisition Data:

100.0000

9904.9453

Sum

sample

wj-1-016-2-AS-H-98-2-1.0-

214

Data file: C:\Users\Public\Documents\ChemStation\1\Data\WJ_LC 2019-07-12 22-04-29\009-P2-C7-wj-1-016-2.D

sample

wj-1-016-2-rac-AS-H-98-2-

1.0-214

Data file: C:\Users\Public\Documents\ChemStation\1\Data\WJ_LC 2019-07-12 22-04-29\010-P2-C8-wj-1-016-2-rac.D

sample

wj-1-019-2-AS-H-98-2-

1.0-214

 Data file:
 C:\Users\Public\Documents\ChemStation\1\Data\zwf-allenioc acid_LC 2019-07-15 22-12-25\005-P2-C3-wj-1-019-2.D

Acquisition Data:

100.0000

14657.8240

Sum


```
sample
```

wj-1-019-2-rac-AS-H-98-

2-1.0-214

Data file:

C:\Users\Public\Documents\ChemStation\1\Data\zwf-allenioc acid_LC 2019-07-15 22-12-25\006-P2-C4-wj-1-019-2-rac.D

Acquisition Data:

100.0000

Sum

sample

wj-1-022-2-AS-H-98-2-1.0-214

Sum

8012.0699

Data file: C:\Users\Public\Documents\ChemStation\1\Data\WJ_LC 2019-07-18 08-40-27\005-P2-C3-wj-1-022-2.D

Acquisition Data:

sample

wj-1-022-2-rac-AS-H-98-2-1.0-214

Sum

18067.7080

Data file:

C:\Users\Public\Documents\ChemStation\1\Data\WJ_LC 2019-07-18 08-40-27\006-P2-C4-wj-1-022-2-rac.D

Acquisition Data:

sample

wj-1-030-2-AS-H-98-2-1.0-214

Data file: C:\Users\Public\Documents\ChemStation\1\Data\WJ_LC 2019-07-23 14-03-17\041-P2-C3-wj-1-030-2.D

Area%	Area	Height	Width [min]	RT [min]
95.2932	12259.2998	427.2359	0.4208	12.017
4.7068	605.5215	14.4275	0.6995	16.165
100.0000	12864.8213	Sum		

sample

wj-1-030-2-rac-AS-H-98-2-1.0-214

 Data file:
 C:\Users\Public\Documents\ChemStation\1\Data\WJ_LC 2019-07-23 14-03-17\042-P2-C4-wj-1-030-2-rac.D

		,		
RT [min] W	/idth [min]	Height	Area	Area%
12.144	0.4617	127.0507	4090.9783	49.9490
15.792	0.6793	100.5813	4099.3257	50.0510
		Sum	8190.3040	100.0000

sample

wj-1-025-2-AS-H-98-2-1.0-214

Data file: C:\Users\Public\Documents\ChemStation\1\Data\WJ_LC 2019-07-19 19-25-49\005-P2-C3-wj-1-025-2.D

Acquisition Data:

12.441

0.8294

7.4346

Sum

425.3109

9658.5775

4.4035

sample

wj-1-025-2-rac-AS-H-98-2-1.0-214

 Data file:
 C:\Users\Public\Documents\ChemStation\1\Data\WJ_LC 2019-07-19 19-25-49\006-P2-C4-wj-1-025-2-rac.D

RT [min] Wi	idth [min]	Height	Area	Area%
9.341	0.4286	164.6044	4861.3979	49.8970
11.818	0.6826	104.5655	4881.4761	50.1030
		Sum	9742.8740	100.0000

sample

wj-1-031-2-AS-H-98-2-1.0-214

Sum

5390.4346

 Data file:
 C:\Users\Public\Documents\ChemStation\1\Data\WJ_LC 2019-07-24 08-34-00\022-P2-C1-wj-1-031-2.D

Acquisition Data:

sample

wj-1-031-2-rac-AS-H-98-2-1.0-214

Sum

10990.5806

 Data file:
 C:\Users\Public\Documents\ChemStation\1\Data\WJ_LC 2019-07-24 08-34-00\023-P2-C2-wj-1-031-2-rac.D

Acquisition Data:

sample

wj-1-032-2-AS-H-95-5-1.0-214

Data file: C:\Users\Public\Documents\ChemStation\1\Data\WJ_LC 2019-07-24 08-34-00\028-P2-C5-wj-1-032-2.D

Acquisition Data:

17.353

1.1921

0.5072

Sum

36.2815

1649.6944

2.1993

sample

wj-1-032-2-rac-AS-H-95-5-1.0-214

 Data file:
 C:\Users\Public\Documents\ChemStation\1\Data\WJ_LC 2019-07-24 08-34-00\027-P2-C6-wj-1-032-2-rac.D

Acquisition Data:

16.277

1.7256

69.8552

Sum

7232.5112

14387.6860

50.2688

sample

wj-1-047-2-AS-H-95-5-1.0-214

Data file: C:\Users\Public\Documents\ChemStation\1\Data\zwf-allenioc acid_LC 2019-09-09 16-35-10\036-P2-C7-wj-1-047-2.D

	,	_ · ·, · · ···	=? .= . e, e.g	
Area%	Area	Height	Width [min]	RT [min]
94.9958	2122.4004	164.5141	0.1945	5.999
5.0042	111.8043	6.2918	0.2962	7.288
100.0000	2234.2047	Sum		

sample

wj-1-047-2-rac-AS-H-95-5-1.0-214

 Data file:
 C:\Users\Public\Documents\ChemStation\1\Data\zwf-allenioc acid_LC 2019-09-09 16-35-10\037-P2-C8-wj-1-047-2-rac.D

				-
Area%	Area	Height	Width [min]	RT [min]
49.5780	1152.8596	88.2336	0.2178	6.007
50.4220	1172.4857	63.0879	0.3097	7.234
100.0000	2325.3453	Sum		

sample

wj-1-036-2-AS-H-98-2-1.0-214

Data file:

C:\Users\Public\Documents\ChemStation\1\Data\WJ_LC 2019-08-31 15-28-15\007-P2-C4-wj-1-036-2.D

Area%	Area	Height	Width [min]	RT [min]
95.7610	6433.8291	200.1053	0.5359	11.663
4.2390	284.8026	6.2105	0.7643	16.301
100.0000	6718.6317	Sum		

sample

wj-1-036-2-rac-AS-H-98-2-1.0-214

 Data file:
 C:\Users\Public\Documents\ChemStation\1\Data\WJ_LC 2019-08-31 15-28-15\008-P2-C5-wj-1-036-2-rac.D

Acquisition Data:

15.951

0.7023

41.4911

Sum

1964.3499

3942.0000

49.8313

wj-1-050-2-AS-H-98-2-1.0-214

Data file:

C:\Users\Public\Documents\ChemStation\1\Data\zwf-allenioc acid_LC 2019-09-11 17-12-23\012-P2-C3-wj-1-050-2.D

Area%	Area	Height	Width [min]	RT [min]
98.5244	35883.6367	3825.0781	0.1454	5.434
1.4756	537.4363	37.0453	0.2418	7.185
100.0000	36421.0730	Sum		

wj-1-050-2-rac-AS-H-98-2-1.0-214

 Data file:
 C:\Users\Public\Documents\ChemStation\1\Data\zwf-allenioc acid_LC 2019-09-11 17-12-23\013-P2-C4-wj-1-050-2-rac.D

-				
RT [min]	Width [min]	Height	Area	Area%
5.449	0.1365	619.4649	5548.2568	49.8322
7.146	0.2035	424.4063	5585.6196	50.1678
		Sum	11133.8765	100.0000

wj-1-055-2-AD-H-98-2-1.0-214

Data file:

C:\Users\Public\Documents\ChemStation\1\Data\wgl 2019-09-17 09-02-49\034-P2-C7-wj-1-055-2.D

sample

wj-1-055-2-rac-AD-H-98-2-1.0-214

Sum

20637.7080

Data file: C:\Users\Public\Documents\ChemStation\1\Data\wgl 2019-09-17 09-02-49\035-P2-C8-wj-1-055-2rac.D

Acquisition Data:

wj-1-046-2-AS-H-98-2-1.0-214

Sum

7349.3888

 Data file:
 C:\Users\Public\Documents\ChemStation\1\Data\zwf-allenioc acid_LC 2019-09-09 16-35-10\031-P2-C3-wj-1-046-2.D

Acquisition Data:

wj-1-046-2-rac-AS-H-98-2-1.0-214

 Data file:
 C:\Users\Public\Documents\ChemStation\1\Data\zwf-allenioc acid_LC 2019-09-09 16-35-10\032-P2-C4-wj-1-046-2-rac.D

Acquisition Data:

12.382

0.4040

87.9829

Sum

2337.5791

4678.1926

49.9676

sample

wj-1-094-2-AS-H-98-2-1.0-214

Data file: C:\Users\Public\Documents\ChemStation\1\Data\WJ_LC 2019-10-26 22-43-36\003-P2-C1-wj-1-094-2.D

Acquisition Data:

13.430

0.6316

15.5273

Sum

588.4440

11513.0709

5.1111

sample

wj-1-094-2-rac-AS-H-98-2-1.0-214

 Data file:
 C:\Users\Public\Documents\ChemStation\1\Data\WJ_LC 2019-10-26 22-43-36\004-P2-C2-wj-1-094-2-rac.D

				-
Area%	Area	Height	Width [min]	RT [min]
49.7878	12042.5449	742.0991	0.2413	7.493
50.2122	12145.1973	370.9405	0.4960	13.144
100.0000	24187.7422	Sum		

sample

wj-1-070-2-AS-H-98-2-1.0-214

Data file: C:\Users\Public\Documents\ChemStation\1\Data\QAN 2019-09-29 18-30-35\016-P2-C3-wj-1-070-2.D

Area%	Area	Height	Width [min]	RT [min]
97.8153	5083.7461	409.8192	0.1867	6.221
2.1847	113.5469	4.3622	0.4338	10.255
100.0000	5197.2930	Sum		

wj-1-070-2-rac-AS-H-98-2-1.0-214

Data file: C:\Users\Public\Documents\ChemStation\1\Data\QAN 2019-09-29 18-30-35\017-P2-C4-wj-1-070-2rac.D

Acquisition Data:

10.124

0.4128

209.7661

Sum

5195.9199

10426.5093

49.8337

wj-1-074-2-AS-H-98-2-1.0-214

Sum

9280.3199

Data file: C:\Users\Public\Documents\ChemStation\1\Data\zwf-allenioc acid_LC 2019-10-06 14-14-49\027-P2-C7-wj-1-074-2.D

Acquisition Data:

wj-1-074-2-rac-AS-H-98-2-1.0-214

 Data file:
 C:\Users\Public\Documents\ChemStation\1\Data\zwf-allenioc acid_LC 2019-10-06 14-14-49\028-P2-C8-wj-1-074-2-rac.D

Area%	Area	Height	Width [min]	RT [min]
50.0759	11554.1123	786.3198	0.2174	6.342
49.9241	11519.1074	353.4627	0.5432	9.402
100.0000	23073.2197	Sum		

sample

wj-1-066-2-AS-H-98-2-1.0-214

Data file:

C:\Users\Public\Documents\ChemStation\1\Data\wgl 2019-09-25 09-43-22\039-P2-C1-wj-1-066-2.D

sample

wj-1-066-2-rac-AS-H-98-2-1.0-214

Sum

13559.2690

Data file: C:\Users\Public\Documents\ChemStation\1\Data\wgl 2019-09-25 09-43-22\040-P2-C2-wj-1-066-2rac.D

Acquisition Data:

wj-1-064-2-AS-H-95-5-1.0-214

Data file:

C:\Users\Public\Documents\ChemStation\1\Data\wgl 2019-09-24 10-35-10\033-P2-C5-wj-1-064-2.D

Area%	Area	Height	Width [min]	T [min]
95.5169	4580.5767	236.0499	0.2844	7.950
4.4831	214.9886	8.5227	0.4204	10.720
100.0000	4795.5653	Sum		

sample

wj-1-064-2-rac-AS-H-95-5-1.0-214

Data file: C:\Users\Public\Documents\ChemStation\1\Data\wgl 2019-09-24 10-35-10\034-P2-C6-wj-1-064-2rac.D

RT [min]	Width [min]	Height	Area	Area%
8.004	0.2830	250.5520	4832.7207	49.8970
10.607	0.3901	183.7673	4852.6724	50.1030
		Sum	9685.3931	100.0000

S217

wj-1-056-2-AS-H-98-2-1.0-214

Data file:

C:\Users\Public\Documents\ChemStation\1\Data\wgl 2019-09-17 09-02-49\055-P2-C3-wj-1-056-2.D

Acquisition Data:

sample

wj-1-056-2-rac-AS-H-98-2-1.0-214

Sum

15825.5635

Data file: C:\Users\Public\Documents\ChemStation\1\Data\wgl 2019-09-17 09-02-49\056-P2-C4-wj-1-056-2rac.D

Acquisition Data:

S221

wj-1-073-2-AS-H-90-10-1.0-214

 Data file:
 C:\Users\Public\Documents\ChemStation\1\Data\zwf-allenioc acid_LC 2019-10-06 14-14-49\022-P2-C3-wj-1-073-2.D

Acquisition Data:

16.685

0.8372

0.5583

Sum

28.0436

2823.6566

0.9932

wj-1-073-2-rac-AS-H-90-10-1.0-214

 Data file:
 C:\Users\Public\Documents\ChemStation\1\Data\zwf-allenioc acid_LC 2019-10-06 14-14-49\023-P2-C4-wj-1-073-2-rac.D

Acquisition Data:

16.858

0.8062

93.3867

Sum

5284.4390

10582.6689

49.9348

sample

wj-1-136-AS-H-98-2-1.0-214

Data file:

C:\Users\Public\Documents\ChemStation\1\Data\zwf-allenioc acid_LC 2020-06-01 19-44-43\010-P2-C4-wj-1-136.D

Acquisition Data:

14.254

0.5026

11.7540

Sum

354.4257

6876.8061

5.1539

wj-1-136-rac-AS-H-98-2-1.0-214

 Data file:
 C:\Users\Public\Documents\ChemStation\1\Data\zwf-allenioc acid_LC 2020-06-01 19-44-43\011-P2-C5-wj-1-136-rac.D

Acquisition Data:

0	, 0	,	,	
RT [min]	Width [min]	Height	Area	Area%
11.100	0.3417	127.4330	2945.4487	50.4505
13.991	0.4312	100.6969	2892.8433	49.5495
		Sum	5838.2920	100.0000

S230

wj-1-115-2-AS-H-98-2-1.0-214

Sum

9734.5674

 Data file:
 C:\Users\Public\Documents\ChemStation\1\Data\zwf-allenioc acid_LC 2019-11-15 20-57-54\012-P2-C5-wj-1-115-2.D

Acquisition Data:

wj-1-115-2-rac-AS-H-98-2-1.0-214

Data file: C:\Users\Public\Documents\ChemStation\1\Data\zwf-allenioc acid_LC 2019-11-15 20-57-54\013-P2-C6-wj-1-115-2-rac.D

Acquisition Data:

100.0000

Signal:	DAD1 C, Sig=	214,4 Ret=	360,100	
RT [min]	Width [min]	Height	Area	Area%
11.436	0.4525	506.3639	13748.8301	49.6833
12.555	0.7652	303.2699	13924.1279	50.3167

Sum 27672.9580

S234

sample

wj-1-083-2-AS-H-98-2-1.0-214

Data file: C:\Users\Public\Documents\ChemStation\1\Data\YuanYuan 2019-10-15 19-00-21\026-P2-C3-wj-1-083-2.D

Acquisition Data:

Sum	8864.2883	100.00

sample

wj-1-083-2-rac-AS-H-98-2-

1.0-214

 Data file:
 C:\Users\Public\Documents\ChemStation\1\Data\YuanYuan 2019-10-15 19-00-21\027-P2-C4-wj-1-083-2-rac.D

Acquisition Data:

Sum 12424.6353 100.0000

wj-1-112-2-AS-H-98-2-1.0-214

Data file:

C:\Users\Public\Documents\ChemStation\1\Data\wgl 2019-11-12 21-55-01\006-P2-C1-wj-1-112-2.D

Acquisition Data:

wj-1-112-2-rac-AS-H-98-2-1.0-214

Data file:

C:\Users\Public\Documents\ChemStation\1\Data\wgl 2019-11-12 21-55-01\007-P2-C2-wj-1-112-2rac.D

Acquisition Data:

10.109

0.3920

224.6288

Sum

5737.2310

11430.6387

50.1917

sample

wj-1-091-2-AS-H-98-2-1.0-214

Data file:

C:\Users\Public\Documents\ChemStation\1\Data\WJ_LC 2019-10-25 22-04-20\005-P2-C3-wj-1-091-2.D

Acquisition Data:

Sum 20542.1797

sample

wj-1-091-2-rac-AS-H-98-2-1.0-214

Data file:

C:\Users\Public\Documents\ChemStation\1\Data\WJ_LC 2019-10-25 22-04-20\006-P2-C4-wj-1-091-2-rac.D

Acquisition Data:

14.677

0.6270

101.0590

Sum

4183.5767

8373.9604

49.9594

wj-1-159-1-AS-H-98-2-1.0-214

 Data file:
 C:\Users\Public\Documents\ChemStation\1\Data\zwf-allenioc acid_LC 2020-06-27 10-15-53\027-P2-C1-wj-1-159-1.D

Acquisition Data:

10.463

0.2225

117.4467

Sum

1675.8452

1743.8212

96.1019

wj-1-159-1-rac-AS-H-98-2-1.0-214

 Data file:
 C:\Users\Public\Documents\ChemStation\1\Data\zwf-allenioc acid_LC 2020-06-27 10-15-53\028-P2-C2-wj-1-159-1-rac.D

Acquisition Data:

10.422

0.2223

174.7387

Sum

2491.0229

4970.3958

50.1172

sample

wj-1-178-2-AS-H-98-2-1.0-214

Sum

13509.6739

Data file:

C:\Users\Public\Documents\ChemStation\1\Data\WJ_LC 2020-07-09 11-27-12\031-P2-C3-wj-1-178-2.D

Acquisition Data:

sample

wj-1-178-2-rac-AS-H-98-2-1.0-214

 Data file:
 C:\Users\Public\Documents\ChemStation\1\Data\WJ_LC 2020-07-09 11-27-12\032-P2-C4-wj-1-178-2-rac.D

Acquisition Data:

11.404

0.3785

42.5138

Sum

1080.4259

2144.9293

50.3712

sample

wj-2-115-2-AS-H-98-2-1.0-214

Sum

8716.8465

 Data file:
 C:\Users\Public\Documents\ChemStation\1\Data\WHN 2020-10-27 22-39-12\036-P2-C3-wj-2-115-2.D

Acquisition Data:

wj-2-115-2-rac-AS-H-98-2-1.0-214

Data file: C:\Users\Public\Documents\ChemStation\1\Data\WHN 2020-10-27 22-39-12\037-P2-C4-wj-2-115-2-rac.D

Area%	Area	Height	Width [min]	RT [min]
50.1570	1500.5134	49.1622	0.5087	10.599
49.8430	1491.1208	21.4538	1.0269	14.495
100.0000	2991.6343	Sum		

S259

sample

wj-2-115-1-AS-H-98-2-1.0-214

Data file: C:\Users\Public\Documents\ChemStation\1\Data\WHN 2020-10-27 22-39-12\034-P2-C1-wj-2-115-1.D

Acquisition Data:

11.341

0.2630

165.6306

Sum

2824.5901

3216.9193

87.8042

wj-2-115-1-rac-AS-H-98-2-1.0-214

Data file: C:\Users\Public\Documents\ChemStation\1\Data\WHN 2020-10-27 22-39-12\035-P2-C2-wj-2-115-1rac.D

Area Ai	Are	Height	Width [min]	RT [min]
.8256 50.	1853.82	149.1293	0.1930	8.514
.2098 49.	1853.209	108.4760	0.2633	11.299
.0354 100.	3707.03	Sum		

sample

wj-2-119-2-AS-H-98-2-1.0-214

Data file:

C:\Users\Public\Documents\ChemStation\1\Data\WJ_LC 2020-10-31 17-12-21\004-P2-C3-wj-2-119-2.D

Area%	Area	Height	Width [min]	RT [min]
1.6035	235.7755	5.8755	0.5602	10.941
98.3965	14467.9209	216.9615	1.0260	14.242
100.0000	14703.6964	Sum		

sample

wj-2-119-2-rac-AS-H-98-2-1.0-214

Data file:

C:\Users\Public\Documents\ChemStation\1\Data\WJ_LC 2020-10-31 17-12-21\005-P2-C4-wj-2-119-2-rac.D

Acquisition Data:

14.319

0.9769

28.2956

Sum

1927.8069

3845.6425

50.1296

wj-1-163-AS-H-95-5-1.0-214

Sum

Data file:

C:\Users\Public\Documents\ChemStation\1\Data\QAN 2020-06-29 08-41-07\085-P2-C1-wj-1-163.D

sample

wj-1-163-rac-AS-H-95-5-1.0-214

Data file:

C:\Users\Public\Documents\ChemStation\1\Data\QAN 2020-06-29 08-41-07\086-P2-C2-wj-1-163rac.D

J	·, J	,	,	
RT [min] Wi	dth [min]	Height	Area	Area%
9.765	0.3076	147.5005	2902.2227	50.0799
10.961	0.3587	125.6307	2892.9604	49.9201
		Sum	5795.1831	100.0000

S271

sample

wj-1-181-AS-H-98-2-1.0-214

Data file: C:\Users\Public\Documents\ChemStation\1\Data\zwf-allenioc acid_LC 2020-07-14 08-35-46\040-P2-C1-wj-1-181.D

Area%	Area	Height	Width [min]	RT [min]
4.7083	220.7224	27.4706	0.1237	6.145
95.2917	4467.1943	494.0445	0.1507	6.880
100.0000	4687.9167	Sum		

wj-1-181-rac-AS-H-98-2-1.0-214

 Data file:
 C:\Users\Public\Documents\ChemStation\1\Data\zwf-allenioc acid_LC 2020-07-14 08-35-46\041-P2-C2-wj-1-181-rac.D

-	-			
RT [min]	Width [min]	Height	Area	Area%
6.107	0.1332	228.7032	1827.2728	50.3165
6.827	0.1488	202.0844	1804.2880	49.6835
		Sum	3631.5608	100.0000

sample

wj-1-166-IC-99.5-0.5-0.5-214

 Data file:
 C:\Users\Public\Documents\ChemStation\1\Data\WJ_LC 2020-07-02 11-33-30\009-P2-C1-wj-1-166.D

nginai.	DRD I O, Olg	214,4100	000,100	
RT [min]	Width [min]	Height	Area	Area%
22.854	0.6605	364.1797	14432.0059	95.5562
24.307	0.5949	18.8043	671.1620	4.4438
		Sum	15103.1679	100.0000

sample

wj-1-166-rac-IC-99.5-0.5-0.5-214

Data file:

C:\Users\Public\Documents\ChemStation\1\Data\WJ_LC 2020-07-02 11-33-30\008-P2-C2-wj-1-166-RAC.D

		,	_/ e, e.g	.9
Area%	Area	Height	Width [min]	RT [min]
50.0641	6961.1162	181.2001	0.5962	21.694
49.9359	6943.2949	171.1311	0.6294	23.018
100.0000	13904.4111	Sum		

sample

wj-2-193-AD-H-98-2-1.0-214

Sum

2028.9720

Data file: C:\Users\Public\Documents\ChemStation\1\Data\WJ_LC 2021-01-29 15-35-00\005-P2-C3-wj-2-193.D

Acquisition Data:

wj-2-193-rac-AD-H-98-2-1.0-214

Sum

4715.3123

Data file: C:\Users\Public\Documents\ChemStation\1\Data\WJ_LC 2021-01-29 15-35-00\006-P2-C4-wj-2-193-rac.D

Acquisition Data:

sample

wj-2-131-OD-H-99.5-0.5-1.0-214

Data file:

C:\Users\Public\Documents\ChemStation\1\Data\zhangq 2020-11-06 15-59-05\015-P2-C3-wj-2-131.D

	,	,	, 0	0
Area%	Area	Height	Width [min]	RT [min]
96.3754	2567.5222	99.1396	0.3901	13.339
3.6246	96.5632	3.6568	0.4001	14.714
100.0000	2664.0854	Sum		

sample

wj-2-131-rac-OD-H-99.5-0.5-1.0-214

Data file: C:\Users\Public\Documents\ChemStation\1\Data\zhangq 2020-11-06 15-59-05\014-P2-C4-wj-2-131rac.D

5	·, J	, -	,	
RT [min]	Width [min]	Height	Area	Area%
13.275	0.3792	86.3742	2170.4182	49.7857
14.587	0.4275	77.5067	2189.1057	50.2143
		Sum	4359.5239	100.0000

S293

sample

wj-2-129-OD-H-99.5-0.5-1.0-214

Data file:

C:\Users\Public\Documents\ChemStation\1\Data\zhangq 2020-11-06 15-59-05\012-P2-C1-wj-2-129.D

ignan	B/ (B 0, 01g	211,1101	000,100	
RT [min]	Width [min]	Height	Area	Area%
12.645	0.4127	140.7526	3845.3459	96.6718
14.352	0.4185	4.8197	132.3864	3.3282
		Sum	3977.7323	100.0000

sample

wj-2-129-rac-OD-H-99.5-0.5-1.0-214

Data file: C:\Users\Public\Documents\ChemStation\1\Data\zhangq 2020-11-06 15-59-05\013-P2-C2-wj-2-129rac.D

•	, 0	,	,	
RT [min] V	Vidth [min]	Height	Area	Area%
12.527	0.4409	77.3684	2046.8362	50.0784
14.101	0.4582	67.2166	2040.4290	49.9216
		Sum	4087.2651	100.0000

sample

wj-2-128-OD-H-99-1-1.0-214

Data file:

C:\Users\Public\Documents\ChemStation\1\Data\WJ_LC 2020-11-05 11-10-49\040-P2-C1-wj-2-128.D

	000,100	214,4100	Dr.D i O, Olg	ignui.
Area%	Area	Height	Width [min]	RT [min]
98.5817	7345.8462	477.2816	0.2336	8.001
1.4183	105.6875	5.7728	0.2756	9.424
100.0000	7451.5337	Sum		

sample

wj-2-128--rac-OD-H-99-1-1.0-214

Data file: C:\Users\Public\Documents\ChemStation\1\Data\WJ_LC 2020-11-05 11-10-49\041-P2-C2-wj-2-128rac.D

•	, 0	,	,	
RT [min]	Width [min]	Height	Area	Area%
7.967	0.2285	278.4149	4211.4351	50.0043
9.356	0.2778	231.9053	4210.7114	49.9957
		Sum	8422.1465	100.0000

S306

sample

wj-2-136-OD-H-99.5-0.5-1.0-214

Data file:

C:\Users\Public\Documents\ChemStation\1\Data\WJ_LC 2020-11-11 21-24-07\006-P2-C2-wj-2-136.D

			-	-
Area%	Area	Height	Width [min]	RT [min]
98.5656	4090.1533	183.9776	0.3434	6.287
1.4344	59.5220	3.4316	0.2664	7.353
100.0000	4149.6753	Sum		

sample

wj-2-136-rac-OD-H-99.5-0.5-1.0-214

Sum

4118.6943

Data file:

C:\Users\Public\Documents\ChemStation\1\Data\WJ_LC 2020-11-11 21-24-07\005-P2-C1-wj-2-136-rac.D

Acquisition Data:

100.0000

S312

