Supporting Information

Selective Cross-Coupling of α , β -Unsaturated Nitriles with Aldehydes or Alcohols by Hydrogen Transfer Catalysis towards β -Ketonitriles and Glutaronitriles

Shi-Qi Zhang,^{1,2} and Ji-Bao Xia^{*,1}

¹State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China

²University of Chinese Academy of Sciences, Beijing, 100049, China

Corresponding Author: jibaoxia@licp.cas.cn

Table of Contents

Ι	General Information
Π	Optimization of the Reaction Conditions for Cross-Coupling of
	Alcohol and Acrylonitrile4
III	Optimization of the Reaction Conditions for Hydroacylation of
	Acrylonitrile with Aldehyde7
IV	General Procedure and Characterization Data11
V	Synthetic Transformations of β -Ketonitrile and Glutaronitrile
	Derivatives
VI	Control Experiments and Mechanistic Studies
VI	References 40
VI	NMR Spectra41

I General Information

Thin layer chromatography (TLC) employed glass 0.25 mm silica gel plates. Flash chromatography columns were packed with 200-300 mesh silica gel in petroleum (bp. 60-90 °C). The High Resolution MS analyses were performed on Thermo Fisher Scientific LTQ FT Ultra with DART Positive Mode or Agilent 6530 Accurate-Mass Q-TOF LC/MS with ESI mode. GC-MS spectra were recorded on a GCMS-QP2010 SE with helium gas as the carrier gas. NMR spectra were recorded on a 400 MHz for ¹H NMR and 100 MHz for ¹³C NMR, using tetramethylsilane as an internal reference and CDCl₃ as solvent. Chemical shift values for protons are reported in parts per million (ppm, δ scale) downfield from tetramethylsilane and are referenced to residual proton of CDCl₃ (δ 7.26), benzene-d₆ (δ 7.16) and DMSO- d_6 (δ 2.50). Multiplicity is indicated by one or more of the following: s (singlet); d (doublet); t (triplet); q (quartet); ddd (doublet of doublet of doublets); m (multiplet); br (broad). Carbon nuclear magnetic resonance spectra (13C NMR) were recorded at 100 MHz. Chemical shifts for carbons are reported in parts per million (ppm, δ scale) downfield from tetramethylsilane and are referenced to the carbon resonance of CDCl₃ (δ 77.16), benzene- d_6 (δ 128.06), and DMSO- d_6 (δ 39.52). The acrylonitrile substrate of 3-phenylacrylonitrile, 3-(4-methoxyphenyl)acrylonitrile, 3-(4-fluorophenyl)acrylonitrile, 3cyano-cinnamonitrile, 3-nitro-cinnamonitrile, and 2-(2-chlorobenzyl)-3-oxo-3-phenylpropanenitrile were prepared according to known procedures.¹ The other materials were purchased from Tokyo Chemical Industry Co., Aldrich Inc., Alfa Aesar, Adamas, Bidepharm or other commercial suppliers and used as received unless otherwise noted.

II Optimization of the Reaction Conditions for Cross-Coupling of Alcohol and Acrylonitrile.

OH +	RuHCl(CO)(PPh ₃) ₃ (10 mol%) ligand (10 or 20 mol%)		+CN
1	1,4-dioxane, 120 °C, 16 h	Me 3	4
			PPh ₂ iPr PCy ₂ iPr iPr
PPn ₃	tri(turan-2-yi)phosphane tri-p-tolyiphos	spnane D	PPBP XPnos
Ph ₂ P NMe ₂ PhDavePhos	$\begin{array}{c} & \underset{PPh_2}{\overset{We}{\qquad}} & \underset{PPh_2}{\overset{We}{\qquad}} & \underset{PPh_2}{\overset{PPh_2}{\qquad}} & \underset{PPh_2}{\overset{PPh_2}{\qquad}} \\ & \underset{XantPhos}{\overset{We}{\qquad}} & \underset{DPEPhos}{\overset{We}{\qquad}} \end{array}$	PPh ₂ PPh ₂ BISBI	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ Fe \end{array} \\ PR_2 \\ PR_2 \\ PR_2 \\ R = {}^{\prime}Pr, \\ PR_2 \\ R = {}^{\prime}Bu, \\ PR_2 \\ R = Cy, \\ DCyPF \end{array}$
Entry	Ligand (10 or 20 mol %)	Yield of $3 (\%)^b$	Yield of $4 (\%)^b$
1	-	18	11
2	PPh ₃ (20)	26	18
3	tri(furan-2-yl)phosphane (20)	22	14
4	tri-p-tolylphosphane (20)	20	11
5	DPPBP (20)	16	11
6	XPhos (20)	16	8
7	PhDavePhos (20)	30	11
8	XantPhos (10)	22	17
9	DPEPhos (10)	32	28
10	BISBI (10)	48	21
11	DPPF (10)	14	6
12	DIPPF(10)	26	9
13	DTBPF (10)	0	0
14	DCyPF (10)	50	35

Table S1. The Effect of the Ligands^a

^{*a*}Reaction conditions: **1** (0.2 mmol), **2** (0.5 mmol), RuHCl(CO)(PPh₃)₃ (10 mol%), ligand (10 or 20 mol%), 1,4-dioxane (2 mL), 120 °C, 16 h, if otherwise noted. ^{*b*}The yield is determined by crude ¹H NMR analysis with 1,1,2,2-tetrachloroethane as internal standard.

OH +	Ru Catalyst (10 mol%) DCyPF (10 mol%) 1,4-dioxane, 120 °C, 16 h	Me ^{CN} + Me ^O	CN Fe PCy ₂
1	2	3	4 DCyPF
Entry	Ru catalyst	Yield of 3 (%) ^{b}	Yield of $4 (\%)^b$
1	RuHCl(CO)(PPh ₃) ₃	50	35
2	RuH ₂ (CO)(PPh ₃) ₃	34	30
3	RuH ₂ (PPh ₃) ₄	0	0
4 ^{<i>c</i>}	Ru ₃ (CO) ₁₂	0	0
5^d	[RuH(Cp)(CO) ₂] ₂	0	0
6	-	0	0

Table S2. The Effect of the Ru Catalyst^a

^{*a*}Reaction conditions: **1** (0.2 mmol), **2** (0.5 mmol), Ru catalyst (10 mol%), DCyPF (10 mol%), 1,4dioxane (2 mL), 120 °C, 16 h, if otherwise noted. ^{*b*}The yield is determined by crude ¹H NMR analysis with 1,1,2,2-tetrachloroethane as internal standard. ^{*c*} with Ru₃(CO)₁₂ (3.3 mol%), ^{*d*} with [RuH(Cp)(CO)₂]₂ (5 mol%)

Table S3. The Effect of the Ratio of Substrates^a

OH 1	RuHCI(CO)(F DCyF 1,4-dioxa	PPh ₃) ₃ (10 mol%) PF (10 mol%) Ine, 120 °C, 16 h 3	4 CN CN Fe PCy2 DCyPF
Entry	2 (x equiv.) Yield of $3 (\%)^b$	Yield of $4 (\%)^b$
1	1.0	38	0
2	1.5	60	3
3	2.0	74	9
4	2.5	50	35

^{*a*}Reaction conditions: **1** (0.2 mmol), **2** (x equiv), RuHCl(CO)(PPh₃)₃ (10 mol%), DCyPF (10 mol%), 1,4dioxane (2 mL), 120 °C, 16 h, if otherwise noted. ^{*b*}The yield is determined by crude ¹H NMR analysis with 1,1,2,2-tetrachloroethane as internal standard.

	+ CN RuHCI(CO DCy solve)(PPh ₃) ₃ (10 mol%) PF (10 mol%) ent, reflux, 16 h	Me + Me CN	CN Fe PCy ₂
1	2	3	4	DCyPF
Entry	Solvent	Temperature (°C)	Yield of 3 (%) ^b	Yield of $4 (\%)^b$
1	1,4-dioxane	120	74	9
2	DME	85	72	27
3	CH ₃ OH	85	0	0
4	CH ₃ O'Bu	85	42	38
5	DCE	85	trace	trace
6	benzene	85	46	38
7	CH ₃ CN	85	trace	trace
8	THF	85	50	30
9	toluene	120	58	24
10	NMP	120	trace	trace
11	DMF	120	trace	trace
12	DME	65	64	12

Table S4. The Effect of Solvent and Reaction Temperature^a

^{*a*}Reaction conditions: **1** (0.2 mmol), **2** (2.0 equiv), RuHCl(CO)(PPh₃)₃ (10 mol%), DCyPF (10 mol%), solvent (2 mL), Temperature (°C), 16 h, if otherwise noted. ^{*b*}The yield is determined by crude ¹H NMR analysis with 1,1,2,2-tetrachloroethane as internal standard. DME: 1,2-dimethoxyethane.

OH +	CN RuHCl(CO)(PPh ₃) ₃ (DCyPF (10 m DME, 85 °C, 1	10 mol%) ol%) time He +	Me CN CN Fe PCy ₂ Fe PCy ₂
1	2	3	4 DCyPF
Entry	Time (h)	Yield of 3 $(\%)^b$	Yield of $4 (\%)^b$
1	1	72	8
2	4	82 (67)	4
3	6	82	10
4	16	72	27
5 ^c	12	2	65 (62)

^{*a*}Reaction conditions: **1** (0.2 mmol), **2** (2.0 equiv), RuHCl(CO)(PPh₃)₃ (10 mol%), DCyPF (10 mol%), DME (2 mL), 85 °C, 16 h, if otherwise noted. ^{*b*}The yield is determined by crude ¹H NMR analysis with 1,1,2,2-tetrachloroethane as internal standard and isolated yield in the parenthesis. ^{*c*}With **2** (5.0 equiv)

III Optimization of the Reaction Conditions for Hydroacylation of Acrylonitrile with Aldehyde.

	+ ~ _	Ru catalyst (10 mol%) igand (10 or 20 mol%) DME, 85 °C, 6 h	Me +	CN CN	
	5 2	3		4	
$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\$					
Entry	Ru catalyst	Ligand (10 or 20 mol %)	Yield of $3 (\%)^b$	Yield of $4 (\%)^b$	
1	RuHCl(CO)(PPh ₃) ₃	-	0	0	
2	RuH ₂ (CO)(PPh ₃) ₃	-	0	0	
3	RuHCl(CO)(PPh ₃) ₃	PPh ₃ (20)	0	0	
4	RuHCl(CO)(PPh ₃) ₃	PCy ₃ (20)	0	0	
5	RuHCl(CO)(PPh ₃) ₃	tri-p-tolylphosphane (20)	5	12	
6	RuHCl(CO)(PPh ₃) ₃	P(C ₆ F ₅) ₃ (20)	0	0	
7	RuHCl(CO)(PPh ₃) ₃	XPhos (20)	0	0	
8	RuHCl(CO)(PPh ₃) ₃	PhDavePhos (20)	0	0	
9	RuHCl(CO)(PPh ₃) ₃	XantPhos (10)	0	0	
10	RuHCl(CO)(PPh ₃) ₃	DPEPhos (10)	10	13	
11	RuHCl(CO)(PPh ₃) ₃	Cy-DPEPhos (10)	0	0	
12	RuHCl(CO)(PPh ₃) ₃	DPPF (10)	trace	trace	
13	RuHCl(CO)(PPh ₃) ₃	DIPPF(10)	14	24	
14	RuHCl(CO)(PPh ₃) ₃	DTBPF (10)	trace	trace	
15	RuHCl(CO)(PPh3)3	DCyPF (10)	25	17	

Table S6. The Effect of the Ru Catalyst and Ligands^a

^{*a*}Reaction conditions: **5** (0.2 mmol), **2** (0.2 mmol), Ru catalyst (10 mol%), ligand (10 mol% or 20 mol%), DME (2 mL), 85 °C, 6 h, if otherwise noted. ^{*b*}Determined by GC with dodecane as an internal standard.

→ →	RuHCl(CO)(PPh ₃) ₃ (10 mol%) DCyPF (10 mol%) additive, DME, 85 °C, 6 h	Me ^{CN} + Me ^{CN}	CN Fe PCy ₂ DCvPF
5	2	3 4	20,11
Entry	Additive (5 or 10 mol %)	Yield of 3 (%) ^{b}	Yield of $4 (\%)^b$
1	-	25	17
2	(EtO) ₂ PO ₂ H (10)	0	0
3	(PhO) ₂ PO ₂ H (10)	10	9
4	CH ₃ SO ₃ H (10)	0	0
5	PhCH ₂ OH (10)	42	10
6	ethane-1,2-diol (5)	33	16
7	propane-1,3-diol (5)	30	15
8	butane-1,4-diol (5)	37	13
9	pentane-1,5-diol (5)	48	12
10	hexane-1,6-diol (5)	46	12
11	heptane-1,7-diol (5)	40	12
12	octane-1,8-diol (5)	46	9
13	pentane-2,4-diol (5)	30	22
14	propane-1,2,3-triol (5)	35	11
15	3-methoxypropan-1-ol (5)	34	12

Table S7. The Effect of the Additives^{*a*}

^{*a*}Reaction conditions: 5 (0.2 mmol), **2** (0.2 mmol), RuHCl(CO)(PPh₃)₃ (10 mol%), DCyPF (10 mol%), additive (5 mol% or 10 mol%), DME (2 mL), 85 °C, 6 h. ^{*b*}Determined by GC with dodecane as an internal standard.

÷	CN	RuHCl(CO)(PPh ₃) ₃ (10 mol%) DCyPF (10 mol%) pentane-1,5-diol (5 mol%) DME, 85 °C, 6 h	- CN +	Me CN	Fe PCy ₂ PCy ₂ DCyPF
5	2		3	4	
Entry		5 (x equiv)	Yield of $3 (\%)^b$	Yield of	4 (%) ^b
1		1.0	48	12	
2		1.2	55	14	
3		1.5	70 (66) ^c	0	
4		2.0	71	0	
5^d		0.4	0	50 (4	$(7)^{c}$

Table S8. The Effect of the Ratio of Substrates^a

^{*a*}Reaction conditions: **5** (x equiv), **2** (0.2 mmol), RuHCl(CO)(PPh₃)₃ (10 mol%), DCyPF (10 mol%), pentane-1,5-diol (5 mol%), DME (2 mL), 85 °C, 6 h, if otherwise noted. ^{*b*}Determined by GC with dodecane as an internal standard. ^{*c*}Isolated yield in the parenthesis. ^{*d*}With **1** (0.2 mmol), **2** (0.5 mmol), 12 h.

Table S9. The Effect of Solvent^a

• • • • •	RuHCl(CO)(PPh ₃) ₃ (10 mol%) DCyPF (10 mol%) pentane-1,5-diol (5 mol%) solvent, 85 °C, 6 h 2	Me +	Me CN Fe PCy ₂ DCyPF
Entry	Solvent	Yield of 3 (%) ^{b}	Yield of $4 (\%)^b$
1	DME	70	0
2	CH ₃ OH	trace	trace
3	CH ₃ O'Bu	61	0
4	DCE	26	6
5	benzene	53	18
6	CH ₃ CN	trace	trace
7^c	toluene	51	6
8 ^c	NMP	38	0
9 ^c	DMF	16	11
10	THF	57	3
11	1,4-dioxane	64	3

^{*a*}Reaction conditions: **5** (0.3 mmol), **2** (0.2 mmol), RuHCl(CO)(PPh₃)₃ (10 mol%), DCyPF (10 mol%), pentane-1,5-diol (5 mol%), solvent (2 mL), 85 °C, 6 h, if otherwise noted. ^{*b*}Determined by GC with dodecane as an internal standard. ^{*c*}At 110 °C.

Table S10. The Effect of Ru Catalyst and Control Experiments^a

5	+ CN - CVPF (10 mol%) - DCyPF (10 mol%) - pentane-1,5-diol (5 mol%) - DME, 85 °C, 6 h - 2	Me ^{CN} +	CN Me CN 4
Entry	Ru catalyst	Yield of $3 (\%)^b$	Yield of $4 (\%)^b$
1	RuHCl(CO)(PPh3)3	70	0
2	RuH ₂ (CO)(PPh ₃) ₃	22	13
3	RuCl ₂ (PPh ₃) ₃	0	0
4	(RuCpCO) ₂	0	0
5	Ru ₃ (CO) ₁₂	0	0
6	RuCl ₂ (COD)	0	0
7	RuHCl(CO)(PPh ₃) ₃ (15 mol%)	70	0
8	RuHCl(CO)(PPh ₃) ₃ (5 mol%)	60	9
9 ^c	-	0	0

^{*a*}Reaction conditions: **5** (0.3 mmol), **2** (0.2 mmol), Ru catalyst (10 mol%), DME (2 mL), 85 °C, 6 h, if otherwise noted. ^{*b*}Determined by GC with dodecane as an internal standard. ^{*c*}Without Ru catalyst.

IV General Procedure and Characterization Data

General Procedure A for Hydroacylation of Acrylonitriles with Aldehydes to β-Ketonitriles:

In a nitrogen-filled glovebox, a 25 mL Schlenk tube was charged with RuHCl(CO)(PPh₃)₃ (0.02 mmol, 19.2 mg), DCyPF (0.02 mmol, 11.4 mg), pentane-1,5-diol (0.01 mmol, 1 mg). Then, dry 1,2-dimethoxyethane (DME, 2 mL) was added, followed by aldehyde (0.3 mmol) and acrylonitrile (0.2 mmol). Then the Schlenk tube was removed from glovebox. The tube was stirred at 85 °C for 6 h under N₂ atmosphere. The reaction mixture was concentrated under reduced pressure, which was purified by flash column chromatography on silica gel (PE:EA) to give to afford the desired product.

General Procedure B for Hydroacylation of Acrylonitriles with Alcohols to β -Ketonitriles: In a nitrogen-filled glovebox, a 25 mL Schlenk tube was charged with RuHCl(CO)(PPh₃)₃ (0.02 mmol, 19.2 mg), DCyPF (0.02 mmol, 11.4 mg). Then, dry 1,2-dimethoxyethane (DME, 2 mL) was added, followed by alcohol (0.2 mmol) and acrylonitriles (0.4 mmol). Then the Schlenk tube was removed from glovebox. The tube was stirred at 85 °C for 4 h under N₂ atmosphere. The reaction mixture was concentrated under reduced pressure, which was purified by flash column chromatography on silica gel (PE:EA) to give to afford the desired product.

General Procedure C for Cross-Coupling of Acrylonitrile with Alcohols to Glutaronitriles:

In a nitrogen-filled glovebox, a 25 mL Schlenk tube was charged with $RuHCl(CO)(PPh_3)_3$ (0.02 mmol, 19.2 mg) and DCyPF (0.02 mmol, 11.4 mg). Then, dry 1,2-dimethoxyethane (DME, 2 mL) was added, followed by alcohol (0.2 mmol) and acrylonitrile (1.0 mmol). Then the Schlenk tube was removed from glovebox. The tube was stirred at 85 °C for 12 h under N₂ atmosphere. The reaction mixture was concentrated under reduced pressure, which was purified by flash column chromatography on silica gel (PE:EA) to give to afford the desired product.

2-Methyl-3-oxo-3-phenylpropanenitrile (3). Synthesized according to the **General Procedure A** with benzaldehyde (0.3 mmol, 31.8 mg) and acrylonitrile (0.2 mmol, 10.6 mg) at 85 °C for 6 h. Purified by flash column chromatography on silica gel (PE:EA = 10:1) to give **3** as a colorless oil (21.4 mg, 67%)

yield).

¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 8.0 Hz, 2H), 7.66 (dd, J = 7.6, 7.2 Hz, 1H), 7.53 (dd, J = 7.6, 7.6 Hz, 2H), 4.38 (q, J = 7.2 Hz, 1H), 1.65 (d, J = 7.2 Hz, 3H). The data are consistent with the reported literature.²

Synthesized according to the **General Procedure B** with benzalcohol (0.2 mmol, 21.6 mg,) and acrylonitrile (0.4 mmol, 21.2 mg) at 85 °C for 4 h. Purified by flash column chromatography on silica gel (PE:EA = 10:1) to give **3** as a colorless oil (21.0 mg, 66% yield).

2-Benzoyl-2-methylpentanedinitrile (4). Synthesized according to the **General Procedure C** with benzalcohol (0.2 mmol, 21.6 mg) and acrylonitrile (1.0 mmol, 53.0 mg) at 85 °C for 12 h. Purified by flash column chromatography on silica gel (PE:EA = 10:1) to give **4** as a yellow oil (26.3 mg, 62% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, *J* = 7.6 Hz, 2H), 7.66 (dd, *J* = 7.6, 7.6 Hz, 1H), 7.53 (dd, *J* = 7.6, 7.2 Hz, 2H), 2.70 – 2.51 (m, 3H), 2.21 – 2.14 (m, 1H), 1.79 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 192.5, 134.6 133.4, 129.5, 129.1, 120.4, 118.1, 45.1, 33.6, 24.8, 13.9. HRMS (ESI): Calcd for $[C_{13}H_{12}N_2ONa]^+$ [M+Na]⁺ 235.0842, Found 235.0850.

2-Methyl-3-oxo-3-(*p*-tolyl)propanenitrile (6). Synthesized according to the General Procedure A with 4-methylbenzaldehyde (0.3 mmol, 36.0 mg) and acrylonitrile (0.2 mmol, 10.6 mg) at 85 °C for 6 h. Purified by flash column chromatography on silica gel (PE:EA = 10:1) to give 6 as a colorless oil (21.2 mg, 61% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, *J* = 8.0 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 4.35 (q, *J* = 7.2 Hz, 1H), 2.44 (s, 3H), 1.64 (d, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 190.4, 145.9, 131.4, 129.9, 129.1, 118.4, 33.7, 21.9, 15.1.

HRMS (ESI): Calcd for [C₁₁H₁₁NO₂Na]⁺ [M+Na]⁺ 196.0733, Found 196.0743.

Synthesized according to the **General Procedure B** with *p*-tolylmethanol (0.2 mmol, 24.4 mg,) and acrylonitrile (0.4 mmol, 21.2 mg) at 85 °C for 4 h. Purified by flash column chromatography on silica gel (PE:EA = 10:1) to give **5** as a colorless oil (18.7 mg, 54% yield).

2-Methyl-3-oxo-3-(m-tolyl)propanenitrile (7). Synthesized according to the **General Procedure A** with 3-methylbenzaldehyde (0.3 mmol, 36.0 mg) and acrylonitrile (0.2 mmol, 10.6 mg) at 85 °C for 6 h. Purified by flash column chromatography on silica gel (PE:EA = 10:1) to give 7 as a colorless oil (18.3 mg, 53% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.79 – 7.76 (m, 2H), 7.46 (d, *J* = 7.6 Hz, 1H), 7.41 (dd, *J* = 7.6, 7.2 Hz, 1H), 4.36 (q, *J* = 7.2 Hz, 1H), 2.44 (s, 3H), 1.64 (d, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 191.1, 139.3, 135.5, 134.0, 129.4, 129.1, 126.1, 118.3, 33.8, 21.5, 15.2. HRMS (ESI): Calcd for [C₁₁H₁₁NO₂Na]⁺ [M+Na]⁺ 196.0733, Found 196.0736.

3-(4-(*tert***-Butyl)phenyl)-2-methyl-3-oxopropanenitrile (8).** Synthesized according to the **General Procedure A** with 4-(*tert*-butyl)benzaldehyde (0.3 mmol, 48.6 mg) and acrylonitrile (0.2 mmol, 10.6 mg) at 85 °C for 6 h. Purified by flash column chromatography on silica gel (PE:EA = 10:1) to give **8** as a colorless oil (25.0 mg, 58% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, *J* = 8.0 Hz, 2H), 7.53 (d, *J* = 8.4 Hz, 2H), 4.36 (q, *J* = 7.2 Hz, 1H), 1.64 (d, *J* = 7.2 Hz, 3H), 1.35 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 190.4, 158.7, 131.3, 128.9, 126.2, 118.5, 35.4, 33.7, 31.1, 15.1. HRMS (ESI): Calcd for [C₁₄H₁₇NONa]⁺ [M+Na]⁺ 238.1202, Found 238.1203.

3-(4-Methoxyphenyl)-2-methyl-3-oxopropanenitrile (9). Synthesized according to the **General Procedure A** with 4-methoxybenzaldehyde (0.3 mmol, 40.8 mg) and acrylonitrile (0.2 mmol, 10.6 mg) at 85 °C for 6 h. Purified by flash column chromatography on silica gel (PE:EA = 5:1) to give 9 as a colorless oil (22.0 mg, 58% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J* = 8.8 Hz, 2H), 6.99 (d, *J* = 8.8 Hz, 2H), 4.31 (q, *J* = 7.2 Hz, 1H), 3.90 (s, 3H), 1.63 (d, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 189.2, 164.8, 131.4, 126.8, 118.6, 114.5, 55.8, 33.4, 15.2.

HRMS (ESI): Calcd for [C₁₁H₁₂NO₂]⁺ [M+H]⁺ 190.0863, Found 190.0861.

Synthesized according to the **General Procedure B** with (4-methoxyphenyl)methanol (0.2 mmol, 27.6 mg,) and acrylonitrile (0.4 mmol, 21.2 mg) at 85 °C for 4 h. Purified by flash column chromatography on silica gel (PE:EA = 10:1) to give 9 as a colorless oil (23.4 mg, 62% yield).

2-Methyl-3-(4-(methylthio)phenyl)-3-oxopropanenitrile (10). Synthesized according to the **General Procedure A** with 4-(methylthio)benzaldehyde (0.3 mmol, 45.6 mg) and acrylonitrile (0.2 mmol, 10.6 mg) at 85 °C for 6 h. Purified by flash column chromatography on silica gel (PE:EA = 5:1) to give **10** as a colorless oil (23.0 mg, 56% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 8.0 Hz, 2H), 7.30 (d, *J* = 8.0 Hz, 2H), 4.31 (q, *J* = 7.2 Hz, 1H), 2.53 (s, 3H), 1.63 (d, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 189.7, 148.5, 129.9, 129.2, 125.3, 118.4, 33.5, 15.1, 14.7. HRMS (ESI): Calcd for [C₁₁H₁₁NOSNa]⁺ [M+Na]⁺ 228.0454, Found 228.0444.

3-(4-(Diphenylamino)phenyl)-2-methyl-3-oxopropanenitrile (11). Synthesized according to the **General Procedure A** with 4-(diphenylamino)benzaldehyde (0.3 mmol, 81.9 mg) and acrylonitrile (0.2 mmol, 10.6 mg) at 85 °C for 6 h. Purified by flash column chromatography on silica gel (PE:EA = 6:1) to give **11** as a yellow oil (40.4 mg, 62% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, *J* = 8.0 Hz, 2H), 7.37 – 7.34 (m, 4H), 7.20 – 7.17 (m, 6H), 6.97 (d, *J* = 8.0 Hz, 2H), 4.27 (q, *J* = 7.2 Hz, 1H), 1.62 (d, *J* = 6.8 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 188.5, 153.4, 146.0, 130.7, 129.9, 126.6, 125.5, 125.5, 118.9, 118.8, 33.1, 15.2.

HRMS (ESI): Calcd for [C₂₂H₁₈N₂ONa]⁺ [M+Na]⁺ 349.1311, Found 349.1319.

2-Methyl-3-oxo-3-(4-(pyrrolidin-1-yl)phenyl)propanenitrile (12). Synthesized according to the **General Procedure A** with 4-(pyrrolidin-1-yl)benzaldehyde (0.3 mmol, 52.5 mg) and acrylonitrile (0.2 mmol, 10.6 mg) at 85 °C for 6 h. Purified by flash column chromatography on silica gel (PE:EA = 5:1) to give **12** as a white jelly (34.0 mg, 74% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, *J* = 8.4 Hz, 2H), 6.53 (d, *J* = 8.4 Hz, 2H), 4.29 (q, *J* = 7.2 Hz, 1H), 3.39 (s, 4H), 2.05 (s, 4H), 1.61 (d, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 188.1, 151.9, 131.4, 120.9, 119.4, 111.2, 47.8, 32.8, 25.5, 15.5. HRMS (ESI): Calcd for $[C_{14}H_{17}N_2O]^+$ [M+H]⁺ 229.1335, Found 229.1330.

2-Methyl-3-(4-morpholinophenyl)-3-oxopropanenitrile (13). Synthesized according to the **General Procedure A** with 4-morpholinobenzaldehyde (0.3 mmol, 57.3 mg) and acrylonitrile (0.2 mmol, 10.6 mg) at 85 °C for 6 h. Purified by flash column chromatography on silica gel (PE:EA = 5:1) to give **13** as a white jelly (30.7 mg, 63% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 9.2 Hz, 2H), 6.86 (d, *J* = 9.2 Hz, 2H), 4.30 (q, *J* = 7.2 Hz, 1H), 3.83 (t, *J* = 4.8 Hz, 4H), 3.34 (t, *J* = 5.2 Hz, 4H), 1.59 (d, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 188.6, 155.0, 131.1, 123.8, 118.9, 113.2, 66.5, 47.1, 33.1, 15.3. HRMS (ESI): Calcd for $[C_{14}H_{16}N_2O_2Na]^+$ [M+ Na]⁺ 267.1104, Found 267.1104.

Methyl 3-(2-cyanopropanoyl)benzoate (14). Synthesized according to the **General Procedure A** with methyl 3-formylbenzoate (0.3 mmol, 49.2 mg) and acrylonitrile (0.2 mmol, 10.6 mg) at 85 °C for 6 h. Purified by flash column chromatography on silica gel (PE:EA = 6:1) to give **14** as a colorless oil (25.2 mg, 58% yield).

¹H NMR (400 MHz, CDCl₃) δ 8.59 (s, 1H), 8.30 (d, *J* = 7.6 Hz, 1H), 8.18 (d, *J* = 7.6 Hz, 1H), 7.62 (dd, *J* = 8.0, 7.6 Hz, 1H), 4.44 (q, *J* = 7.2 Hz, 1H), 3.95 (s, 3H), 1.65 (d, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 190.3, 165.8, 135.3, 134.1, 133.0, 131.3, 129.8, 129.6, 117.9, 52.7, 34.0, 15.0.

HRMS (ESI): Calcd for [C₁₂H₁₁NO₃Na]⁺ [M+Na]⁺ 240.0631, Found 240.0625.

3-(3-Fluorophenyl)-2-methyl-3-oxopropanenitrile (15). Synthesized according to the **General Procedure A** with 3-fluorobenzaldehyde (0.3 mmol, 37.2 mg) and acrylonitrile (0.2 mmol, 10.6 mg) at 85 °C for 6 h. Purified by flash column chromatography on silica gel (PE:EA = 10:1) to give **15** as a colorless oil (19.1 mg, 54% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, *J* = 8.0 Hz, 1H), 7.67 (d, *J* = 8.8 Hz, 1H), 7.55 – 7.50 (m, 1H), 7.39 – 7.34 (m, 1H), 4.32 (q, *J* = 7.2 Hz, 1H), 1.65 (d, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 189.8, 163.1 (d, *J* = 248.4 Hz), 135.9 (d, *J* = 6.5 Hz), 131.0 (d, *J* = 7.5 Hz), 124.7 (d, *J* = 3.4 Hz), 121.8 (d, *J* = 21.1 Hz), 117.9, 115.8 (d, *J* = 22.5 Hz), 34.0, 15.0.

¹⁹F NMR (376 MHz, CDCl₃) δ –110.4.

HRMS (ESI): Calcd for [C₁₀H₈NOFNa]⁺ [M+Na]⁺ 200.0482, Found 200.0490.

3-(4-Fluorophenyl)-2-methyl-3-oxopropanenitrile (16). Synthesized according to the **General Procedure A** with 4-fluorobenzaldehyde (0.3 mmol, 37.2 mg) and acrylonitrile (0.2 mmol, 10.6 mg) at 85 °C for 6 h. Purified by flash column chromatography on silica gel (PE:EA = 10:1) to give **16** as a colorless oil (24.0 mg, 68% yield).

¹H NMR (400 MHz, CDCl₃) δ 8.03 (dd, *J* = 8.0, 6.0 Hz, 2H), 7.20 (dd, *J* = 8.4, 8.4 Hz, 2H), 4.33 (q, *J* = 7.2 Hz, 1H), 1.64 (d, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 189.3, 166.6 (d, *J* = 256.3 Hz), 131.7 (d, *J* = 9.8 Hz), 130.3 (d, *J* = 3.2 Hz), 118.13, 116.5 (d, *J* = 21.9 Hz), 33.8, 15.0.

¹⁹F NMR (376 MHz, CDCl₃) δ-102.0.

HRMS (ESI): Calcd for [C₁₀H₈NOFNa]⁺ [M+Na]⁺ 200.0482, Found 200.0492.

3-(4-Chlorophenyl)-2-methyl-3-oxopropanenitrile (17). Synthesized according to the **General Procedure A** with 4-chlorobenzaldehyde (0.3 mmol, 42.0 mg) and acrylonitrile (0.2 mmol, 10.6 mg) at 85 °C for 6 h. Purified by flash column chromatography on silica gel (PE:EA = 10:1) to give **17** as a colorless oil (20.6 mg, 53% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 8.0 Hz, 2H), 7.51 (d, *J* = 8.4 Hz, 2H), 4.30 (q, *J* = 7.2 Hz, 1H), 1.65 (d, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 189.6, 141.4, 132.2, 130.3, 129.7, 118.0, 33.8, 14.9.

HRMS (ESI): Calcd for $[C_{10}H_8NOCINa]^+$ [M+Na]⁺ 216.0187, Found 216.0187.

3-(4-Bromophenyl)-2-methyl-3-oxopropanenitrile (18). Synthesized according to the **General Procedure A** with 4-bromobenzaldehyde (0.3 mmol, 55.2 mg) and acrylonitrile (0.2 mmol, 10.6 mg) at 85 °C for 6 h. Purified by flash column chromatography on silica gel (PE:EA = 10:1) to give **18** as a colorless oil (19.4 mg, 41% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, *J* = 8.4 Hz, 2H), 7.68 (d, *J* = 8.4 Hz, 2H), 4.30 (q, *J* = 7.2 Hz, 1H), 1.64 (d, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 189.9, 132.7, 132.6, 130.3, 130.2, 118.0, 33.8, 14.9. HRMS (ESI): Calcd for [C₁₀H₈NOBrNa]⁺ [M+Na]⁺ 259.9681, Found 259.9779.

2-Methyl-3-(naphthalen-2-yl)-3-oxopropanenitrile (19). Synthesized according to the **General Procedure A** with 2-naphthaldehyde (0.3 mmol, 46.8 mg) and acrylonitrile (0.2 mmol, 10.6 mg) at 85 °C for 6 h. Purified by flash column chromatography on silica gel (PE:EA = 10:1) to give **19** as a white jelly (31.4 mg, 75% yield).

¹H NMR (400 MHz, CDCl₃) δ 8.51 (s, 1H), 8.00 (dd, *J* = 8.0, 7.6 Hz 2H), 7.94 (d, *J* = 8.8 Hz, 1H), 7.90 (d, *J* = 8.4 Hz, 1H), 7.66 (dd, *J* = 7.6, 7.2 Hz, 1H), 7.60 (dd, *J* = 8.0, 6.8 Hz, 1H), 4.54 (q, *J* = 7.2 Hz, 1H), 1.71 (d, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 190.8, 136.2, 132.5, 131.2, 131.1, 129.9, 129.5, 129.3, 128.0, 127.4, 124.0, 118.4, 33.9, 15.3.

HRMS (ESI): Calcd for [C₁₄H₁₂NO]⁺ [M+H]⁺ 210.0913, Found 210.0913.

3-([1,1'-Biphenyl]-4-yl)-2-methyl-3-oxopropanenitrile (20). Synthesized according to the **General Procedure A** with [1,1'-biphenyl]-4-carbaldehyde (0.3 mmol, 54.6 mg) and acrylonitrile (0.2 mmol, 10.6 mg) at 85 °C for 6 h. Purified by flash column chromatography on silica gel (PE:EA = 10:1) to give **20** as a white jelly (41.0 mg, 87% yield).

¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, *J* = 8.4 Hz, 2H), 7.74 (d, *J* = 8.0 Hz, 2H), 7.64 (d, *J* = 7.6 Hz, 2H), 7.46 (dd, *J* = 7.6, 7.2 Hz, 2H), 7.43 (d, *J* = 7.2 Hz, 1H), 4.40 (q, *J* = 7.2 Hz, 1H), 1.68 (d, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 190.4, 147.4, 139.4, 132.4, 129.6, 129.2, 128.8, 127.8, 127.4, 118.4, 33.8, 15.1.

HRMS (ESI): Calcd for [C₁₆H₁₃NONa]⁺ [M+Na]⁺ 258.0889, Found 258.0893.

Synthesized according to the **General Procedure B** with [1,1'-biphenyl]-4-ylmethanol (0.2 mmol, 36.8 mg,) and acrylonitrile (0.4 mmol, 21.2 mg) at 85 °C for 4 h. Purified by flash column chromatography on silica gel (PE:EA = 10:1) to give **20** as a colorless oil (24.0 mg, 51% yield).

Methyl 5-(2-cyanopropanoyl)-2-methoxybenzoate (21). Synthesized according to the General Procedure A with methyl 5-formyl-2-methoxybenzoate (0.3 mmol, 58.2 mg) and acrylonitrile (0.2 mmol, 10.6 mg) at 85 °C for 6 h. Purified by flash column chromatography on silica gel (PE:EA = 6:1) to give 21 as a colorless oil (29.6 mg, 60% yield).

¹H NMR (400 MHz, CDCl₃) δ 8.41 (d, *J* = 2.0 Hz, 1H), 8.13 (dd, *J* = 8.8, 2.0 Hz, 1H), 7.08 (d, *J* = 8.8 Hz, 1H), 4.36 (q, *J* = 7.2 Hz, 1H), 3.99 (s, 3H), 3.91 (s, 3H), 1.62 (d, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 188.8, 165.5, 163.7, 134.6, 133.1, 126.0, 120.6, 118.2, 112.5, 56.6, 52.6, 33.5, 15.1.

HRMS (ESI): Calcd for [C13H13NO4Na]⁺ [M+Na]⁺ 270.0737, Found 270.0746.

3-(2,3-Dihydrobenzofuran-5-yl)-2-methyl-3-oxopropanenitrile (22). Synthesized according to the **General Procedure A** with 2,3-dihydrobenzofuran-5-carbaldehyde (0.3 mmol, 44.4 mg) and acrylonitrile (0.2 mmol, 10.6 mg) at 85 °C for 6 h. Purified by flash column chromatography on silica gel (PE:EA = 5:1) to give **22** as a colorless oil (18.8 mg, 47% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.87 (s, 1H), 7.82 (d, J = 8.4 Hz, 1H), 6.84 (d, J = 8.4 Hz, 1H), 4.69 (t, J = 8.8 Hz, 2H), 4.30 (q, J = 7.2 Hz, 1H), 3.27 (t, J = 8.8 Hz, 2H), 1.62 (d, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 189.0, 165.8, 131.2, 128.7, 127.1, 126.3, 118.7, 109.7, 72.7, 33.4, 29.0, 15.3.

HRMS (ESI): Calcd for [C₁₂H₁₂NO₂]⁺ [M+H]⁺ 202.0863, Found 202.0865.

3-(2,3-Dihydrobenzo[*b*][1,4]dioxin-6-yl)-2-methyl-3-oxopropanenitrile (23). Synthesized according to the General Procedure A with 2,3-dihydrobenzo[*b*][1,4]dioxine-6-carbaldehyde (0.3 mmol, 49.2 mg) and acrylonitrile (0.2 mmol, 10.6 mg) at 85 °C for 6 h. Purified by flash column chromatography on silica gel (PE:EA = 5:1) to give 23 as a colorless oil (27.2 mg, 62% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.50 (m, 2H), 6.94 (d, *J* = 9.2 Hz, 1H), 4.37 – 4.24 (m, 5H), 1.61 (d, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 189.2, 149.4, 143.9, 127.5, 123.1, 118.5, 118.4, 117.9, 64.9, 64.2, 33.5, 15.3.

HRMS (ESI): Calcd for [C₁₂H₁₁NO₃Na]⁺ [M+Na]⁺ 240.0631, Found 240.0630.

2-Methyl-3-oxo-3-(2,3,6,7-tetrahydro-*1H,5H***-pyrido[3,2,1-***ij***]quinolin-9-yl)propanenitrile** (24). Synthesized according to the General Procedure A with 2,3,6,7-tetrahydro-1*H,5H*-pyrido[3,2,1*ij*]quinoline-9-carbaldehyde (0.3 mmol, 60.3 mg) and acrylonitrile (0.2 mmol, 10.6 mg) at 85 °C for 6 h. Purified by flash column chromatography on silica gel (PE:EA = 5:1) to give 24 as a yellow oil (40.0 mg, 79% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.41 (s, 2H), 4.26 (q, *J* = 6.8 Hz, 1H), 3.28 (t, *J* = 5.6 Hz, 4H), 2.74 (t, *J* = 6.4 Hz, 4H), 2.06 - 1.85 (m, 4H), 1.58 (d, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 188.0, 147.9, 128.7, 120.3, 120.1, 119.5, 50.1, 32.5, 27.8, 21.3, 15.7. HRMS (ESI): Calcd for $[C_{16}H_{19}N_2O]^+$ [M+H]⁺ 255.1492, Found 255.1485.

2-Methyl-3-oxo-3-(thiophen-2-yl)propanenitrile (25). Synthesized according to the **General Procedure A** with thiophene-2-carbaldehyde (0.3 mmol, 33.6 mg) and acrylonitrile (0.2 mmol, 10.6 mg) at 85 °C for 6 h. Purified by flash column chromatography on silica gel (PE:EA = 10:1) to give **25** as a pale yellow oil (24.7 mg, 75% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, *J* = 3.2 Hz, 1H), 7.78 (d, *J* = 4.4 Hz, 1H), 7.20 (dd, *J* = 4.0, 3.6 Hz, 1H), 4.22 (q, *J* = 7.2 Hz, 1H), 1.66 (d, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 183.6, 140.6, 136.2, 133.8, 128.8, 118.2, 34.8, 15.4.

HRMS (ESI): Calcd for [C₈H₇NOSNa]⁺ [M+Na]⁺ 188.0141, Found 188.0146.

Synthesized according to the General Procedure B with thiophen-2-ylmethanol (0.2 mmol, 22.8 mg,)

and acrylonitrile (0.4 mmol, 21.2 mg) at 85 °C for 4 h. Purified by flash column chromatography on silica gel (PE:EA = 10:1) to give **25** as a colorless oil (15.8 mg, 48% yield).

2-Methyl-3-oxo-3-(thiophen-3-yl)propanenitrile (26). Synthesized according to the **General Procedure A** with thiophene-3-carbaldehyde (0.3 mmol, 33.6 mg) and acrylonitrile (0.2 mmol, 10.6 mg) at 85 °C for 6 h. Purified by flash column chromatography on silica gel (PE:EA = 10:1) to give **26** as a pale yellow oil (26.0 mg, 79% yield).

¹H NMR (400 MHz, CDCl₃) δ 8.25 (s, 1H), 7.60 (d, *J* = 5.2 Hz, 1H), 7.44 – 7.34 (m, 1H), 4.17 (q, *J* = 7.2 Hz, 1H), 1.64 (d, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 184.7, 138.7, 134.2, 127.4, 127.3, 118.4, 35.1, 15.1.

HRMS (ESI): Calcd for [C₈H₇NOSNa]⁺ [M+Na]⁺ 188.0141, Found 188.0132.

3-(6-Methoxypyridin-3-yl)-2-methyl-3-oxopropanenitrile (27). Synthesized according to the **General Procedure A** with 6-methoxynicotinaldehyde (0.3 mmol, 41.1 mg) and acrylonitrile (0.2 mmol, 10.6 mg) at 85 °C for 6 h. Purified by flash column chromatography on silica gel (PE:EA = 5:1) to give **27** as a pale yellow oil (31.5 mg, 83% yield).

¹H NMR (400 MHz, CDCl₃) δ 8.83 (s, 1H), 8.15 (d, *J* = 8.8 Hz, 1H), 6.84 (d, *J* = 8.8 Hz, 1H), 4.27 (q, *J* = 7.2 Hz, 1H), 4.02 (s, 3H), 1.64 (d, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 188.5, 167.7, 150.0, 138.8, 123.8, 118.1, 112.0, 54.5, 33.7, 14.9.

HRMS (ESI): Calcd for $[C_{10}H_{11}N_2O_2]^+$ $[M+H]^+$ 191.0815, Found 191.0823.

Synthesized according to the **General Procedure B** with (6-methoxypyridin-3-yl)methanol (0.2 mmol, 27.8 mg,) and acrylonitrile (0.4 mmol, 21.2 mg) at 85 °C for 4 h. Purified by flash column chromatography on silica gel (PE:EA = 10:1) to give **27** as a colorless oil (14.1 mg, 37% yield).

(2S,3S,4S,5S,6R)-2-(Acetoxymethyl)-6-(4-(2-cyanopropanoyl)phenoxy)tetrahydro-2H-pyran-

3,4,5-triyl triacetate (28). Synthesized according to the **General Procedure A** with (2*S*,3*S*,4*S*,5*S*,6*R*)-2-(acetoxymethyl)-6-(4-formylphenoxy)tetrahydro-2*H*-pyran-3,4,5-triyl triacetate (0.3 mmol, 135.6 mg) and acrylonitrile (0.2 mmol, 10.6 mg) at 110 °C for 24 h. Purified by flash column chromatography on silica gel (PE:EA = 5:1) to give **28** as a yellow jelly (56.0 mg, 51% yield, 1:1 *regioisomer*). ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, *J* = 9.2 Hz, 2H), 7.11 (d, *J* = 8.8 Hz, 2H), 5.75 (dd, *J* = 2.8 Hz,

2.8 Hz, 1H), 5.47 (d, J = 8.0 Hz, 1H), 5.18 (dd, J = 8.0, 4.0 Hz, 1H), 5.08 – 5.04 (m, 1H), 4.33 – 4.23 (m, 4H), 2.17 (s, 3H), 2.07 (s, 3H), 2.04 (s, 3H), 2.03 (s, 3H), 1.62 (d, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 189.3, (189.2), 170.7, 169.8, 169.2, (169.1), 161.7, (161.6), 131.2, 128.8, 118.4 (118.4), 116.9, 96.5, (96.5), 70.9, 68.8, 68.4, 66.2, (66.2), 62.4, (62.3), 33.6, (33.6), 20.8, (20.8), 20.7, (20.6), 14.9, (14.9).

HRMS (ESI): Calcd for [C₂₄H₂₇NO₁₁Na]⁺ [M+Na]⁺ 528.1476, Found 528.1469.

2-Methyl-3-oxo-5-phenylpentanenitrile (29). Synthesized according to the **General Procedure A** with 3-phenylpropanal (0.3 mmol, 40.2 mg) and acrylonitrile (0.2 mmol, 10.6 mg) at 85 °C for 6 h. Purified by flash column chromatography on silica gel (PE:EA = 15:1) to give **29** as a colorless oil (12.7 mg, 34% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.30 (dd, J = 8.4, 7.6 Hz, 2H), 7.23 – 7.18 (m, 3H), 3.38 (q, J = 7.2 Hz, 1H), 3.13 – 3.07 (m, 1H), 3.05 – 2.99 (m, 1H), 2.97 – 2.93 (m, 2H), 1.45 (d, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 200.3, 140.1, 128.8, 128.5, 126.7, 118.3, 42.3, 38.1, 29.7, 14.1. HRMS (ESI): Calcd for [C₁₂H₁₄NO]⁺ [M+H]⁺ 188.1070, Found 188.1077. The data are consistent with the reported literature.³

2-Methyl-3-oxododecanenitrile (29). Synthesized according to the **General Procedure A** with decanal (0.3 mmol, 46.8 mg) and acrylonitrile (0.2 mmol, 10.6 mg) at 85 °C for 6 h. Purified by flash column chromatography on silica gel (PE:EA = 15:1) to give **30** as a colorless oil (14.6 mg, 35% yield).

¹H NMR (400 MHz, CDCl₃) δ 3.43 (q, *J* = 7.2 Hz, 1H), 2.81 – 2.59 (m, 2H), 1.67 – 1.56 (m, 2H), 1.48 (d, *J* = 7.2 Hz, 3H), 1.28 – 1.26 (m, 12H), 0.87 (t, *J* = 6.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 201.2, 118.5, 40.8, 37.8, 32.0, 29.5, 29.4, 29.4, 29.1, 23.6, 22.8, 14.2, 14.2.

HRMS (ESI): Calcd for[C₁₃H₂₃NONa]⁺ [M+Na]⁺ 232.1672, Found 232.1677.

2-Methyl-3-oxododec-8-enenitrile (31) Synthesized according to the **General Procedure A** with dec-6-enal (0.3 mmol, 46.2 mg, E/Z isomers, major E isomer) and acrylonitrile (0.2 mmol, 10.6 mg) at 85 °C for 6 h. Purified by flash column chromatography on silica gel (PE:EA = 15:1) to give **31** as a colorless oil (14.9 mg, 36% yield).

¹H NMR (400 MHz, CDCl₃) δ 5.51 – 5.42 (m, 1H), 5.41 – 5.24 (m, 1H), 3.42 (q, *J* = 7.2 Hz, 1H), 2.85 – 2.68 (m, 2H), 2.42 – 2.24 (m, 2H), 2.05 – 1.93 (m, 2H), 1.48 (d, *J* = 7.2 Hz, 3H), 1.38 – 1.18 (m, 6H), 0.87 (t, *J* = 6.8 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 200.6, 132.8, (132.4), 127.2, (126.7), 118.4, 40.7, 37.9, 32.6, (31.6), 31.5, (29.4), 29.2, (27.3), 26.6, (22.7), 22.6, 21.5, 14.1. HRMS (ESI): Calcd for [C₁₃H₂₁NONa]⁺ [M+Na]⁺ 230.1515, Found 230.1517.

3-Cyclohexyl-2-methyl-3-oxopropanenitrile (32). Synthesized according to the **General Procedure A** with cyclohexanecarbaldehyde (0.3 mmol, 33.6 mg) and acrylonitrile (0.2 mmol, 10.6 mg) at 85 °C for 6 h. Purified by flash column chromatography on silica gel (PE:EA = 15:1) to give **32** as a colorless oil (12.5 mg, 38% yield).

¹H NMR (400 MHz, CDCl₃) δ 3.54 (q, *J* = 7.2 Hz, 1H), 2.79 – 2.73 (m, 1H), 1.91– 1.88 (m, 2H), 1.85 – 1.74 (m, 2H), 1.74 – 1.62 (m, 1H), 1.46 (d, *J* = 7.2 Hz, 3H), 1.43 – 1.29 (m, 4H), 1.26 – 1.18 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 203.9, 118.5, 49.0, 36.0, 28.9, 28.5, 25.6, 25.5, 25.3, 14.2. HRMS (ESI): Calcd for [C₁₀H₁₅NONa]⁺ [M+Na]⁺ 188.1046, Found 188.1042.

5-(Benzo[*d*][1,3]dioxol-5-yl)-2,4-dimethyl-3-oxopentanenitrile (33). Synthesized according to the General Procedure A with 3-(benzo[*d*][1,3]dioxol-5-yl)-2-methylpropanal (0.3 mmol, 57.6 mg) and acrylonitrile (0.2 mmol, 10.6 mg) at 85 °C for 6 h. Purified by flash column chromatography on silica gel (PE:EA = 10:1) to give 33 as a pale yellow oil (19.1 mg, 39% yield, d.r. = 1.2:1.).

¹H NMR (400 MHz, CDCl₃) *Major isomer:* δ 6.73 – 6.70 (m, 1H), 6.68 – 6.54 (m, 2H), 5.92 (s, 2H), 3.26 – 3.20 (m, 1H), 3.14 (q, *J* = 7.2 Hz, 1H), 2.98 – 2.85 (m, 1H), 2.61 – 2.52 (m, 1H), 1.32 (d, *J* = 7.2 Hz, 3H), 1.17 (d, *J* = 6.8 Hz, 3H). *Minor isomer:* 3.41 – 3.35 (m, 1H), 1.41 (d, *J* = 7.6 Hz, 3H), 1.20 (d, *J* = 6.8 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) *Major isomer:* δ 204.6, 148.0, 146.5, 132.5, 122.1, 118.2, 109.2, 108.5, 101.1, 47.3, 39.7, 38.0, 17.2, 13.6. *Minor isomer:* δ 204.5 147.9, 146.4, 132.5, 121.9, 118.2, 109.3, 108.5, 101.1, 46.7, 39.0, 37.4, 17.1, 14.0.

HRMS (ESI): Calcd for [C₁₄H₁₅NO₃Na]⁺ [M+Na]⁺ 268.0944, Found 268.0937.

2-Benzoylbutanenitrile (34). Synthesized according to the **General Procedure A** with benzaldehyde (0.3 mmol, 31.8 mg) and but-2-enenitrile (0.2 mmol, 13.4 mg) at 85 °C for 6 h. Purified by flash column chromatography on silica gel (PE:EA = 15:1) to give **34** as a colorless oil (21.1 mg, 61% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.96 – 7.94 (m, 2H), 7.64 (dd, *J* = 7.6, 7.2 Hz, 1H), 7.51 (dd, *J* = 8.0, 7.6 Hz, 2H), 4.32 (dd, *J* = 8.0, 5.6 Hz, 1H), 2.16 – 1.94 (m, 2H), 1.15 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 191.0, 134.6, 134.1, 129.2, 128.8, 117.4, 41.6, 23.7, 11.6. HRMS (ESI): Calcd for [C₁₁H₁₁NONa]⁺ [M+Na]⁺ 196.0733, Found 196.0734.

Synthesized according to the **General Procedure B** with benzalcohol (0.2 mmol, 21.6 mg) and but-2enenitrile (0.4 mmol, 26.8 mg) at 85 °C for 4 h. Purified by flash column chromatography on silica gel (PE:EA = 10:1) to give **34** as a colorless oil (20.1 mg, 58% yield).

2-Benzoylpentanenitrile (35). Synthesized according to the **General Procedure A** with benzaldehyde (0.3 mmol, 31.8 mg) and pent-2-enenitrile (0.2 mmol, 16.2 mg) at 85 °C for 6 h. Purified by flash column chromatography on silica gel (PE:EA = 15:1) to give **35** as a colorless oil (18.7 mg, 50% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.96 – 7.94 (m, 2H), 7.64 (dd, J = 7.6, 7.2 Hz,1H), 7.51 (dd, J = 8.0, 7.6 Hz, 2H), 4.37 (dd, J = 7.6, 15.2 Hz, 1H), 2.00 – 1.92 (m, 2H), 1.68 – 1.47 (m, 2H), 0.99 (t, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 191.1, 134.5, 134.1, 129.2, 128.8, 117.5, 40.0, 32.0, 20.5, 13.5. HRMS (ESI): Calcd for [C₁₂H₁₃NONa]⁺ [M+Na]⁺ 210.0889, Found 210.0898.

Synthesized according to the **General Procedure B** with benzalcohol (0.2 mmol, 21.6 mg) and pent-2enenitrile (0.4 mmol, 32.4 mg) at 85 °C for 4 h. Purified by flash column chromatography on silica gel (PE:EA = 10:1) to give **35** as a colorless oil (16.8 mg, 45% yield).

2-(Cyclopentylmethyl)-3-oxo-3-phenylpropanenitrile (36). Synthesized according to the **General Procedure A** with benzaldehyde (0.3 mmol, 31.8 mg) and 3-cyclopentylacrylonitrile (Z/E) (0.2 mmol, 24.2 mg) at 85 °C for 6 h. Purified by flash column chromatography on silica gel (PE:EA = 15:1) to give **36** as a colorless oil (20.3 mg, 45% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 7.6, 2H), 7.65 (dd, *J* = 7.6, 6.8 Hz, 1H), 7.53 (dd, *J* = 8.0, 7.6 Hz, 2H), 4.35 (dd, *J* = 9.6, 5.2 Hz, 1H), 2.15 – 2.02 (m, 2H), 2.02 – 1.78 (m, 3H), 1.74 – 1.49 (m, 5H), 1.17 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 191.1, 134.6, 134.2, 129.3, 128.9, 117.7, 39.7, 38.2, 36.2, 32.8, 32.3, 25.2.

HRMS (ESI): Calcd for [C₁₅H₁₇NONa]⁺ [M+Na]⁺ 250.1202, Found 250.1209.

2-Benzyl-3-oxo-3-phenylpropanenitrile (37). Synthesized according to the **General Procedure A** with benzaldehyde (0.3 mmol, 31.8 mg) and 3-phenylacrylonitrile (0.2 mmol, 25.8 mg) at 85 °C for 6 h.

Purified by flash column chromatography on silica gel (PE:EA = 15:1) to give **37** as a colorless oil (28.7 mg, 62% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.97 – 7.65 (m, 2H), 7.65 (dd, J = 7.6, 7.2 Hz,1H), 7.52 (dd, J = 8.0, 7.6 Hz, 2H), 7.41 – 7.28 (m, 5H), 4.52 (dd, J = 8.4, 5.6 Hz, 1H), 3.37 (dd, J = 14.0, 5.6 Hz, 1H), 3.25 (dd, J = 14.0, 8.8 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 190.1, 136.1, 134.7, 134.3, 129.3, 129.2, 129.1, 129.0, 127.8, 117.1, 41.9, 35.7.

HRMS (ESI): Calcd for [C₁₆H₁₃NONa]⁺ [M+Na]⁺ 258.0889, Found 258.0882.

The data are consistent with the reported literature.²

Synthesized according to the **General Procedure B** with benzalcohol (0.2 mmol, 21.6 mg) and 3-phenylacrylonitrile (0.4 mmol, 51.6 mg) at 85 °C for 4 h. Purified by flash column chromatography on silica gel (PE:EA = 15:1) to give **37** as a colorless oil (22.1 mg, 47% yield).

2-(4-Methoxybenzyl)-3-oxo-3-phenylpropanenitrile (38). Synthesized according to the **General Procedure A** with benzaldehyde (0.3 mmol, 31.8 mg) and 3-(4-methoxyphenyl)acrylonitrile (0.2 mmol, 31.8 mg) at 85 °C for 6 h. Purified by flash column chromatography on silica gel (PE:EA = 10:1) to give **38** as a colorless oil (28.0 mg, 53% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.98 – 7.91 (m, 2H), 7.65 (dd, *J* = 7.6, 7.2 Hz, 1H), 7.51 (dd, *J* = 8.0, 7.6 Hz, 2H), 7.20 (d, *J* = 8.8 Hz, 2H), 6.86 (d, *J* = 8.4 Hz, 2H), 4.50 (dd, *J* = 8.4, 5.6 Hz, 1H), 3.78 (s, 3H), 3.30 (dd, *J* = 14.4, 6.0 Hz, 1H), 3.19 (dd, *J* = 14.0, 8.8 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 190.3, 159.3, 134.7, 134.3, 130.3, 129.3, 128.9, 128.0, 117.2, 114.5, 55.4, 42.3, 35.0.

HRMS (ESI): Calcd for [C₁₇H₁₅NO₂Na]⁺ [M+Na]⁺ 288.0995, Found 288.0986.

The data are consistent with the reported literature.²

Synthesized according to the **General Procedure B** with benzalcohol (0.2 mmol, 21.6 mg) and 3-(4-methoxyphenyl)acrylonitrile (0.4 mmol, 63.6 mg) at 85 °C for 4 h. Purified by flash column chromatography on silica gel (PE:EA = 10:1) to give **38** as a colorless oil (8.5 mg, 16% yield).

2-(4-Fluorobenzyl)-3-oxo-3-phenylpropanenitrile (39). Synthesized according to the **General Procedure A** with benzaldehyde (0.3 mmol, 31.8 mg) and 3-(4-fluorophenyl)acrylonitrile (0.2 mmol, 29.4 mg) at 85 °C for 6 h. Purified by flash column chromatography on silica gel (PE:EA = 10:1) to give **39** as a colorless oil (32.0 mg, 63% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.96 – 7.94 (m, 2H), 7.66 (dd, *J* = 7.6, 7.2 Hz, 1H), 7.52 (dd, *J* = 8.0, 7.6

Hz, 2H), 7.27 – 7.24 (m, 2H), 7.02 (dd, *J* = 8.8, 8.4 Hz, 2H), 4.49 (dd, *J* = 8.4, 6.0 Hz, 1H), 3.34 (dd, *J* = 14.4, 6.0 Hz, 1H), 3.23 (dd, *J* = 14.4, 8.4 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 189.9, 163.5 (d, *J* = 244.9 Hz), 134.8, 134.2, 131.8 (d, *J* = 3.1 Hz), 130.9 (d, *J* = 8.0 Hz), 129.3, 128.9, 116.9, 116.0 (d, *J* = 21.3 Hz), 41.9, 34.8.

¹⁹F NMR (376 MHz, CDCl₃) δ –114.6.

HRMS (ESI): Calcd for $[C_{16}H_{12}FNOK]^+$ [M+K]⁺ 292.0535, Found 292.0535.

Synthesized according to the **General Procedure B** with benzalcohol (0.2 mmol, 21.6 mg) and 3-(4-fluorophenyl)acrylonitrile (0.4 mmol, 58.8 mg) at 85 °C for 4 h. Purified by flash column chromatography on silica gel (PE:EA = 10:1) to give **39** as a colorless oil (17.7 mg, 35% yield).

3-(2-Cyano-3-oxo-3-phenylpropyl)benzonitrile (40). Synthesized according to the **General Procedure A** with benzaldehyde (0.3 mmol, 31.8 mg) and 3-cyano-cinnamonitrile (0.2 mmol, 30.8 mg) at 85 °C for 6 h. Purified by flash column chromatography on silica gel (PE:EA = 10:1) to give a mixture (40.3 mg) of **40** (70% yield) and 3-(3-cyanophenyl)propanenitrile (13% yield, reductive product of 3-cyano-cinnamonitrile) as a colorless oil.

40: ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 7.6 Hz, 2H), 7.67 (dd, J = 7.6, 7.2 Hz, 1H), 7.61 – 7.42 (m, 6H), 4.55 (dd, J = 8.4, 6.0 Hz, 1H), 3.40 (dd, J = 10.0, 6.0 Hz, 1H), 3.29 (dd, J = 10.0, 4.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 189.1, 137.4, 134.9, 133.8, 132.6, 131.4, 129.7, 129.2, 128.8, 118.5, 118.3, 116.3, 113.0, 40.9, 34.4.

HRMS (ESI): Calcd for $[C_{17}H_{12}N_2ONa]^+$ [M+Na]⁺ 292.0535, Found 292.0535.

3-(3-Cyanophenyl)propanenitrile: ¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.42 (m, 4H), 3.00 (t, *J* = 7.2 Hz, 2H), 2.65 (t, *J* = 7.2 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 139.5, 133.0, 132.0, 131.2, 31.1, 19.1.

The data are consistent with the reported literature.⁴

2-(3-Nitrobenzyl)-3-oxo-3-phenylpropanenitrile (41). Synthesized according to the **General Procedure A** with benzaldehyde (0.3 mmol, 31.8 mg) and 3-nitro-cinnamonitrile (0.2 mmol, 34.8 mg) at 85 °C for 6 h. Purified by flash column chromatography on silica gel (PE:EA = 10:1) to give a mixture (41.6 mg) of **41** (66% yield) and 3-(3-nitrophenyl)propanenitrile (13% yield, reductive product of 3-nitro-cinnamonitrile) as a colorless oil.

41: ¹H NMR (400 MHz, CDCl₃) δ 8.15 – 8.10 (m, 2H), 7.98 (d, *J* = 7.6 Hz, 2H), 7.72 – 7.46 (m, 5H), 4.64 (dd, *J* = 8.4, 6.0 Hz, 1H), 3.47 (dd, *J* = 14.4, 6.0 Hz, 1H), 3.36 (dd, *J* = 14.0, 8.4 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 189.3, 148.6, 138.0, 135.7, 135.0, 133.9, 130.0, 129.4, 129.0, 124.1, 122.9, 116.5, 41.0, 34.6.

HRMS (ESI): Calcd for $[C_{16}H_{13}N_2O_3]^+$ [M+H]⁺ 281.0921, Found 281.0916.

3-(3-Nitrophenyl)propanenitrile : ¹H NMR (400 MHz, CDCl₃) δ 7.72 – 7.46 (m, 4H), 3.07 (t, *J* = 7.2 Hz, 2H), 2.70 (t, *J* = 7.2 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 148.6, 139.9, 134.8, 123.4, 122.6, 118.5, 31.1, 19.1.

The data are consistent with the reported literature.⁵

2-(2-Chlorobenzyl)-3-oxo-3-phenylpropanenitrile (42). Synthesized according to the **General Procedure A** with benzaldehyde (0.3 mmol, 31.8 mg) and 3-(2-chlorophenyl)acrylonitrile (0.2 mmol, 32.6 mg) at 85 °C for 6 h. Purified by flash column chromatography on silica gel (PE:EA = 10:1) to give **42** as a colorless oil (37.0 mg, 69% yield).

¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, J = 7.6 Hz, 2H), 7.64 (dd, J = 7.6, 7.2 Hz,1H), 7.51 (dd, J = 8.0, 7.6 Hz, 2H), 7.40 – 7.38 (m, 2H), 7.26 – 7.24 (m, 2H), 4.78 (dd, J = 9.6, 6.0 Hz, 1H), 3.55 (dd, J = 14.0, 6.0Hz, 1H), 3.24 (dd, J = 14.0, 9.6 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 190.1, 134.8, 134.2, 134.0, 133.6, 132.3, 129.9, 129.5, 129.2, 129.0, 127.6, 116.7, 39.4, 33.9.

HRMS (ESI): Calcd for [C₁₆H₁₂ClNONa]⁺ [M+Na]⁺ 292.0500, Found 292.0508.

2-(Oxetan-3-yl)-3-oxo-3-phenylpropanenitrile (43). Synthesized according to the **General Procedure A** with benzaldehyde (0.3 mmol, 31.8 mg) and 2-(oxetan-3-ylidene)acetonitrile (0.2 mmol, 19.0 mg) at 85 °C for 6 h. Purified by flash column chromatography on silica gel (PE:EA = 10:1) to give **43** as a colorless oil (21.3 mg, 53% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 7.2 Hz, 2H), 7.53 – 7.38 (m, 3H), 4.70 (dd, *J* = 10.0, 9.2 Hz, 1H), 4.62 (dd, *J* = 9.6, 6.4 Hz, 1H), 3.90 – 3.73 (m, 2H), 3.57 – 3.50 (m, 1H), 2.35 – 2.07 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 168.9, 131.7, 128.8, 127.9, 127.3, 117.5, 80.7, 74.0, 63.0, 46.8. HRMS (ESI): Calcd for [C₁₂H₁₁NO₂Na]⁺ [M+Na]⁺ 224.0682, Found 292.0679.

tert-Butyl 3-(1-cyano-2-oxo-2-phenylethyl)azetidine-1-carboxylate (44). Synthesized according to

the **General Procedure A** with benzaldehyde (0.3 mmol, 31.8 mg) and *tert*-butyl 3-(cyanomethylene)azetidine-1-carboxylate (0.2 mmol, 19.0 mg) at 85 °C for 6 h. Purified by flash column chromatography on silica gel (PE:EA = 10:1) to give **44** as a yellow oil (44.0 mg, 73% yield).

¹H NMR (400 MHz, Benzene- d_6) δ 7.68 (d, J = 7.6 Hz, 2H), 7.19 – 7.10 (m, 1H), 7.03 (dd, J = 7.6, 7.6 Hz, 2H), 4.00 – 3.80 (m, 3H), 3.72 (d, J = 7.6 Hz, 1H), 3.66 – 3.43 (m, 1H), 2.60 (d, J = 6.0 Hz, 1H), 1.43 (s, 9H).

¹³C NMR (400 MHz, Benzene-*d*₆) δ 189.2, 156.0, 134.6, 134.2, 129.1, 129.1, 115.6, 79.4, 42.6, 28.4, 28.4.

HRMS (ESI): Calcd for [C₁₇H₂₀N₂O₃Na]⁺ [M+Na]⁺ 323.1366, Found 323.1365.

2-Benzoyl-2-methylpentanedinitrile (4). Synthesized according to the **General Procedure A** with benzaldehyde (0.3 mmol, 31.8 mg) and 2-methylenepentanedinitrile (0.2 mmol, 21.2 mg) at 85 °C for 6 h. Purified by flash column chromatography on silica gel (PE:EA = 10:1) to give **4** as a yellow oil (10.6 mg, 25% yield).

2-Methyl-2-(4-methylbenzoyl)pentanedinitrile (45). Synthesized according to the **General Procedure** C with *p*-tolylmethanol (0.2 mmol, 24.4 mg) and acrylonitrile (1.0 mmol, 53.0 mg) at 85 °C for 12 h. Purified by flash column chromatography on silica gel (PE:EA = 6:1) to give **45** as a colorless oil (29.4 mg, 65% yield).

¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, *J* = 8.4 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 2.67 – 2.53 (m, 3H), 2.44 (s, 3H), 2.16 (ddd, *J* =15.2, 10.8, 4.8 Hz, 1H), 1.77 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 191.9, 145.9, 130.7, 129.7, 129.7, 120.6, 118.2, 44.9, 33.6, 24.9, 21.9, 13.9.

HRMS (ESI): Calcd for $[C_{14}H_{14}N_2ONa]^+$ $[M + Na]^+$ 249.0998, Found 249.0990.

2-(4-(*tert***-Butyl)benzoyl)-2-methylpentanedinitrile (46).** Synthesized according to the **General Procedure C** with (4-(*tert*-butyl)phenyl)methanol (0.2 mmol, 32.8 mg) and acrylonitrile (1.0 mmol, 53.0 mg) at 85 °C for 12 h. Purified by flash column chromatography on silica gel (PE:EA = 6:1) to give **46** as a colorless oil (24.7 mg, 46% yield).

¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, *J* = 8.8 Hz, 2H), 7.53 (d, *J* = 8.8 Hz, 2H), 2.68 – 2.53 (m, 3H), 2.17 (ddd, *J* = 14.4, 10.4, 4.8 Hz, 1H), 1.78 (s, 3H), 1.35 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 191.8, 158.8, 130.6, 129.7, 126.1, 120.6, 118.2, 44.9, 35.5, 33.6, 31.1,

24.8, 13.9. HRMS (ESI): Calcd for $[C_{17}H_{20}N_2ONa]^+$ $[M + Na]^+$ 291.1468, Found 291.1459.

2-(4-Methoxybenzoyl)-2-methylpentanedinitrile (47). Synthesized according to the **General Procedure C** with (4-methoxyphenyl)methanol (0.2 mmol, 27.6 mg) and acrylonitrile (1.0 mmol, 53.0 mg) at 85 °C for 12 h. Purified by flash column chromatography on silica gel (PE:EA = 6:1) to give 47 as a colorless oil (30 mg, 62% yield).

¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, *J* = 6.8 Hz, 2H), 6.98 (d, *J* = 8.8 Hz, 2H), 3.89 (s, 3H), 2.67 – 2.48 (m, 3H), 2.15 (ddd, *J* =15.2, 10.4, 4.4 Hz, 1H), 1.76 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 190.3, 164.6, 132.2, 125.9, 120.8, 118.3, 114.3, 55.8, 44.6, 33.6, 24.9, 13.8.

HRMS (ESI): Calcd for $[C_{14}H_{14}N_2O_2Na]^+$ $[M + Na]^+$ 265.0947, Found 265.0956.

2-Methyl-2-(4-(methylthio)benzoyl)pentanedinitrile (48). Synthesized according to the **General Procedure C** with (4-(methylthio)phenyl)methanol (0.2 mmol, 30.8 mg) and acrylonitrile (1.0 mmol, 53.0 mg) at 85 °C for 12 h. Purified by flash column chromatography on silica gel (PE:EA = 6:1) to give **48** as a yellow oil (26.8 mg, 52% yield).

¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, *J* = 8.4 Hz, 2H), 7.30 (d, *J* = 8.8 Hz, 2H), 2.67 – 2.54 (m, 3H), 2.53 (s, 3H), 2.15 (ddd, *J* = 14.8, 10.4, 4.4 Hz, 1H), 1.77 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 191.0, 148.7, 129.9, 129.1, 125.1, 120.6, 118.2, 44.8, 33.6, 24.9, 14.7, 13.9.

HRMS (ESI): Calcd for $[C_{14}H_{14}N_2OSNa]^+$ $[M + Na]^+$ 281.0719, Found 281.0722.

2-Methyl-2-(4-(trifluoromethoxy)benzoyl)pentanedinitrile (49). Synthesized according to the **General Procedure C** with (4-(trifluoromethoxy)phenyl)methanol (0.2 mmol, 38.4 mg) and acrylonitrile (1.0 mmol, 53.0 mg) at 85 °C for 12 h. Purified by flash column chromatography on silica gel (PE:EA = 6:1) to give **49** as a colorless oil (30.8 mg, 52% yield).

¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, *J* = 8.8 Hz, 2H), 7.35 (d, *J* = 8.4 Hz, 2H), 2.69 – 2.56 (m, 3H), 2.18 (ddd, *J* = 14.8, 10.0, 4.8 Hz, 1H), 1.79 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 191.0, 153.7, 131.9, 131.4, 120.6, 120.4 (q, *J* = 258.2 Hz), 120.2, 118.0, 45.1, 33.4, 24.8, 13.9.

¹⁹F NMR (376 MHz, CDCl₃) δ –57.58.

HRMS (ESI): Calcd for $[C_{14}H_{11}N_2O_2F_3Na]^+$ $[M + Na]^+$ 319.0665, Found 319.0661.

2-Methyl-2-(4-morpholinobenzoyl)pentanedinitrile (50). Synthesized according to the **General Procedure** C with (4-morpholinophenyl)methanol (0.2 mmol, 38.6 mg) and acrylonitrile (1.0 mmol, 53.0 mg) at 85 °C for 12 h. Purified by flash column chromatography on silica gel (PE:EA = 10:1) to give **50** as a brown oil (30.9 mg, 52% yield).

¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, *J* = 8.8 Hz, 2H), 6.86 (d, *J* = 9.2 Hz, 2H), 3.84 (t, *J* = 5.2 Hz, 4H), 3.36 (t, *J* = 5.2 Hz, 4H), 2.71 – 2.41 (m, 3H), 2.12 (ddd, *J* = 15.2, 10.8, 4.4 Hz, 1H), 1.74 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 189.4, 154.8, 132.0, 122.8, 121.1, 118.4, 112.9, 66.5, 47.0, 44.2, 33.6, 24.9, 13.8.

HRMS (ESI): Calcd for [C₁₇H₂₀N₃O₂]⁺ [M+ H]⁺ 298.1550, Found 298.1546.

2-(3-Methoxybenzoyl)-2-methylpentanedinitrile (51). Synthesized according to the **General Procedure C** with 3-methoxybenzaldehyde (0.2 mmol, 27.2 mg) and acrylonitrile (1.0 mmol, 53.0 mg) at 85 °C for 12 h. Purified by flash column chromatography on silica gel (PE:EA = 6:1) to give **51** as a brown oil (24.2 mg, 50% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.78 (ddd, J = 7.6, 1.6, 0.8 Hz, 1H), 7.59 (dd, J = 2.4, 2.0 Hz, 1H), 7.43 (dd, J = 8.0, 8.0 Hz, 1H), 7.19 (ddd, J = 8.0, 2.4, 0.8 Hz,, 1H), 3.87 (s, 3H), 2.68 – 2.55 (m, 3H), 2.17 (ddd, J = 15.2, 10.4, 6.4 Hz, 1H), 1.78 (s, 3H).

¹³C NMR (100MHz, CDCl₃) δ 192.4, 160.1, 134.6, 130.0, 121.9, 121.0, 120.4, 118.1, 114.1, 55.7, 45.2, 33.6, 24.9, 13.9.

HRMS (ESI): Calcd for $[C_{14}H_{14}N_2O_2Na]^+$ $[M + Na]^+$ 265.0947, Found 265.0942.

2-Methyl-2-(2-methylbenzoyl)pentanedinitrile (52). Synthesized according to the **General Procedure** C with *o*-tolylmethanol (0.2 mmol, 24.4 mg) and acrylonitrile (1.0 mmol, 53.0 mg) at 85 °C for 24 h. Purified by flash column chromatography on silica gel (PE:EA = 15:1) to give **52** as a colorless oil (22.6 mg, 50% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.75 – 7.73 (m, 1H), 7.46 – 7.42 (m, 1H), 7.33 – 7.30 (m, 2H), 2.63 – 2.54 (m, 3H), 2.38 (s, 3H), 2.23 – 2.13 (m, 1H), 1.72 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 197.3, 137.7, 135.4, 132.2, 132.1, 127.3, 125.7, 119.9, 118.0, 47.6, 33.3, 24.2, 20.7, 14.0.

HRMS (ESI): Calcd for $[C_{14}H_{14}N_2ONa]^+$ $[M + Na]^+$ 249.0998, Found 249.0989.

2-(Benzo[*d*][1,3]dioxole-5-carbonyl)-2-methylpentanedinitrile (53). Synthesized according to the General Procedure C with benzo[d][1,3]dioxol-5-ylmethanol (0.2 mmol, 30.4 mg) and acrylonitrile (1.0 mmol, 53.0 mg) at 85 °C for 12 h. Purified by flash column chromatography on silica gel (PE:EA = 6:1) to give 53 as a colorless oil (27.6 mg, 54% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.87 (dd, *J* = 8.4, 2.0 Hz, 1H), 7.55 (d, *J* = 1.6 Hz, 1H), 6.90 (d, *J* = 8.4 Hz, 1H), 6.08 (s, 2H), 2.66 – 2.48 (m, 3H), 2.15 (ddd, *J* = 15.2, 10.4, 4.4 Hz, 1H), 1.76 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 190.1, 153.1, 148.6, 127.6, 126.5, 120.7, 118.2, 109.4, 108.3, 102.5, 44.7, 33.7, 25.1, 13.9.

HRMS (ESI): Calcd for $[C_{14}H_{13}N_2O_3]^+ [M + H]^+ 257.0921$, Found 257.0929.

2-Methyl-2-(4-(trifluoromethoxy)benzoyl)pentanedinitrile (54). Synthesized according to the **General Procedure C** with (4-(trifluoromethoxy)phenyl)methanol (0.2 mmol, 35.2 mg) and acrylonitrile (1.0 mmol, 53.0 mg) at 85 °C for 12 h. Purified by flash column chromatography on silica gel (PE:EA = 6:1) to give **54** as a colorless oil (19.0 mg, 34% yield).

¹H NMR (400 MHz, CDCl₃) δ 8.25 (d, J = 8.4 Hz, 2H), 7.81 (d, J = 8.4 Hz, 2H), 2.71 – 2.57 (m, 3H), 2.20 (ddd, J = 14.8, 10.0, 5.2 Hz, 1H), 1.81 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 192.0, 136.2, 135.7 (q, *J* = 32.6 Hz), 129.9, 126.2 (q, *J* = 3.6 Hz), 123.3 (q, *J* = 271.4 Hz), 119.9, 117.9, 45.4, 33.3, 24.7, 13.9.

¹⁹F NMR (376 MHz, CDCl₃) δ –63.45.

HRMS (ESI): Calcd for $[C_{14}H_{11}N_2OF_3Na]^+$ $[M + Na]^+$ 303.0716, Found 303.0716.

2-(4-Fluorobenzoyl)-2-methylpentanedinitrile (55). Synthesized according to the **General Procedure** C with (4-fluorophenyl)methanol (0.2 mmol, 25.2 mg) and acrylonitrile (1.0 mmol, 53.0 mg) at 85 $^{\circ}$ C for 12 h. Purified by flash column chromatography on silica gel (PE:EA = 6:1) to give **55** as a brown oil (25.8 mg, 56% yield).

¹H NMR (400 MHz, CDCl₃) δ 8.23 – 8.19 (m, 2H), 7.23 – 7.18 (m, 2H), 2.68 – 2.51 (m, 3H), 2.17 (ddd, *J* = 14.8, 10.4, 4.8 Hz, 1H), 1.78 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 190.8, 166.5 (d, *J* = 256.7 Hz), 132.5 (d, *J* = 9.5 Hz), 129.7 (d, *J* = 2.9 Hz), 120.4, 118.1, 116.4 (d, *J* = 21.8 Hz), 45.0, 33.5, 24.8, 13.9.

¹⁹F NMR (376 MHz, CDCl₃) δ -101.66.

HRMS (ESI): Calcd for $[C_{13}H_{11}N_2OFNa]^+$ $[M + Na]^+$ 253.0748, Found 253.0747.

2-(4-Chlorobenzoyl)-2-methylpentanedinitrile (56). Synthesized according to the **General Procedure** C with (4-chlorophenyl)methanol (0.2 mmol, 28.4 mg) and acrylonitrile (1.0 mmol, 53.0 mg) at 85 °C for 12 h. Purified by flash column chromatography on silica gel (PE:EA = 6:1) to give **56** as a white jelly (22.6 mg, 46% yield).

¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, *J* = 8.8 Hz, 2H), 7.51 (d, *J* = 8.8 Hz, 2H), 2.68 – 2.55 (m, 3H), 2.17 (ddd, *J* = 14.8, 10.4, 4.8 Hz, 1H), 1.78 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 191.4, 141.4, 131.6, 131.0, 129.5, 120.2, 118.0, 45.1, 33.4, 24.8, 13.9. HRMS (ESI): Calcd for $[C_{13}H_{11}N_2OCINa]^+$ [M + Na]⁺ 269.0452, Found 269.0443.

2-(4-Bromobenzoyl)-2-methylpentanedinitrile (57). Synthesized according to the **General Procedure** C with (4-bromophenyl)methanol (0.2 mmol, 37.2 mg) and acrylonitrile (1.0 mmol, 53.0 mg) at 85 °C for 12 h. Purified by flash column chromatography on silica gel (PE:EA = 6:1) to give **57** as a colorless oil (26.1 mg, 45% yield).

¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 8.8 Hz, 2H), 7.67 (d, *J* = 8.4 Hz, 2H), 2.67 – 2.50 (m, 3H), 2.17 (ddd, *J* = 14.8, 10.4, 4.8 Hz, 1H), 1.77 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 191.6, 132.5, 132.0, 131.0, 130.2, 120.2, 118.0, 45.1, 33.4, 24.8, 13.9. HRMS (ESI): Calcd for [C₁₃H₁₁N₂OBrNa]⁺ [M+Na]⁺ 312.9947, Found 312.9943.

2-([1,1'-Biphenyl]-4-carbonyl)-2-methylpentanedinitrile (58). Synthesized according to the **General Procedure B** with [1,1'-biphenyl]-4-ylmethanol (0.2 mmol, 36.8 mg) and acrylonitrile (0.4 mmol, 21.2 mg). Then, another portion of acrylonitrile (0.6 mmol, 31.8 mg), was sequentially added into the Schlenk tube under N₂ atmosphere. The reaction mixture was stirred at 85 °C for another 8 h. The mixture was then concentrated in *vacuo*. The crude product was purified by flash column chromatography on silica gel (PE:EA = 6:1) to give **58** as a white jelly (33.4 mg, 58% yield).

¹H NMR (400 MHz, CDCl₃) δ 8.24 (d, J = 8.4 Hz, 2H), 7.74 (d, J = 8.4 Hz, 2H), 7.65 – 7.63 (m, 2H), 7.51 – 7.48(m, 2H), 7.46 – 7.42 (m, 1H), 2.72 – 2.53 (m, 3H), 2.20 (ddd, J = 15.2, 10.4, 4.8 Hz, 1H), 1.82 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 191.8, 147.3, 139.3, 131.9, 130.2, 129.2, 128.9, 127.6, 127.4, 120.5, 118.2, 45.1, 33.6, 24.9, 13.9.

HRMS (ESI): Calcd for $[C_{19}H_{16}N_2ONa]^+$ $[M + Na]^+$ 311.1155, Found 311.1157.

2-(Anthracene-9-carbonyl)-2-methylpentanedinitrile (59). Synthesized according to the **General Procedure C** with anthracene-9-carbaldehyde (0.2 mmol, 41.2 mg) and acrylonitrile (1.0 mmol, 53.0 mg) at 85 °C for 12 h. Purified by flash column chromatography on silica gel (PE:EA = 6:1) to give **59** as a brown jelly (31.2 mg, 50% yield).

¹H NMR (400 MHz, CDCl₃) δ 8.60 (s, 1H), 8.09 (d, *J* = 8.0 Hz, 2H), 7.69 – 7.52 (m, 6H), 2.79 – 2.59 (m, 3H), 2.38 – 2.30 (m, 1H), 1.74 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 203.3, 131.4, 131.0, 130.3, 129.4, 127.9, 126.1, 126.1, 124.1, 119.3, 118.0, 50.2, 33.1, 23.1, 13.9.

HRMS (ESI): Calcd for $[C_{21}H_{16}N_2ONa]^+$ [M + Na]⁺ 335.1155, Found 335.1154.

2-Methyl-2-(thiophene-2-carbonyl)pentanedinitrile (60). Synthesized according to the **General Procedure C** with thiophen-2-ylmethanol (0.2 mmol, 22.8 mg) and acrylonitrile (1.0 mmol, 53.0 mg) at 85 °C for 12 h. Purified by flash column chromatography on silica gel (PE:EA = 6:1) to give **60** as a yellow oil (24.0 mg, 55% yield).

¹H NMR (400 MHz, CDCl₃) δ 8.24 (dd, *J* = 4.0, 0.8 Hz, 1H), 7.80 (dd, *J* = 4.8, 0.4 Hz, 1H), 7.21 (dd, *J* = 4.8, 4.0 Hz, 1H), 2.65 – 2.50 (m, 3H), 2.18 (ddd, *J* = 13.2, 7.2, 5.6 Hz, 1H), 1.79 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 184.9, 139.6, 136.9, 134.6, 129.0, 120.5, 118.1, 45.4, 33.3, 25.1, 13.8. HRMS (ESI): Calcd for $[C_{11}H_{10}N_2OSNa]^+$ [M + Na]⁺ 241.0406, Found 241.0405.

2-(6-Methoxynicotinoyl)-2-methylpentanedinitrile (61). Synthesized according to the **General Procedure C** with (6-methoxypyridin-3-yl)methanol (0.2 mmol, 27.8 mg) and acrylonitrile (1.0 mmol, 53.0 mg) at 85 °C for 12 h. Purified by flash column chromatography on silica gel (PE:EA = 10:1) to give **61** as a colorless oil (25.8 mg, 53% yield).

¹H NMR (400 MHz, CDCl₃) δ 9.09 (d, *J* = 2.4 Hz, 1H), 8.29 (dd, *J* = 8.8, 2.8 Hz, 1H), 6.84 (d, *J* = 8.8 Hz, 1H), 4.03 (s, 3H), 2.67 – 2.50 (m, 3H), 2.16 (ddd, *J* = 14.8, 10.4, 4.4 Hz, 1H), 1.77 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 190.0, 167.4, 150.7, 139.4, 123.1, 120.3, 118.1, 111.7, 54.5, 44.9, 33.3, 24.7, 13.9.

HRMS (ESI): Calcd for [C₁₃H₁₃N₃O₂Na]⁺ [M + Na]⁺ 266.0900, Found 266.0909.

2-Methyl-2-(4-phenylbutanoyl)pentanedinitrile (62). Synthesized according to the **General Procedure C** with 4-phenylbutan-1-ol (0.2 mmol, 30.0 mg) and acrylonitrile (1.0 mmol, 53.0 mg) at 85 $^{\circ}$ C for 24 h. Purified by flash column chromatography on silica gel (PE:EA = 15:1) to give **62** as a colorless oil (31.0 mg, 61% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.28 (m, 2H), 7.23 – 7.21 (m, 1H), 7.19 – 7.16 (m, 2H), 2.82 (t, *J* = 6.4 Hz, 2H), 2.66 (t, *J* = 7.6 Hz, 2H), 2.50 – 2.31 (m, 3H), 2.05 – 1.94 (m, 3H), 1.50 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 202.7, 140.9, 128.7, 128.6, 126.4, 119.8, 117.8, 47.9, 38.9, 34.8, 32.0, 24.8, 23.3, 13.8.

HRMS (ESI): Calcd for $[C_{16}H_{18}N_2ONa]^+$ [M+ Na]⁺ 277.1311, Found 277.1305.

2-Methyl-2-octanoylpentanedinitrile (63). Synthesized according to the **General Procedure C** with octan-1-ol (0.2 mmol, 26 mg) and acrylonitrile (1.0 mmol, 53.0 mg) at 85 °C for 24 h. Purified by flash column chromatography on silica gel (PE:EA = 15:1) to give **63** as a brown oil (25.7 mg, 55% yield). ¹H NMR (400 MHz, CDCl₃) δ 2.80 (t, *J* = 7.2 Hz, 2H), 2.51 – 2.34 (m, 3H), 2.04 – 1.96 (m, 1H), 1.64 – 1.60 (m, 2H), 1.53 (s, 3H), 1.29 – 1.24 (m, 7H), 0.89 – 0.86 (m, 4H).

¹³C NMR (100 MHz, CDCl₃) δ 203.0, 119.8, 117.9, 47.9, 39.9, 32.0, 31.7, 29.1, 29.0, 23.6, 23.2, 22.7, 14.1, 13.9.

HRMS (ESI): Calcd for [C₁₄H₂₂N₂ONa]⁺ [M+ Na]⁺ 257.1624, Found 257.1632.

2-(4-(Benzyloxy)butanoyl)-2-methylpentanedinitrile (64). Synthesized according to the **General Procedure C** with 4-(benzyloxy)butan-1-ol (0.2 mmol, 36.0 mg) and acrylonitrile (1.0 mmol, 53.0 mg) at 85 °C for 24 h. Purified by flash column chromatography on silica gel (PE:EA = 15:1) to give **64** as a colorless oil (32.4 mg, 57% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.30 (m, 5H), 4.47 (s, 2H), 3.54 – 3.46 (m, 2H), 2.91 (t, *J* = 6.8 Hz, 2H), 2.40 – 2.26 (m, 3H), 2.04 – 1.91 (m, 3H), 1.49 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 202.7, 138.2, 128.6, 128.0, 128.0, 119.8, 118.0, 73.2, 68.8, 48.0, 36.6, 31.9, 24.0, 23.2, 13.7.

HRMS (ESI): Calcd for $[C_{17}H_{21}N_2O_2]^+$ $[M + H]^+$ 285.1598, Found 285.1600.

2-Methyl-2-(undec-10-enoyl)pentanedinitrile (65). Synthesized according to the **General Procedure C** with undec-10-en-1-ol (0.2 mmol, 34.0 mg) and acrylonitrile (1.0 mmol, 53.0 mg) at 85 °C for 24 h.

Purified by flash column chromatography on silica gel (PE:EA = 15:1) to give **65** as a colorless oil (37.3 mg, 68% yield).

¹H NMR (400 MHz, CDCl₃) δ 5.85 – 5.75 (m, 1H), 5.01 – 4.91 (m, 2H), 2.80 (t, *J* = 7.2 Hz, 2H), 2.55 – 2.34 (m, 3H), 2.06 – 1.96 (m, 3H), 1.63 – 1.58 (m, 2H), 1.53 (s, 3H), 1.35 – 1.25 (m, 10H).

¹³C NMR (100 MHz, CDCl₃) δ 203.0, 139.2, 119.8, 117.8, 114.3, 47.9, 39.8, 33.9, 31.9, 29.3, 29.1, 29.0, 23.6, 23.2, 13.9.

HRMS (ESI): Calcd for $[C_{17}H_{26}N_2ONa]^+$ $[M + Na]^+$ 297.1937, Found 297.1946.

2-(Cyclopropanecarbonyl)-2-methylpentanedinitrile (66). Synthesized according to the **General Procedure C** with cyclopropylmethanol (0.2 mmol, 14.4 mg) and acrylonitrile (1.0 mmol, 53.0 mg) at 85 $^{\circ}$ C for 24 h. Purified by flash column chromatography on silica gel (PE:EA = 15:1) to give **66** as a colorless oil (25.7 mg, 73% yield).

¹H NMR (400 MHz, CDCl₃) δ 2.50 – 2.34 (m, 4H), 2.07 – 1.99 (m, 1H), 1.59 (s, 3H), 1.22 – 1.11 (m, 4H).

¹³C NMR (100 MHz, CDCl₃) δ 202.6, 119.7, 117.9, 48.4, 31.6, 22.9, 18.0, 13.7, 13.6, 13.7.

HRMS (ESI): Calcd for $[C_{10}H_{12}N_2ONa]^+$ $[M + Na]^+$ 199.0842, Found 199.0834.

Unsuccessful or less successful Substrates:

unsuccessful or less successful substrates for hydroacylation of acrylonitriles with aldehydes to β -ketonitriles: Me Br O_2N N.R. N.R. 15% <5% EtO. Me₂N NC. Me N.R. N.R. N.R. N.R.

unsuccessful or less successful substrates for hydroacylation of acrylonitriles with alcohols to β -ketonitriles: poor selectivity of $\beta\text{-ketonitrile}$ and glutaronitrile

- - - -

V Synthetic Transformations of β -Ketonitrile and Glutaronitrile Derivatives

To a solution of β -ketonitrile **20** (0.2 mmol, 47.0 mg) in CH₃OH (5 mL) was added NaBH₄ (0.6 mmol, 22.7 mg), and the resulting mixture was stirred at room temperature for 12 h. Then the reaction was quenched with H₂O (2 mL). The resulting mixture was added DCM (10 mL), partitioned between H₂O and DCM, and then separated. The aqueous layer was extracted with DCM for three times (5 mL × 3). The combined organic layers were dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (PE:EA) to give **67** as a white jelly (41.2 mg, 87% yield, d.r. = 1.2:1.).

¹H NMR (400 MHz, CDCl₃): *Major isomer*: δ 7.64 – 7.58 (m, 4H), 7.50 – 7.44 (m, 4H), 7.36 (dd, *J* = 7.6, 7.6 Hz 1H), 4.78 (d, *J* = 6.4 Hz, 1H), 3.01 – 2.94 (m, 1H), 2.34 (s, 1H), 1.29 (d, *J* = 8.8 Hz, 3H); *Minor isomer*: 7.64 – 7.58 (m, 4H), 7.50 – 7.44 (m, 4H), 7.36 (dd, *J* = 7.6, 7.6 Hz 1H), 4.87 (d, *J* = 6.4 Hz, 1H), 3.10 – 3.03 (m, 1H), 2.34 (s, 1H), 1.29 (d, *J* = 8.8 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 142.0, (141.9), 140.6, (140.5), 139.1, (138.8), 129.0, 127.7, (127.7), 127.6, 127.5, 127.2, 127.0, 126.9, 121.1, (121.1), 75.1, (74.4), 34.7, (34.1), 14.9, 13.7.

HRMS (ESI): Calcd for $[C_{16}H_{16}NO]^+$ $[M+H]^+$ 238.1226, Found 238.1220.

To a solution of β -ketonitrile **20** (0.2 mmol, 47.0 mg) in dry THF (10 mL) was added LiAlH₄ (0.4 mmol, 15.2 mg), and the resulting mixture was stirred for 2 h from 0 °C to room temperature. Then the reaction was quenched with H₂O (2 mL). The resulting mixture was added DCM (10 mL). After separation, the aqueous layer was extracted with DCM for three times (5 mL × 3). The combined organic layers were dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (PE:EA) to give **68** as a white jelly (25.0 mg, 52% yield, d.r. = 2:1.).

¹H NMR (400 MHz, CDCl₃) *Major isomer:* δ 7.62 – 7.52 (m, 4H), 7.47 – 7.37 (m, 4H), 7.33 (dd, J = 7.2, 7.2 Hz, 1H), 4.53 (d, J = 8.4 Hz, 1H), 4.37 (s, 3H), 3.14 – 2.73 (m, 2H), 1.91– 1.87 (m, 1H), 0.73 (d, J = 6.4 Hz, 3H). *Minor isomer:* 7.62 – 7.52 (m, 4H), 7.47 – 7.37 (m, 4H), 7.33 (dd, J = 7.2, 7.2 Hz, 1H), 5.00 (d, J = 2.8 Hz, 1H), 4.37 (s, 3H), 3.06 (d, J = 7.2 Hz, 2H), 1.91– 1.87 (m, 1H), 0.81 (d, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 143.4, 142.4, 141.1, 140.2, 139.7, 128.8, 127.4, 127.2, 127.2, 127.1, 127.1, 127.0, 126.8, 126.7, 81.2, 76.6, 47.3, 45.5, 40.4, 39.9, 15.5, 11.7.

HRMS (ESI): Calcd for [C₁₆H₁₈NO]⁺ [M+H]⁺ 240.1383, Found 240.1390.

To a solution of 67 (0.2 mmol, 47.4 mg) in acetone (2 mL) were successively added 30% aqueous H₂O₂

solution (2 mL) and Na₂CO₃ (2.0 mmol, 212 mg), and the resulting suspension was stirred for 16 h at room temperature. After dilution with H₂O (5 mL), the resulting mixture was added DCM (10 mL), partitioned between H₂O and DCM. The aqueous layer was extracted with DCM for three times (5 mL × 3). The organic layers were collected, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (PE:EA) to give **69** as a white jelly (40.3 mg, 79% yield, d.r. = 2:1).⁶

¹H NMR (400 MHz, CDCl₃) *Major isomer:* δ 7.60 – 7.59 (m, 4H), 7.45 – 7.41 (m, 4H), 7.34 (dd, *J* = 7.6, 7.6 Hz, 1H), 5.81 (s, 1H), 5.52 (s, 1H), 5.15 (d, *J* = 3.2 Hz, 1H), 3.68 (s, 1H), 2.68 – 2.62 (m, 1H), 1.16 (d, *J* = 7.2 Hz, 3H). *Minor isomer:* δ 7.60 – 7.58 (m, 4H), 7.47 – 7.40 (m, 4H), 7.35 (dd, *J* = 7.6, 7.2 Hz, 1H), 5.73 (s, 1H), 5.40 (s, 1H), 4.80 (dd, *J* = 6.8, 4.4 Hz, 1H), 3.54 (d, *J* = 4.4 Hz, 1H), 2.66 (dq, *J* = 3.2, 6.8 Hz, 1H), 1.16 (d, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, DMSO-*d*₆) *Major isomer* δ 176.2, 143.5, 140.1, 138.5, 128.8, 127.2, 127.0, 126.5, 125.9, 73.5, 47.1, 13.5. *Minor isomer:* δ 176.6, 143.3, 134.0, 138.8, 128.8, 127.3, 127.2, 126.5, 126.2, 74.7, 47.0, 14.8.

HRMS (ESI): Calcd for [C₁₆H₁₇NO₂]⁺ [M+Na]⁺ 278.1151, Found 278.1152.

To a solution of **20** (0.2 mmol, 47.0 mg) in dry THF (2 mL) were added NaH (0.22 mmol, 8.8 mg, 60% in oil) under N₂ atmosphere, and the resulting suspension was stirred for 1 h at 0 °C. Then the selectfluor (0.22 mmol, 80.0 mg,) was added to the resulting mixture, and the mixture was stirred for another 12 h from 0 °C to room temperature. Then the reaction was quenched with H₂O (2 mL). The resulting mixture was added EA (10 mL). After separation, the aqueous layer was extracted with EA for three times (5 mL × 3). The combined organic layers were dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (PE:EA) to give **70** as a white jelly (44.1 mg, 87% yield).

¹H NMR (400 MHz, CDCl₃) δ 8.21 (dd, *J* = 8.8, 1.2 Hz, 2H), 7.75 (d, *J* = 8.4 Hz, 2H), 7.66 – 7.64 (m, 2H), 7.52 – 7.48 (m, 2H), 7.46 – 7.43 (m, 1H), 2.11 (d, *J* = 22.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 188.0 (d, *J* = 23.9 Hz), 147.81, 139.36, 131.0 (d, *J* = 5.5 Hz), 130.3 (d, *J* = 3.5 Hz), 129.2, 128.9, 127.7, 127.5, 115.9 (d, *J* = 23.1 Hz), 89.5 (d, *J* = 194.0 Hz), 23.9 (d, *J* = 24.0 Hz).

 ^{19}F NMR (376 MHz, CDCl₃) δ –146.22.

HRMS (ESI): Calcd for [C₁₆H₁₂NOFNa]⁺ [M+Na]⁺ 276.0795, Found 276.0791.

To a solution of Glutaronitrile 4 (0.2 mmol, 42.4 mg) in DCM (5 mL) was successively added diethyl (cyanomethyl)phosphonate (0.3 mmol, 53.1 mg) and Cs_2CO_3 (0.4 mmol, 130.3 mg), then the resulting
mixture was stirred at room temperature for 4 h. The reaction was quenched with H_2O (2 mL). The resulting mixture was added DCM (10 mL), partitioned between H_2O and DCM, and then separated. The aqueous layer was extracted with DCM for three times (5 mL × 3). The combined organic layers were dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (PE:EA) to give **71** as a colorless jelly (36.7 mg, 78% yield, E/Z = 1.1:1).

Major isomer ¹H NMR (400 MHz, CDCl₃) δ 7.49 – 7.41 (m, 3H), 7.28 – 7.22 (m, 2H), 5.62 (s, 1H), 2.78 – 2.67 (m, 1H), 2.66 – 2.56 (m, 2H), 2.38 (ddd, *J* = 15.2, 10.0, 6.4 Hz, 1H), 1.93 (s, 3H)

¹³C NMR (100 MHz, CDCl₃) δ 161.4, 137.6, 130.3, 128.9, 127.4, 119.7, 117.7, 114.6, 101.7, 43.2, 34.8, 25.9, 14.1.

HRMS (ESI): Calcd for $[C_{15}H_{14}N_3]^+$ $[M+H]^+$ 236.1182, Found 236.1172.

Minor isomer ¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.49 (m, 3H), 7.19 – 7.17 (m, 2H), 6.05 (s, 1H), 2.63 – 2.50 (m, 2H), 2.13 – 2.00 (m, 2H), 1.57 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 161.0, 132.6, 130.3, 129.3, 128.2, 119.5, 117.6, 114.9, 103.4, 43.6, 33.5, 24.5, 13.8.

HRMS (ESI): Calcd for [C₁₅H₁₄N₃]⁺ [M+H]⁺ 236.1182, Found 236.1173.

Glutaronitrile **4** (0.2 mmol, 42.4 mg), concentrated H_2SO_4 (0.6 mL) and AcOH (1.0 mL) were successively added into a Schlenk reaction tube under an air atmosphere. The mixture was heated at 150 °C for 12 h. after the reaction completed, the resulting dark-brown liquid was poured into crushed ice and extracted with DCM for three times (10 mL × 3). The organic layer was repeatedly washed with a saturated Na₂CO₃ solution, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (PE:EA) to give **72** as a colorless jelly (16.7 mg, 36% yield).

¹H NMR (400 MHz, CDCl₃) δ 8.13 (s, 1H), 7.86 (d, *J* = 8.0 Hz, 2H), 7.55 (dd, *J* = 8.0, 8.0 Hz, 1H), 7.43 (dd, *J* = 8.0, 8.0 Hz, 2H), 2.74 – 2.68 (m, 3H), 1.95 – 1.86 (m, 1H), 1.71 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 197.6, 173.8, 171.8, 135.2, 133.3, 129.0, 128.8, 54.8, 29.8, 29.2, 21.9. HRMS (ESI): Calcd for $[C_{13}H_{14}NO_3]^+$ [M+H]⁺ 232.0968, Found 232.0961.

Glutaronitrile **4** (0.2 mmol, 42.4 mg), CH₃OH (2.0 mL) and concentrated H₂SO₄ (1.0 mL) were successively added into a Schlenk reaction tube under an air atmosphere. The mixture was heated at 85 °C for 12 h, Then the reaction was quenched with a saturated Na₂CO₃ solution and extracted with DCM for three times (5 mL \times 3). The combined organic layers were dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (PE:EA) to give **73** as a colorless oil (24.5 mg, 44% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.81– 7.79 (m, 2H), 7.55 – 7.51 (m, 1H), 7.44 – 7.40 (m, 2H), 3.65 (s, 3H), 3.64 (s, 3H), 2.44 – 2.24 (m, 4H), 1.53 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 196.8, 174.4, 173.4, 135.3, 133.0, 128.8, 128.6, 56.2, 52.7, 51.9, 31.5, 29.3, 21.3.

HRMS (ESI): Calcd for $[C_{15}H_{18}O_5Na]^+$ $[M+Na]^+$ 301.1046, Found 301.1056.

Glutaronitrile **4** (0.4 mmol, 84.8 mg), phenylboronic acid (0.2 mmol, 24.4 mg), Pd(acac)₂ (0.01 mmol, 3.1 mg), 2,2'-bipyridine (0.02 mmol, 3.1 mg), TsOH H₂O (0.4 mmol, 76.1 mg), toluene (2 mL) and H₂O (0.4 mL) were successively added into a Schlenk reaction tube under an air atmosphere. and the resulting mixture was stirred at 85 °C for 12 h The resulting mixture was poured into ethyl acetate, which was washed with saturated NaHCO₃ solution (10 mL) and brine (10 mL). After the aqueous layer was extracted with ethyl acetate for three times (5 mL × 3), the combined organic layers were dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel (PE:EA) to give **74** as a colorless oil (29.1 mg, 50% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.20 – 8.17 (m, 2H), 7.97 – 7.94 (m, 2H), 7.66 – 7.45 (m, 6H), 3.29 – 3.12 (m, 2H), 2.70 (ddd, *J* = 15.6, 10.4, 5.2 Hz, 1H), 2.32 (ddd, *J* = 16.0, 10.8, 5.2 Hz, 1H), 1.80 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 197.9, 193.9, 136.6, 134.1, 134.1, 133.6, 129.5, 129.0, 128.8, 128.2, 121.8, 45.6, 34.5, 32.5, 24.6.

HRMS (ESI): Calcd for $[C_{19}H_{17}NO_2Na]^+$ [M+Na]⁺ 314.1151, Found 314.1142.

VI Control Experiments and Mechanistic Studies

(1) Control Experiment with β -Hydroxynitrile as an Additive

According to the **General Procedure A** with benzaldehyde 1 (0.3 mmol, 31.8 mg) and acrylonitrile 2 (10.6 mg, 0.2 mmol) as substrates. The β -hydroxynitrile **67** (47.4 mg, 0.2 mmol) was added as an additive. After reaction for 6 h, the β -ketonitrile **20** was obtained in 66% NMR yield and **3** was obtained in 33% NMR yield. The results might suggest a process of β -hydride elimination from alkoxy ruthenium species and β -hydroxynitrile should be the reaction intermediate in this hydroacylation reaction.

(2) Deuterium Labelling Experiment

According to the **General Procedure A** with deuterated *para*-methoxybenzaldehyde (d_1 -**75**) (0.3 mmol, 41.0 mg) and acrylonitrile **2** (10.6 mg, 0.2 mmol) as substrates. The reaction mixture was concentrated under reduced pressure, which was purified by flash column chromatography on silica gel (PE:EA) to give *d*-**9** in 58% isolated yield. ¹H NMR analysis revealed that deuterium was incorporated into only the β '-position of the resulting β -ketonitrile product.

According to the **General Procedure B** with deuterated *para*-methoxyphenylmethanol d_3 -76 (0.2 mmol, 22.2 mg) and acrylonitrile 2 (53.0 mg, 1.0 mmol) as substrates. The reaction mixture was concentrated under reduced pressure, which was purified by flash column chromatography on silica gel (PE:EA) to give *d*-47 in 44% isolated yield. ¹H NMR analysis revealed that deuterium was incorporated into only the β '-position of the resulting β -ketonitrile product.

According to the **General Procedure B** with deuterated *para*-methoxyphenylmethanol d_3 -1 (0.2 mmol, 28.2 mg) and *para*-OMe-substituted cinnamonitrile 77 (103.2 mg, 0.8 mmol) as substrates. The reaction mixture was concentrated under reduced pressure, which was purified by flash column chromatography on silica gel (PE:EA) to give *d*-78 in 42% isolated yield with deuterated 3-(4-methoxyphenyl)propanenitrile as alkene hydrogenation product. ¹H NMR analysis revealed that deuterium was incorporated into only the β '-position of the resulting β -ketonitrile product. Moreover, we recovered the deuterated cinnamonitrile *d*-*E*-77 and *d*-*Z*-77 after the cross-coupling reaction. These results clearly indicate the reversibility of hydrometallation of acrylonitrile with Ru–H complex.

According to the **General Procedure B** with deuterated *para*-methoxyphenylmethanol d_3 -76 (0.2 mmol, 28.2 mg) and cinnamonitrile **80** (51.6 mg, 0.4 mmol) as substrates. The reaction mixture was concentrated under reduced pressure, which was purified by flash column chromatography on silica gel (PE:EA) to give **81** in 44% isolated yield with deuterated 3-phenylpropanenitrile as alkene hydrogenation product. ¹H NMR analysis revealed that deuterium was incorporated into only the β '-position of the resulting β -ketonitrile product, while deuterium was incorporated into both the α and β position of alkene hydrogenation product. These results clearly indicate the reversibility of hydrometallation of acrylonitrile with Ru–H complex.

(3)	Control	Experiments	toward	Pentanedinitrile	Product 4
-----	---------	-------------	--------	------------------	-----------

	Ph CN + CN RuHCl(CO)(PPh ₃) ₃ (10 mol%) DCyPF (10 mol%) DME, 85 °C, 16 h 3 2	
Entry	Variations from above conditions	Yield $(\%)^b$
1	none	90
2	without Ru cat./DCyPF	0
3	without Ru cat.	0
4	without DCyPF	50
5	without Ru cat./DCyPF, with 20 mol% PPh3	0
6	with 5 mol% pentane-1,5-diol	57
7	with 1 equiv pentane-1,5-diol	<5

^{*a*}Reaction conditions: **3** (0.2 mmol), **2** (1.0 equiv), RuHCl(CO)(PPh₃)₃ (10 mol%), DCyPF (10 mol%), DME (2 mL), 85 °C, 16 h, if otherwise noted. ^{*b*}Isolated yield.

VII References

- Metternich J. B.; Artiukhin, D. G.; Holland, M. C.; von Bremen-Kühne, M.; Neugebauer, J.; and Gilmour, R. J. Org. Chem. 2017, 82, 9955 – 9977.
- 2. Kiyokawa, K.; Nagata, T.; Minakata, S. Angew. Chem. Int. Ed. 2016, 55, 10458 10462.
- Erbing, E.; Vázquez-Romero, A.; Bermejo Gómez, A.; Platero-Prats, A. E.; Carson, F.; Zou, X.; Tolstoy, P.; Martín-Matute, B. *Chem. Eur. J.* 2016, 22, 15659 – 15663.
- 4. Amatore, M.; Gosmini, C.; Périchon, J. J. Org. Chem. 2006, 71, 6130 6134.
- 5. Meng, J.-J.; Gao, M.; Dong, M.; Wei, Y.-P.; Zhang, W.-Q. Tetrahedron Lett. 2014, 55, 2107 2109.
- 6. Saito, A.; Adachi, S.; Kumagai, N.; Shibasaki, M. Angew. Chem. Int. Ed. 2021, 60, 8739 8743.

VII NMR Spectra

¹H NMR (400 MHz, CDCl₃) spectrum of 2-Methyl-3-oxo-3-phenylpropanenitrile (3)

8 4 9 5 6 7 8 9 7 9 8 7 9 8 7 9 8 7 9 9 7 9 9 7 9 9 7 9 9 7 9 9 7 9 9 7 9 9 7 9 9 7 9	0 2 2 9	88 01
522220000000000000000000000000000000000	34 90 80	29 29
	4 4 4 4	
		\sim

¹H NMR (400 MHz, CDCl₃) spectrum of 2-Benzoyl-2-methylpentanedinitrile (4)

¹³C NMR (100 MHz, CDCl₃) spectrum of 2-Benzoyl-2-methylpentanedinitrile (4)

¹H NMR (400 MHz, CDCl₃) spectrum of 2-Methyl-3-oxo-3-(*p*-tolyl)propanenitrile (6)

7.893 7.873	7.329 7.309 7.260	4.371 4.353 4.353 4.335 4.335 4.338 4.318 4.338	1.643 1.625
\leq	\leq		\searrow

¹³C NMR (100 MHz, CDCl₃) spectrum of 2-Methyl-3-oxo-3-(*p*-tolyl)propanenitrile (6)

¹H NMR (400 MHz, CDCl₃) spectrum of 2-Methyl-3-oxo-3-(*m*-tolyl)propanenitrile (7)

7.77 7.75 7.45 7.425 7.26 7.29 7.29 6.33 3.33 3.33 3.33	- 2.43	1.65 1.63
---	--------	--------------

¹³C NMR (100 MHz, CDCl₃) spectrum of 2-Methyl-3-oxo-3-(*m*-tolyl)propanenitrile (7)

¹H NMR (400 MHz, CDCl₃) spectrum of 3-(4-(*tert*-Butyl)phenyl)-2-methyl-3-oxopropanenitrile (8)

¹³C NMR (100 MHz, CDCl₃) spectrum of 3-(4-(*tert*-Butyl)phenyl)-2-methyl-3-oxopropanenitrile (8)

— 190.41

158.71	131.25 128.94 126.22 118.47	77.48 77.16 76.84	35.44 33.69 31.10	15.12
I	1// 1		517	

^{0 -10} 210 200 f1 (ppm) 190 180 150 140 130 120

¹H NMR (400 MHz, CDCl₃) spectrum of 3-(4-Methoxyphenyl)-2-methyl-3-oxopropanenitrile (9)

985 963	260 998 976	333 320 896 896	642 624
~ ~	6.7	4440	
\leq	$\land \checkmark$		\checkmark

¹³C NMR (100 MHz, CDCl₃) spectrum of 3-(4-Methoxyphenyl)-2-methyl-3-oxopropanenitrile (9)

f1 (ppm)

¹H NMR (400 MHz, CDCl₃) spectrum of 2-Methyl-3-(4-(methylthio)phenyl)-3-oxopropanenitrile (10)

7.893 7.873	7.310 7.290 7.260	1.340 1.323 1.305 1.287	2.532	I.638 I.621
1 - 1 -		~ ~ ~ ~ ~	~ ~ ~	· · ·
\searrow				\searrow

¹³C NMR (100 MHz, CDCl₃) spectrum of 2-Methyl-3-(4-(methylthio)phenyl)-3-oxopropanenitrile (10)

¹H NMR (400 MHz, CDCl₃) spectrum of 3-(4-(Diphenylamino)phenyl)-2-methyl-3-oxopropanenitrile (11)

· -	•	· · •	• /	•	-	-		
202	- 2 7 0	4 0 2	- ŭ ŭ		2	5 2 2	80	5
201					0,	004		5
- w 1 - t	9 09 09 0 <u>9</u>	(1)	- 0, 0,		(i	u u u	Ű.	. W
\sim		アアマ	- 9 9		4	444	~	· ·
\sim	$\leq 1/2$				L .	≤ 2	L. L	\sim
٦٢								۱٢

¹³C NMR (100 MHz, CDCl₃) spectrum of 3-(4-(Diphenylamino)phenyl)-2-methyl-3-oxopropanenitrile (11) — 188.52

153.41	145.97	130.68 129.92 126.57 125.52 125.49 118.89 118.89	77.48 77.16 76.84	33.13	15.21
	, I			ĺ	I

¹H NMR (400 MHz, CDCl₃) spectrum of 2-Methyl-3-oxo-3-(4-(pyrrolidin-1-yl)phenyl)propanenitrile (12)

870 849	260	543 522	316 298 263	385	051	618 600
~ ~	~		4 4 4 4	ς.	Ň	~ ~
\searrow		\searrow				\searrow

¹³ C NMR (100 MHz, CDCl ₃) spectrum	of 2-Methyl-3-oxo-	3-(4-(pyr	rolidin-	1-yl)	phenyl)propanenitrile (12)
188.13	151.85	131.42	120.88 119.35	111.22	77.48 77.16 76.84
			57		

•	 • / •	• / • • ·	·		
— 151.85	 √ 120.88 √ 119.35 — 111.22	77.48 77.16 76.84	47.76	— 32.80 — 25.52	— 15.51

¹H NMR (400 MHz, CDCl₃) spectrum of 2-Methyl-3-(4-morpholinophenyl)-3-oxopropanenitrile (13)

890 867	260 874 851	324 2306 2306 233 334 333 334 333 334 324 324 324 324	601 583
アア	6. ⁷	<u> </u>	÷ ÷
\leq	$ $ \vee	\sim	\checkmark

- 154.95	131.11 123.81 118.92 113.22	77.48 77.16 76.84 66.48			- 15.28
----------	--------------------------------------	----------------------------------	--	--	---------

¹H NMR (400 MHz, CDCl₃) spectrum of Methyl 3-(2-cyanopropanoyl)benzoate (14)

8.587 8.308 8.289 8.186 8.167	7.641 7.622 7.602 7.260	4,469 4,451 3,954 3,954	1.661 1.643
\searrow	\sim		\checkmark

¹³C NMR (100 MHz, CDCl₃) spectrum of Methyl 3-(2-cyanopropanoyl)benzoate (14)

1	•					
190.32	165.84	135.27 134.07 132.96 131.33 132.96 129.82 1129.59 117.90	77.48 77.16 76.84	52.73	34.01	15.01
	1			1	1	

¹H NMR (400 MHz, CDCl₃) spectrum of 3-(3-Fluorophenyl)-2-methyl-3-oxopropanenitrile (15)

7.78 7.768 7.684 7.662 7.552 7.553 7.538 7.518 7.518 7.518 7.518 7.518 7.518 7.518 7.518 7.518 7.518	L7.379 L7.364 L7.358 L7.358 L7.338 L7.338 L7.260	4.347 4.329 4.293	1.661 1.643
			Ŷ

¹³C NMR (100 MHz, CDCl₃) spectrum of 3-(3-Fluorophenyl)-2-methyl-3-oxopropanenitrile (15)

— 189.78

✓ 164.34 ✓ 161.85	$\int_{115.64}^{135.89} \int_{135.82}^{135.82} \int_{124.67}^{135.82} 124.67$	77.48 77.16 76.84		— 14.95
-------------------	---	-------------------------	--	---------

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 3-(3-Fluorophenyl)-2-methyl-3-oxopropanenitrile (15)

1

CN ĊH₃

¹H NMR (400 MHz, CDCl₃) spectrum of 3-(4-Fluorophenyl)-2-methyl-3-oxopropanenitrile (16)

• • /	· · · · · · · · · · · · · · · · · · ·	
0070 <u>30</u> 70	イアのス	∼ 6
4 M M H M M M M M M M M M M M M M M M M	0 7 3 2	4 N
- N N N 0000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ú Ú
8.8.8.7.7.7.7	4 4 4	÷. ÷.
		\searrow
		-

¹³C NMR (100 MHz, CDCl₃) spectrum of 3-(4-Fluorophenyl)-2-methyl-3-oxopropanenitrile (16) — 189.28

167.88 165.32	131.79 131.69 130.31 130.23 130.23 130.23 116.65 116.65	77.48 77.16	33.75	14.95
57	VK VK	\checkmark		

0 -10 210 200 f1 (ppm)

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 3-(4-Fluorophenyl)-2-methyl-3-oxopropanenitrile (16)

¹H NMR (400 MHz, CDCl₃) spectrum of 3-(4-Chlorophenyl)-2-methyl-3-oxopropanenitrile (17)

949 929 522	260	327 309 273 273	637 637
て て て	-	+ + + + + + + + + + + + + + + + + + +	
\checkmark	~ /		\searrow

¹H NMR (400 MHz, CDCl₃) spectrum of 3-(4-Bromophenyl)-2-methyl-3-oxopropanenitrile (18)

-		
366 345 345 345 345 369 569 560	325 308 272	351 333
	4 4 4 4	e. e.
		$\mathbf{\hat{\mathbf{v}}}$

¹³C NMR (100 MHz, CDCl₃) spectrum of 3-(4-Bromophenyl)-2-methyl-3-oxopropanenitrile (18)

¹H NMR (400 MHz, CDCl₃) spectrum of 2-Methyl-3-(naphthalen-2-yl)-3-oxopropanenitrile (19)

		•	· -		• /		
510	000 981	953 931	909 888 677	659 640 615 595	578 260	568 533 515 515	717 699
ωiα	. ∞. ⊢	~ ~	アアア	アファブ	アア	4 4 4 4	, , ,
							\checkmark

¹³C NMR (100 MHz, CDCl₃) spectrum of 2-Methyl-3-(naphthalen-2-yl)-3-oxopropanenitrile (19)

— 190.82

136.22 132.48 131.18 129.93 129.28 123.97 123.97 118.41	77.48 77.16 76.84	33.85	15.26
			1

¹H NMR (400 MHz, CDCl₃) spectrum of 3-([1,1'-Biphenyl]-4-yl)-2-methyl-3-oxopropanenitrile (20)

2012 2012 2013 2013 2014 2017 2017 2017 2017 2017 2017 2017 2017	31 95 77	20
	4 4 č č	<u>.</u>
887777777777	4444	~ ~
		\checkmark

¹³C NMR (100 MHz, CDCl₃) spectrum of 3-([1,1'-Biphenyl]-4-yl)-2-methyl-3-oxopropanenitrile (20)

⁻⁻ CPP-

¹H NMR (400 MHz, CDCl₃) spectrum of methyl 5-(2-Cyanopropanoyl)-2-methoxybenzoate (21)

•		- · ·	•	
021010	040		<u> </u>	0 3
- 0 4 4 N N	96 1		004000 004000	- 3
44	000		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0 0
~~~~	N° N° N°			
			4 4 4 4 9 9	
	くてく			
	) )r			γ



# ¹³C NMR (100 MHz, CDCl₃) spectrum of methyl 5-(2-Cyanopropanoyl)-2-methoxybenzoate (21)

		,	()			
82	45 70	59 12 57 47	8 0 4	210	0	~
88	65.	34 26 12.4	4 - 7 8.0 6.8	2.5	3.5	5.1
<u></u>	~ ~		アファ	2 2	e	~
	57	1 1 1 1	$\searrow$			1



S77

¹ H NMD (A00 MH ₇ CDCh) a	neatrum of 3 (2 3 Dibydroba	nzofuron 5 vl) 2 mot	hyl 3 ayanranananitrila (??)
11  INFIL (400  INFIL, CDCB)	pectrum of 5-(2,5-Dinyurobe	11201u1 ali-3-y1 <i>j</i> -2-illet	ay - 3 - 0x op ropanement ne (22)

<b></b> , <b>_</b>	aiob	CILLOIU	ran 5 jij 2 meenji 6 oxopropane	( <b>22</b> )	
ດູດູດ	0	4 m	N O 🕫 4 O O N	400	N 0
80 80 80 80	20	833	78087	223	60 2
アファ	~	ο ο	4 4 4 4 4 4 4	ຕ່ຕ່ຕ	<del>,</del> <del>,</del> <del>,</del>
$\searrow$		$\searrow$		$\searrow$	$\checkmark$



# ¹³C NMR (100 MHz, CDCl₃) spectrum of 3-(2,3-Dihydrobenzofuran-5-yl)-2-methyl-3-oxopropanenitrile (22)

	•	• / •			
189.03	165.76	131.15 128.66 127.11 126.34 118.71 118.71	77.48 77.16 76.84 72.65	33.39 29.00	15.25
		$\langle   \rangle \langle   \rangle$		I I	



¹H NMR (400 MHz, CDCl₃) spectrum of 3-(2,3-Dihydrobenzo[*b*][1,4]dioxin-6-yl)-2-methyl-3-oxopropanenitrile (23)

0 0 0 U N	υ <del>4</del> υ <del>-</del>	80
- o o c c	n N n a u	- 0
0 7 7 0 0 0 7 7 0	n n n n n	0 0
<u>~~~</u>	4 4 4 4	÷. ÷.
$\vee$ ( $\vee$		$\sim$



# ¹³C NMR (100 MHz, CDCl₃) spectrum of 3-(2,3-Dihydrobenzo[*b*][1,4]dioxin-6-yl)-2-methyl-3-oxopropanenitrile (23) — 189.22

149.43	143.89	127.50 123.13 118.48 118.43 117.86	77.48 77.16	64.91 64.20	33.48	15.25
		$\overline{\langle}$	$\checkmark$	$\leq$		1



## ¹H NMR (400 MHz, CDCl₃) spectrum of 2-Methyl-3-oxo-3-(2,3,6,7-tetrahydro-*1H*,5*H*-pyrido[3,2,1-*ij*]quinolin-9-yl)propanenitrile (24)

0 0 0	91 73 39	98 71 26 26 26 26 26 26 26 26 26 26 26 26 26	60 46 86 86 86
4 Q	$\beta$ $\beta$ $\beta$ $\beta$	7 7 7 7 7 F	ດັດດິດິທິທີ
	4444	$\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$	
$\Lambda$ (	$\sim$		





# ¹³C NMR (100 MHz, CDCl₃) spectrum of 2-Methyl-3-oxo-3-(2,3,6,7-tetrahydro-*1H*,5*H*-pyrido[3,2,1-*ij*]quinolin-9-yl)propanenitrile (24) — 187.97

147.94	128.65 120.26 120.05 119.47	77.48 77.16 76.84	50.08	32.50 27.84 21.30 15.69
				2255





## ¹H NMR (400 MHz, CDCl₃) spectrum of 2-Methyl-3-oxo-3-(thiophen-2-yl)propanenitrile (25)

7.889 7.781 7.783 7.772 7.727 7.727 7.207 7.197 7.188 7.188	4.250 4.233 4.197	1.670 1.653
		$\searrow$



# ¹³C NMR (100 MHz, CDCl₃) spectrum of 2-Methyl-3-oxo-3-(thiophen-2-yl)propanenitrile (25)



## ¹H NMR (400 MHz, CDCl₃) spectrum of 2-Methyl-3-oxo-3-(thiophen-3-yl)propanenitrile (26)

	• • •	• / • • • • / •	
8	00 00 00 00 00 00 00 00 00 00 00 00 00	92 74 56	38 147 29
Ņ.	0, 6, 7, 7, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,		
ω	ファファファ	444	4 ~~~
			$\sim$ $\sim$





# ¹³C NMR (100 MHz, CDCl₃) spectrum of 2-Methyl-3-oxo-3-(thiophen-3-yl)propanenitrile (26)

138.70 134.23 127.44 127.27 127.27 118.36	77.48 77.16 76.84	35.14	15.05
	$\checkmark$		- I





¹H NMR (400 MHz, CDCl₃) spectrum of 3-(6-Methoxypyridin-3-yl)-2-methyl-3-oxopropanenitrile (27)

- 8.831	8.160 8.138	- 7.260	6.849 6.827	4.296 4.279 4.243 4.024	1.649 1.631
---------	----------------	---------	----------------	----------------------------------	-------------



13C NMD (100 MHz	CDCL) spectrum	a of 2 (6 Mothows	munidin 2 ul) 2 n	anthul 2 avanna	nononituilo (27)
$\sim$ NNIK (100 MHZ,	CDCB) spectrul	n of 3-(0-Methoxy	/pyrium-3-yi)-2-n	пентуг-э-өхөргө	panemurne (27)

speece and	010 (0 1110			<i>ji)</i> = meenji e on	•p••p••••••••••••••••••(=•)	,		
188.54	167.66	149.96	138.79	123.82 118.06 111.98	77.48 77.16 76.84	54.49	33.74	14.93
	1			215		Ì	l.	1



¹H NMR (400 MHz, CDCl₃) spectrum of (2*S*,3*S*,4*S*,5*S*,6*R*)-2-(Acetoxymethyl)-6-(4-(2-cyanopropanoyl)phenoxy)tetrahydro-2*H*-pyran-3,4,5-triyl triacetate (28)

000400000000000000000000000000000000000	0400000
8 9 9 7 9 7 9 7 9 7 9 9 9 8 7 9 7 9 9 9 9	- 20 0 0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-000000
$\sim$	<u> </u>





¹³C NMR (100 MHz, CDCl₃) spectrum of (2*S*,3*S*,4*S*,5*S*,6*R*)-2-(Acetoxymethyl)-6-(4-(2-cyanopropanoyl)phenoxy)tetrahydro-2*H*-pyran-3,4,5-triyl triacetate (28)

189.25 189.17	170.68 169.77 169.18 169.12 169.12 161.66 161.61	131.20 128.77 118.41 118.37 116.94	96.54 96.54 77.48 77.48 77.48 77.48 77.48 66.33 66.15 66.15 66.15 66.23 66.23 62.35	33.57 33.55 20.82 20.77 20.65 114.94 14.86
$\checkmark$	SV V			$\vee$ $\vee$ $\vee$



## ¹H NMR (400 MHz, CDCl₃) spectrum of 2-Methyl-3-oxo-5-phenylpentanenitrile (29)

16 98 15 99 99 81 81	700000000000000000000000000000000000000



# ¹³C NMR (100 MHz, CDCl₃) spectrum of 2-Methyl-3-oxo-5-phenylpentanenitrile (29)

200.28	140.06	128.82 128.46 126.66 118.27	77.48 77.16 76.84	42.33 38.07	29.66	14.08
			$\checkmark$			1









 $\searrow$ 

S94



S95

¹H NMR (400 MHz, CDCl₃) spectrum of (*E*)-2-Methyl-3-oxododec-8-enenitrile (31) with minor (*Z*)-31



## ¹³C NMR (100 MHz, CDCl₃) spectrum of (*E*)-2-Methyl-3-oxododec-8-enenitrile (31) with minor (*Z*)-31



0 -10 fl (ppm)

¹H NMR (400 MHz, CDCl₃) spectrum of 3-Cyclohexyl-2-methyl-3-oxopropanenitrile (32)







¹H NMR (400 MHz, CDCl₃) spectrum of 5-(Benzo[*d*][1,3]dioxol-5-yl)-2,4-dimethyl-3-oxopentanenitrile (33)



# ¹³C NMR (100 MHz, CDCl₃) spectrum of 5-(Benzo[*d*][1,3]dioxol-5-yl)-2,4-dimethyl-3-oxopentanenitrile (33) 204.56

204.49	147.97 147.92 146.48	132.51 122.09 121.94 118.23 118.19 118.19 109.43 109.28 108.49 101.13 101.08	77.48 77.16 76.84	47.30 46.74 39.71 38.98 38.01 37.39	17.18 17.05 14.03 13.59
, v ,				440000	
	AP				7 6



#### ¹H NMR (400 MHz, CDCl₃) spectrum of 2-Benzoylbutanenitrile (34)





#### -10 210 200 190 180 140 130 fl (ppm)

¹H NMR (400 MHz, CDCl₃) spectrum of 2-Benzoylpentanenitrile (35)



# ¹³C NMR (100 MHz, CDCl₃) spectrum of 2-Benzoylpentanenitrile (35)



#### 210 200 f1 (ppm) 0 -10 140 130



¹H NMR (400 MHz, CDCl₃) spectrum of 2-(Cyclopentylmethyl)-3-oxo-3-phenylpropanenitrile (36)

# ¹³C NMR (100 MHz, CDCl₃) spectrum of 2-(Cyclopentylmethyl)-3-oxo-3-phenylpropanenitrile (36) - 191.12

0,7,0		~ ~ +	
u i i i i	က် ကိ	84 <u>6</u> 8	
440	8 1		
<u> </u>		L L 0	0 0 0 0 0 0 0
~~~			0000000
			SIZZ Z

¹H NMR (400 MHz, CDCl₃) spectrum of 2-Benzyl-3-oxo-3-phenylpropanenitrile (37)

¹³C NMR (100 MHz, CDCl₃) spectrum of 2-Benzyl-3-oxo-3-phenylpropanenitrile (37)

¹H NMR (400 MHz, CDCl₃) spectrum of 2-(4-Methoxybenzyl)-3-oxo-3-phenylpropanenitrile (38)

fl (ppm)

¹H NMR (400 MHz, CDCl₃) spectrum of 2-(4-Fluorobenzyl)-3-oxo-3-phenylpropanenitrile (39)

964 946 677 677 677 552 503 503 503 274 640 042 2253 999 902 002 002	511 497 475	367 352 331 331 317 262 262 262 226
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4444	





¹³C NMR (100 MHz, CDCl₃) spectrum of 2-(4-Fluorobenzyl)-3-oxo-3-phenylpropanenitrile (39)



-10 f1 (ppm) 

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 2-(4-Fluorobenzyl)-3-oxo-3-phenylpropanenitrile (39)



20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: f1 (ppm) ¹H NMR (400 MHz, CDCl₃) spectrum of 3-(2-Cyano-3-oxo-3-phenylpropyl)benzonitrile (40) and 3-(3-Cyanophenyl)propanenitrile



¹³C NMR (100 MHz, CDCl₃) spectrum of 3-(2-Cyano-3-oxo-3-phenylpropyl)benzonitrile (40) and 3-(3-Cyanophenyl)propanenitrile

139.45	137.59	135.02 133.93 133.04 131.54 131.23 131.23 131.23 129.89 128.96 128.96	118.48	116.50	113.18
		555512512			1



¹H NMR (400 MHz, CDCl₃) spectrum of 2-(3-Nitrobenzyl)-3-oxo-3-phenylpropanenitrile (41) and 3-(3-Nitrophenyl)propanenitrile

147 147 1120 989 970 968 664 664 553 6617 553 553 260 260 260 260	655 640 640 640 648 648 644 449 449 449 449 335 335 335 335 335 335 335 335 335 33
	4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6



¹³C NMR (100 MHz, CDCl₃) spectrum of 2-(3-Nitrobenzyl)-3-oxo-3-phenylpropanenitrile (41) and 3-(3-Nitrophenyl)propanenitrile

- 189.27

148.55 139.93 135.69 135.69 135.00 135.00 132.03 132.03 133.00 133.00 133.03 133.00 123.35 123.35 122.86 1122.86 1122.86 1122.55 116.50	77.48 77.16 76.84	41.05 34.60 31.14	19.06
	$\checkmark$	2 5 5	1



¹H NMR (400 MHz, CDCl₃) spectrum of 2-(2-Chlorobenzyl)-3-oxo-3-phenylpropanenitrile (42)

3 016 7 997 7 513 7 405	7.238	4 800 4 785 4 776 4 776 4 761	3.574 3.559 3.539 3.525	3.276 3.251 3.241 3.217
		$\sim$		



¹³C NMR (100 MHz, CDCl₃) spectrum of 2-(2-Chlorobenzyl)-3-oxo-3-phenylpropanenitrile (42)

190.11

134.78 134.78 133.95 133.95 133.64 133.64 129.49 129.24 127.55 116.74	77.48 77.16 76.84	39.38 33.87
		1 1





¹H NMR (400 MHz, CDCl₃) spectrum of 2-(Oxetan-3-yl)-3-oxo-3-phenylpropanenitrile (43)

91 46 56 33 2 51 7 47 50 30 50 47 50 50 50 50 50 50 50 50 50 50 50 50 50 5	2 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
00444444	
アファクマクレン	4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6





¹³ C NMR (100 MHz, CDCl ₃ ) spectrum of 2-(0	Oxetan-3-yl)-3-oxo-3-phen	ylpropanenitrile (43)		
 168.89 89	√ 131.72 √ 128.77 √ 127.85 127.28		— 62.95	— 46.76





#### ¹H NMR (400 MHz, Benzene-*d*₆) spectrum of *tert*-Butyl 3-(1-cyano-2-oxo-2-phenylethyl)azetidine-1-carboxylate (44)

	r j j j j j j j j j j j j j j j j j j j	
6405 6405 6405 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705 705<	0 8 4 9 8 9 9 8 8 8 8 8 9 8 9 8 9 8 9 8 9	00
0 N U M T A N O	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- 3
00000	202222204 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	44
ファファファ	ה ה ה ה ה ה ה ה ה ה ה ה ה א א	
		$\sim$



¹³C NMR (100 MHz, Benzene-d₆) spectrum of tert-Butyl 3-(1-cyano-2-oxo-2-phenylethyl)azetidine-1-carboxylate (44)





## ¹H NMR (400 MHz, CDCl₃) spectrum of 2-Methyl-2-(4-methylbenzoyl)pentanedinitrile (45)



# ¹³C NMR (100 MHz, CDCl₃) spectrum of 2-Methyl-2-(4-methylbenzoyl)pentanedinitrile (45)



¹H NMR (400 MHz, CDCl₃) spectrum of 2-(4-(*tert*-Butyl)benzoyl)-2-methylpentanedinitrile (46)



## ¹³C NMR (100 MHz, CDCl₃) spectrum of 2-(4-(*tert*-Butyl)benzoyl)-2-methylpentanedinitrile (46)





¹H NMR (400 MHz, CDCl₃) spectrum of 2-(4-Methoxybenzoyl)-2-methylpentanedinitrile (47)

7.260
 6.988
 6.966







#### ¹³C NMR (100 MHz, CDCl₃) spectrum of 2-(4-Methoxybenzoyl)-2-methylpentanedinitrile (47)







f1 (ppm) 0 -10 210 200 150 140 130 

## ¹H NMR (400 MHz, CDCl₃) spectrum of 2-Methyl-2-(4-(methylthio)benzoyl)pentanedinitrile (48)

$\begin{pmatrix} 8.079 \\ 8.058 \\ 1.2310 \\ 7.260 \\ 1.260 \\ 2.659 \\ 2.653 \\ 2.621 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2.623 \\ 2$	2.553 2.557 2.557 2.557 2.557 2.557 2.557 2.557 2.557 2.557 2.177 2.177 2.177 2.177 2.177 2.138 2.138 2.138 2.138 2.1318 2.1318 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.1333 2.13333 2.13333 2.13333 2.13333 2.13333 2.13333 2.13333 2.13333 2.13333 2.13333 2.13333 2.13333 2.13333 2.13333 2.13333 2.13333 2.13333 2.13333 2.13333 2.13333 2.13333 2.13333 2.13333 2.13333 2.13333 2.133333 2.133333 2.133333 2.1333333 2.13333 2.1333333 2.13333 2.1
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------





# ¹³C NMR (100 MHz, CDCl₃) spectrum of 2-Methyl-2-(4-(methylthio)benzoyl)pentanedinitrile (48)

	— 148.69	√ 129.94 129.08 √ 125.07 √ 118.19	77.48 77.16 76.84		— 33.55	— 24.86	<pre>14.68 13.85</pre>	
--	----------	--------------------------------------------	-------------------------	--	---------	---------	------------------------	--



¹H NMR (400 MHz, CDCl₃) spectrum of 2-Methyl-2-(4-(trifluoromethoxy)benzoyl)pentanedinitrile (49)









¹⁹F NMR (376 MHz, CDCl₃) spectrum of 2-Methyl-2-(4-(trifluoromethoxy)benzoyl)pentanedinitrile (49)



20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 f1 (ppm) ¹H NMR (400 MHz, CDCl₃) spectrum of 2-Methyl-2-(4-morpholinobenzoyl)pentanedinitrile (50)



## ¹³C NMR (100 MHz, CDCl₃) spectrum of 2-Methyl-2-(4-morpholinobenzoyl)pentanedinitrile (50)





¹H NMR (400 MHz, CDCl₃) spectrum of 2-(3-Methoxybenzoyl)-2-methylpentanedinitrile (51)



#### ¹³C NMR (100 MHz, CDCl₃) spectrum of 2-(3-Methoxybenzoyl)-2-methylpentanedinitrile (51)





## ¹H NMR (400 MHz, CDCl₃) spectrum of 2-Methyl-2-(2-methylbenzoyl)pentanedinitrile (52)

Мe



## ¹³C NMR (100 MHz, CDCl₃) spectrum of 2-Methyl-2-(2-methylbenzoyl)pentanedinitrile (52)



+ 40 10 0 -10 210 200 140 130 fl (ppm)

¹H NMR (400 MHz, CDCl₃) spectrum of 2-(Benzo[*d*][1,3]dioxole-5-carbonyl)-2-methylpentanedinitrile (53)



## ¹³C NMR (100 MHz, CDCl₃) spectrum of 2-(Benzo[*d*][1,3]dioxole-5-carbonyl)-2-methylpentanedinitrile (53)

— 190.08

153.13 148.62	127.56 126.45 120.69 118.20 109.35 108.27 102.45	77.48 77.16 76.84	44.74	33.74	25.05	13.86	





¹H NMR (400 MHz, CDCl₃) spectrum of 2-Methyl-2-(4-(trifluoromethoxy)benzoyl)pentanedinitrile (54)


¹³C NMR (100 MHz, CDCl₃) spectrum of 2-Methyl-2-(4-(trifluoromethoxy)benzoyl)pentanedinitrile (54)



210 200 0 -10 140 130 fl (ppm)

¹⁹F NMR (376 MHz, CDCl3) spectrum of 2-Methyl-2-(4-(trifluoromethoxy)benzoyl)pentanedinitrile (54)

0 F₃C Me CN

20	10	0	-10	-20	-30	-40	-50	-60	-70	$^{-80}$	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-2
												fl (ppm	)											

¹H NMR (400 MHz, CDCl₃) spectrum of 2-(4-Fluorobenzoyl)-2-methylpentanedinitrile (55)



# ¹³C NMR (100 MHz, CDCl₃) spectrum of 2-(4-Fluorobenzoyl)-2-methylpentanedinitrile (55)





¹⁹F NMR (376 MHz, CDCl3) spectrum of 2-(4-Fluorobenzoyl)-2-methylpentanedinitrile (55)





S149

¹H NMR (400 MHz, CDCl₃) spectrum of 2-(4-Chlorobenzoyl)-2-methylpentanedinitrile (56)







# ¹³C NMR (100 MHz, CDCl₃) spectrum of 2-(4-Chlorobenzoyl)-2-methylpentanedinitrile (56)

— 191.36

1.38	1.59 0.97 9.48	0.23 3.01	48 84 84	00	41	77	87
4	13( 13( 12(	12( 118	77 . 76.	45.	33.	24.	13.
	$\leq 1$	57		1			







¹H NMR (400 MHz, CDCl₃) spectrum of 2-(4-Bromobenzoyl)-2-methylpentanedinitrile (57)



#### ¹³C NMR (100 MHz, CDCl₃) spectrum of 2-(4-Bromobenzoyl)-2-methylpentanedinitrile (57)

132.50 132.02 132.02 130.98 130.21 130.21 130.21 118.00	77.48 77.16 76.84	- 45.08	- 33.43	- 24.78	- 13.88
חור וו	116				





¹H NMR (400 MHz, CDCl₃) spectrum of 2-([1,1'-Biphenyl]-4-carbonyl)-2-methylpentanedinitrile (58)

251 251 2530 2530 2512 2508 2512 2508 2512 250 250 250 250 250 250 250 250 250 25	717 66916 6676 6676 6676 6672 6672 6672 6672 6556 672 6672 6
8877777777777778	-                                                                                           



#### ¹³C NMR (100 MHz, CDCl₃) spectrum of 2-([1,1'-Biphenyl]-4-carbonyl)-2-methylpentanedinitrile (58)

Ph





¹H NMR (400 MHz, CDCl₃) spectrum of 2-(Anthracene-9-carbonyl)-2-methylpentanedinitrile (59)

969	00 080 080 080 080 080 080 080 080 080	7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775 7775
8.		



¹³C NMR (100 MHz, CDCl₃) spectrum of 2-(Anthracene-9-carbonyl)-2-methylpentanedinitrile (59)



¹H NMR (400 MHz, CDCl₃) spectrum of 2-Methyl-2-(thiophene-2-carbonyl)pentanedinitrile (60)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	80340500104108710407070707
4 4 0 0 0 0 0 0 0	4 % 0 4 0 0 6 8 8 2 9 9 9 7 9 9 7 9 9 7 9 9 7 9 7 9 7 9 7
0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	///////////////////////////////////////
8 8 8 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	- x x x x x x x x x x x x x x x x x x x

¹³C NMR (100 MHz, CDCl₃) spectrum of 2-Methyl-2-(thiophene-2-carbonyl)pentanedinitrile (60)

¹H NMR (400 MHz, CDCl₃) spectrum of 2-(6-Methoxynicotinoyl)-2-methylpentanedinitrile (61)

MeO

¹³C NMR (100 MHz, CDCl₃) spectrum of 2-(6-Methoxynicotinoyl)-2-methylpentanedinitrile (61)

MeO

¹H NMR (400 MHz, CDCl₃) spectrum of 2-Methyl-2-(4-phenylbutanoyl)pentanedinitrile (62)

¹³C NMR (100 MHz, CDCl₃) spectrum of 2-Methyl-2-(4-phenylbutanoyl)pentanedinitrile (6)

¹H NMR (400 MHz, CDCl₃) spectrum of 2-Methyl-2-octanoylpentanedinitrile (63)

Me**′**

¹³C NMR (100 MHz, CDCl₃) spectrum of 2-Methyl-2-octanoylpentanedinitrile (63)

¹H NMR (400 MHz, CDCl₃) spectrum of 2-(4-(Benzyloxy)butanoyl)-2-methylpentanedinitrile (64)

371 356 338 320 260 260 260	166 544 521 515 506 506 506 506 506 506 506 506 506 50	396 3370 3370 3370 3370 3375 3375 3375 3375
アファファ	7.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	

¹³C NMR (100 MHz, CDCl₃) spectrum of 2-(4-(Benzyloxy)butanoyl)-2-methylpentanedinitrile (64)

202.66	138.15 128.60 128.02 127.98 119.79 117.95	77.48 77.16 76.84 73.21 68.75	48.00	36.58 31.90	23.97 23.20	13.71
	$ \vee \vee \vee$				\leq	

¹H NMR (400 MHz, CDCl₃) spectrum of 2-Methyl-2-(undec-10-enoyl)pentanedinitrile (65)

260 848 832 832 815 815 815 815 815 780 772 772 764 747 764 764 764 764 764 700	963 958 936 936 934 911 908 813 813 777	5246 5235 5235 523 523 523 523 523 523 490 479 554 455 455 455	410 410 379 379 373 364 354 3384 3384 3384 055 055	0000 0000 0000 0000 0000 0000 0000 0000 0000
	4 4 4 4 4 A A A A A A A A A A A A A A A			

¹³C NMR (100 MHz, CDCl₃) spectrum of 2-Methyl-2-(undec-10-enoyl)pentanedinitrile (65)

¹H NMR (400 MHz, CDCl₃) spectrum of 2-(Cyclopropanecarbonyl)-2-methylpentanedinitrile (66)

¹³C NMR (100 MHz, CDCl₃) spectrum of 2-(Cyclopropanecarbonyl)-2-methylpentanedinitrile (66)

202.64	119.72	77.48 77.16 76.84	48.36	31.62 22.90 18.04 13.69 13.57
	\mathbf{Y}			

¹H NMR (400 MHz, CDCl₃) spectrum of 3-([1,1'-Biphenyl]-4-yl)-3-hydroxy-2-methylpropanenitrile (67)

637 617 601 601 471 471 453 387 387 369 369 351 260 260	887 873 777 777 096 006 006 006 006 006 006 006 006 006	955 937 349 333 333 290 290
\sim	4444 0000000000000000000000000000000000	

¹³C NMR (100 MHz, CDCl₃) spectrum of 3-([1,1'-Biphenyl]-4-yl)-3-hydroxy-2-methylpropanenitrile (67)

121.05 121.05 121.05 121.05 121.05 123.05 123.05 123.05 122.05	77.48 77.16 76.84 75.14 74.37	34.73 34.13	14.92 13.67
		٦٢	10

¹H NMR (400 MHz, CDCl₃) spectrum of 1-([1,1'-Biphenyl]-4-yl)-3-amino-2-methylpropan-1-ol (68)

4 N M M M O C - M N M M M M M M M M M M M M M M M M M	90	N 0 6	N4000000000000000000000000000000000000
ののとの4420084810	00	0 1 3	N 3 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
00000444400000	00	ດດຕ	0066688800006888777
~~~~~	.0. 	444	0000
	$\sim$	$\bigvee$	





# ¹³C NMR (100 MHz, CDCl₃) spectrum of 1-([1,1'-Biphenyl]-4-yl)-3-amino-2-methylpropan-1-ol (68)

143.35 142.36 142.36 142.36 142.36 142.23 123.67 122.38 122.38 122.38 122.38 122.38 122.38 122.38 122.12 127.12 127.12 127.12 127.12 126.75 126.75 126.75 126.75 126.75 126.75 126.75 126.75 126.75 126.75 126.75 126.75 126.75 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 127.15 12	81.21 77.48 77.16 77.16 76.60	- 47.26 - 45.48 - 40.38 - 40.38	- 15.51 - 11.69
		$\leq$	



¹H NMR (400 MHz, CDCl₃) spectrum of 3-([1,1'-Biphenyl]-4-yl)-3-hydroxy-2-methylpropanamide (69) *Major isomer* 

596 576 576 576 570 570 570 350 350 350 250 260 260	815 523	152 144	680 672 663 663 619 619 619	170 153
ファット・ファー・ファー・	2. 5.	ີ ບໍ່	a a a a a a a a a a a a a a a a a a a	
		$\checkmark$		$\searrow$









S177

¹H NMR (400 MHz, CDCl₃) spectrum of 3-([1,1'-biphenyl]-4-yl)-3-hydroxy-2-methylpropanamide (69) *Minor isomer* 

90 20 20 20 20 20 20 20 20 20 20 20 20 20	31 95	15 04 99 87	45 34	96 60 78 24 24 24	72 54
0 0 4 4 4 4 6 0 0 0	2.7	8 8 7 7	in in	00000	~ ~
	- 2 -	4444	ကိုကို	<u> </u>	~ ~
			$\sim$		$\sim$







S179

fl (ppm)

¹H NMR (400 MHz, CDCl₃) spectrum of 3-([1,1'-Biphenyl]-4-yl)-2-fluoro-2-methyl-3-oxopropanenitrile (70)

8.219 8.215 8.197 7.765 7.765 7.765 7.523 7.523 7.449 7.449 7.449 7.436 7.436 7.260	2.133 2.078
	57




¹³C NMR (100 MHz, CDCl₃) spectrum of 3-([1,1'-Biphenyl]-4-yl)-2-fluoro-2-methyl-3-oxopropanenitrile (70)

147.81	139.36 130.95 130.95 130.15 130.15 120.24 128.93 128.93 127.65 127.65 116.11	90.48 88.54 77.48	76.84	24.03 23.79
		57 5		$\mathbf{\nabla}$



188.12
187.88







¹H NMR (400 MHz, CDCl₃) spectrum of 3-Methyl-2-phenylpent-1-ene-1,3,5-tricarbonitrile (71) Major isomer







¹³C NMR (100 MHz, CDCl₃) spectrum of 3-Methyl-2-phenylpent-1-ene-1,3,5-tricarbonitrile (71) Major isomer

161.41	137.57 130.32 128.92 127.35 119.73 119.73 114.62	101.74	77.48 77.16 76.84	43.18	34.80	25.94	14.14
	$  \leq < < <  $	1					







¹H NMR (400 MHz, CDCl₃) spectrum of 3-Methyl-2-phenylpent-1-ene-1,3,5-tricarbonitrile (71) Minor isomer



## ¹³C NMR (100 MHz, CDCl₃) spectrum of 3-Methyl-2-phenylpent-1-ene-1,3,5-tricarbonitrile (71) *Minor isomer*



fl (ppm)

¹H NMR (400 MHz, CDCl₃) spectrum of 3-Benzoyl-3-methylpiperidine-2,6-dione (72)

Ph



## ¹³C NMR (100 MHz, CDCl₃) spectrum of 3-Benzoyl-3-methylpiperidine-2,6-dione (72)





¹H NMR (400 MHz, CDCl₃) spectrum of Dimethyl 2-benzoyl-2-methylpentanedioate (73)



¹³C NMR (100 MHz, CDCl₃) spectrum of Dimethyl 2-benzoyl-2-methylpentanedioate (73)





¹H NMR (400 MHz, CDCl₃) spectrum of 2-Benzoyl-2-methyl-5-oxo-5-phenylpentanenitrile (74)







## ¹³C NMR (100 MHz, CDCl₃) spectrum of 2-Benzoyl-2-methyl-5-oxo-5-phenylpentanenitrile (74)



¹H NMR (400 MHz, benzene-*d*₆) spectrum of *d*-3-(4-methoxyphenyl)-2-methyl-3-oxopropanenitrile (*d*-9)

7.695 7.673	7.161	5.559 5.537	3.467 3.449 3.432 3.172	1.117 1.100 1.085
$\mathbf{Y}$		$\checkmark$		







¹H NMR (400 MHz, CDCl₃) spectrum of *d*-3-(4-methoxyphenyl)-2-methyl-3-oxopropanenitrile (*d*-78)

	.513 499 491 482 3316 296 281 190 225 225 225 108
~~~~~	4444


¹H NMR (400 MHz, CDCl₃) spectrum of *d*-3-(4-methoxyphenyl)-2-methyl-3-oxopropanenitrile (81)

