Photoredox Catalytic Deoxygenative Divergent Functionalizations of Alcohols Assisted by N, O-Heterocyclic Carbenes

(Supporting Information)

Qiuzhu Wang ^a, Youye Tian ^a, Dan Han ^c, Wenjuan Xiao ^a, Mengtao Ma ^a, Binlin Zhao ^{a,b,*}

^a Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, China.

^b State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.

^c Department of pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210093, China.

1. General Information
2. General Procedure for Preparation of Radical Receptor
2.1 General Procedure for Preparation of Aromatic Sulfone-type Alkynes
2.2 General Procedure for Preparation of Aliphatic Sulfone-type Alkynes
2.3 General Procedure for Preparation of Aliphatic Sulfone-type Sulfides4
2.4 General Procedure for Preparation of Aromatic Sulfone-type Sulfides4
2.5 General Procedure for Preparation of Sulfone-type Disulfide
2.6 General Procedure for Preparation of Sulfone-type Selenide
2.7 General Procedure for Preparation of Aromatic Sulfone-type Alkene
2.8 General Procedure for Preparation of α-Trifluoromethylstyrene Derivatives6
2.9 General Procedure for Preparation of Triisopropyl((phenylsulfonyl)ethynyl)silane
3. General Procedure for Preparation of N, O-Heterocyclic Carbenes
4. General Procedure for Deoxygenative Divergent Functionalizations of Alcohols9
4.1 General Procedure A

^{*} Corresponding author.

E-mail address: zhaobinlin@njfu.edu.cn

4.2 General Procedure B	10
4.3 General Procedure C	10
4.4 General Procedure D	11
4.5 General Procedure E	12
5. Experimental data for products	13
6. Late-stage functionalization and synthetic applications.	37
7. Mechanistic experiments	47
7.1 The Radical Clock Experiment	47
7.2. Emission Quenching Experiments (Stern–Volmer Studies)	49
8. References	51
9. Copies of NMR Spectra	52

1. General Information

Unless otherwise noted, all reactions were performed under an argon atmosphere using flame-dried glassware. All new compounds were fully characterized. NMRspectra were recorded on ARX-600 MHz Associated. ¹H NMR spectra data were reported as δ values in ppm relative to chloroform (δ 7.26) if collected in CDCl₃. ¹³C NMR spectra data were reported as δ values in ppm relative to chloroform (δ 77.00). ¹H NMR coupling constants were reported in Hz, and multiplicity was indicated as follows: s (singlet); d (doublet); t (triplet); q (quartet); quint (quintet); m (multiplet); dd (doublet of doublets); ddd (doublet of doublet of doublets); dddd (doublet of doublet of doublet of doublets); dt (doublet of triplets); td (triplet of doublets); ddt (doublet of doublet of triplets); dq (doublet of quartets); app (apparent); br (broad). Mass spectra were conducted at Micromass Q-Tof instrument (ESI) and Agilent Technologies 5973N (EI). All reactions were carried out in flame-dried 25-mL schlenk tubes with Teflon screw caps under of N₂, using IKA stirrer with metal heating module as heating source. Unless otherwise noted, materials obtained from commercial suppliers were used without further purification. Blue LED (45 W, $\lambda max = 440-450$ nm) purchased was used for blue light irradiation. A fan attached to the apparatus was used to maintain the reaction temperature at room temperature.

Figure S1. Reaction set up for this project

2. General Procedure for Preparation of Radical Receptor

2.1 General Procedure for Preparation of Aromatic Sulfone-type Alkynes.

According to the reported procedure¹. To a suspension sodium *p*-toluenesulfinate (1.78 g, 10.0 mmol, 2.0 equiv) in THF (25 mL) was added alkynes (5.0 mmol, 1.00 equiv.) followed by iodine (0.20 g, 2.5 mmol, 0.50 equiv), TBHP (15 mmol, 3 equiv). The mixture was stirred for 16 h at room temperature before the excess iodine quenched with 10% aq. sodium thiosulfate. Sat. aq. NaHCO₃ was added and the product extracted into DCM. The combined organic phases were washed with H_2O , brine, which were dried with MgSO₄, filtered, and concentrated in vacuo. The crude product was purified by flash column chromatography.

2.2 General Procedure for Preparation of Aliphatic Sulfone-type Alkynes.

According to the reported procedure². To a solution of a terminal alkyne (2.0 mmol 1.0 equiv) in THF (10 mL) cooled to -78 °C was added *n*-BuLi (2.2 mmol, 2.5 M in hexane, 1.1 equiv) dropwise. The resulting solution was stirred for 1 h and then warmed to r.t., to which was added a premixed solution of phenyl disulfide (2.0 mmol 1.0 equiv) with an equivalent of methyl iodide (2.0 mmol 1.0 equiv). The reaction was monitored by TLC. Upon completion, aqueous NH₄Cl was added to quench the reaction. The aqueous layer was extracted with hexanes three times. The combined extracts were washed with brine and dried over MgSO₄. After rotary evaporation, the residue was

further condensed under high vacuum to remove methyl phenyl sulfide, and then purified by silica gel column chromatograph to afford the corresponding alkynyl sulfide. *m*-CPBA (85%, 5.0 mmol, 2.5 equiv) was added at 0 °C to a solution of the sulfide (2 mmol, 1.0 equiv) in dichloromethane (12 mL). The reaction mixture was stirred for 1 h at 0 °C and then for 12 h at room temperature. After reaction, the reaction mixture was washed with saturated aqueous NaHCO₃, dried over MgSO₄, and concentrated. The residue was purified by silica gel column chromatograph (eluent: petroleum ether/ethyl acetate) to afford the desired sulfone alkyne.

2.3 General Procedure for Preparation of Aliphatic Sulfone-type Sulfides.

Alkyl
S
 S Alkyl $^{+}$ O $^{Na^{+}}$ $^{I_2 (2.0 equiv)}$ O O S S Alkyl O O O S S Alkyl

According to the reported procedure³. To a mixture of sodium *p*-toluenesulfinate (1.05 g, 6.4 mmol, 3.2 equiv) and 1,2-alkyl disulfide (2.0 mmol, 1.0 equiv) in CH_2Cl_2 (10 mL) was added I₂ (1.02 g, 4.0 mmol, 2.0 equiv). The mixture was stirred until the disulfide was consumed (2 h), then CH_2Cl_2 was added followed by aqueous $Na_2S_2O_3$. The organic layer was washed with H_2O and dried over $MgSO_4$. The organic layer was concentrated under reduced pressure. The crude product was purified by flash column chromatography to afford the desired **aliphatic** sulfone sulfides.

2.4 General Procedure for Preparation of Aromatic Sulfone-type Sulfides

According to the reported procedure³.To a mixture of sodium *p*-toluenesulfinate (1.05 g, 6.4 mmol, 3.2 equiv) and diphenyldisulfide (0.44 g, 2.0 mmol, 1.0 equiv) in CH_2Cl_2 (10 mL) was added I₂ (1.02 g, 4.0 mmol, 2.0 equiv) while mixing. The mixture was stirred until the disulfide was consumed (2 h), then CH_2Cl_2 was added followed by aqueous $Na_2S_2O_3$. The organic layer was washed with H_2O and dried over MgSO₄. The

organic layer was concentrated under reduced pressure. The crude product was purified by flash column chromatography omatography to afford the aromatic sulfone-type sulfides.

2.5 General Procedure for Preparation of Sulfone-type Disulfide

$$\stackrel{t^{*}Bu}{S-S} + O \stackrel{CI}{S=O} \xrightarrow{Tosylsk (2.0 equiv)}_{Et_{2}O, 0 \ ^{\circ}C \ to \ r.t.} \xrightarrow{Me} O \stackrel{O}{\int_{O}} \stackrel{S}{\int_{O}} \stackrel{S}{S} \stackrel{Tosylsk (2.0 equiv)}{Et_{2}O, 0 \ ^{\circ}C \ to \ r.t.} \xrightarrow{Me} O \stackrel{O}{\int_{O}} \stackrel{S}{\int_{O}} \stackrel{S}{S} \stackrel{Tosylsk (2.0 equiv)}{IEt_{2}O, 0 \ ^{\circ}C \ to \ r.t.} \xrightarrow{Me} O \stackrel{O}{\int_{O}} \stackrel{S}{\int_{O}} \stackrel{S}{S} \stackrel{Tosylsk (2.0 equiv)}{IEt_{2}O, 0 \ ^{\circ}C \ to \ r.t.} \xrightarrow{Me} O \stackrel{O}{\int_{O}} \stackrel{S}{\int_{O}} \stackrel{S}{S} \stackrel{Tosylsk (2.0 equiv)}{IEt_{2}O, 0 \ ^{\circ}C \ to \ r.t.} \xrightarrow{Me} O \stackrel{O}{\int_{O}} \stackrel{S}{\int_{O}} \stackrel{S}{S} \stackrel{Tosylsk (2.0 equiv)}{IEt_{2}O, 0 \ ^{\circ}C \ to \ r.t.} \xrightarrow{Me} O \stackrel{O}{\int_{O}} \stackrel{S}{\int_{O}} \stackrel{S}{S} \stackrel{Tosylsk (2.0 equiv)}{IEt_{2}O, 0 \ ^{\circ}C \ to \ r.t.} \xrightarrow{Me} O \stackrel{O}{\int_{O}} \stackrel{S}{\int_{O}} \stackrel{S}{S} \stackrel{Tosylsk (2.0 equiv)}{IEt_{2}O, 0 \ ^{\circ}C \ to \ r.t.} \xrightarrow{Me} O \stackrel{O}{\int_{O}} \stackrel{S}{\int_{O}} \stackrel{S}{S} \stackrel{Tosylsk (2.0 equiv)}{IEt_{2}O, 0 \ ^{\circ}C \ to \ r.t.}$$

According to the reported procedure⁴.To a solution of *t*ert-butyl disulfide (561mg, 3.15 mmol, 1.05 equiv) in 12 mL of Et_2O was added sulfuryl chloride (405 mg, 3 mmol, 1.00 equiv) at 0 °C. 10 min later, a solution of TosylSK (1.36 g, 6 mmol, 2.00 equiv) in 30 mL of acetone was added dropwise at 0 °C. The reaction was then stirred at room temperature for 45 min. The mixture was diluted with EtOAc, washed with water and brine, dried over anhydrous MgSO₄, and concentrated in vacuo. The crude residue was purified using silica gel column chromatography (petroleum ester/EtOAc=10:1) to afford product (680 mg, 82%).

2.6 General Procedure for Preparation of Sulfone-type Selenide

According to the reported procedure³.Asolution of sodium *p*-toluenesulfinate (1.78 g, 10 mmol, 4.0 equiv), diselenide (785 mg, 2.5mmol, 1.0 equiv), and NBS (890 mg, 5 mmol, 2.0 equiv) in MeCN (20 mL) was stirred atroom temperature. The reaction was monitored by TLC until thesubstrate was completely consumed, the reaction quenched withwater, and the mixture extracted with ethyl acetate. Theorganic layer was dried with anhydrous Na_2SO_4 and concentratedwith a rotary evaporator under reduced pressure. The residue waspurified byflash column chromatography to give product as a yellow solid (1.11 g, 75%).

2.7 General Procedure for Preparation of Aromatic Sulfone-type Alkene

According to the reported procedure¹.To a suspension of benzenesulfinic acid sodium salt (2.46 g, 15.0 mmol, 3.00 equiv.) and NaOAc (0.62 g, 7.5 mmol, 1.50 equiv.) in MeCN (20 mL) was added olefin (5.0 mmol, 1.00 equiv.) followed by iodine (1.9 g, 7.5 mmol, 1.50 equiv.). The mixture was heated to reflux for 1 h before being allowed to cool and the excess iodine quenched with 10% aq. sodium thiosulfate. Sat. aq. NaHCO₃ was added and the product extracted into DCM. The combined organic phases were washed with H₂O, brine, dried with anhydrous MgSO₄, filtered, and concentrated in vacuo. The crude product was purified by flash column chromatography to afford aromatic sulfone-type alkene.

2.8 General Procedure for Preparation of α-Trifluoromethylstyrene Derivatives

$$R_{U}^{II} \xrightarrow{B(OH)_{2}} + Br CF_{3} \xrightarrow{Pd(PPh_{3})_{2}Cl_{2} (3 \text{ mol}\%)}{THF : H_{2}O, 60 °C} R_{U}^{II} \xrightarrow{CF_{3}}$$

According to the reported procedure¹.To a Schlenk tube equipped with a magnetic stir bar were added aqueous Na₂CO₃ (0.5 M, 8 mL), THF (8 mL), arylboronic acid (2 mmol, 1 equiv), 2-bromo-3,3,3-trifluoropropene (4 mmol, 0.4 mL, 2equiv) and Pd(PPh₃)₄ (0.1 mmol, 115.6 mg, 5 mol%) under an N₂ atmosphere. The resulting solution was stirred at 60 °C for 12 h. After the reaction mixture was cooled to room temperature, the reaction mixture was quenched with saturated aqueous NH₄Cl, and extracted with Et₂O. The combined organic layers were dried over anhydrous Na₂SO₄ and the solvent was removed carefully under reduced pressure. The crude product was purified by flash column chromatography to afford α -trifluoromethylstyrene derivatives.

2.9 General Procedure for Preparation of Triisopropyl((phenylsulfonyl)ethynyl)silane

a. =-TIPS +
$$S S \frac{n-BuLi (1.0 equiv)}{THF, -78 °C}$$
 TIPS
b. M TIPS $\frac{m-CPBA (2.1 equiv)}{CH_2Cl_2, 0 °C}$ M TIPS

According to the reported procedure⁵. **a.** (Triisopropylsilyl)acetylene (1.18 mL, 5.25 mmol, 1.05 equiv) was dissolved in dry THF (5 mL) and the solution was cooled to - 78 °C. *n*-BuLi (2.5 M in hexane, 2.0 mL, 5 mmol, 1.0 equiv) was added dropwise and the mixture was stirred for 30 min at this temperature. Diphenyldisulfide (1.1 g, 5 mmol, 1.0 equiv) in dry THF (2 mL) was slowly added at -78 °C. After being stirred at -78 °C for 30 min, the reaction mixture was allowed to warm up to rt and stirred overnight. The reaction mixture was cooled to 0 °C, stirred for further 10 min and subsequently treated with dist. water. The reaction mixture was diluted with Et₂O. The phases were separated and the aqueous phase was extracted twice with Et₂O. The combined organic phase was washed with aq. NaOH (0.1 M), dist. water and brine. The organic phase was dried over Na₂SO₄, concentrated and the obtained oil was dried under high vacuum. Trimethyl(2-phenylsulfanylethynyl)silane was obtained after FC (heptanes) (1.43 g, 99%).

b. To a stirred solution of the crude trimethyl(2- phenylsulfanylethynyl)silane in dry CH_2Cl_2 was added drop wise a solution of *m*-CPBA (85%, 2.38 g,10.5 mmol, 2.1 equiv) in dry CH_2Cl_2 at r.t. over 2 h using a dropping funnel. The white suspension was stirred for 2 h until complete consumption of the thioether. The reaction was cooled to 0 °C and transferred into a beaker flask. Sat. NaHCO₃ was added and the mixture was stirred vigorously for 20 min at r.t. to give a white suspension. The organic phase was

separated and the aqueous phase was extracted twice with CH_2Cl_2 . The combined organic phases were washed with sat. NaHCO₃, water and brine, dried over Na₂SO₄ and concentrated. afforded triisopropyl((phenylsulfonyl)ethynyl)silane (1.55 g, 98%).

3. General Procedure for Preparation of N, O-Heterocyclic Carbenes

Step 1: To a suspension of 3,5-di-*t*ert-butylcatechol (2.22 g, 10 mmol, 1.0 equiv) and aniline (1 mL, 10.2 mmol, 1.02 equiv) in *n*-heptane (10 mL), triethylamine (0.1g, 1 mmol, 0,1 equiv) was added in one portion under air. The resulting mixture was heated with dean-stark trap under air for 14 h. (Oil bath temperature was 120 °C. The suspension would form a brown homogenous solution upon heating.) The resulting reaction crude mixture was slowly cooled down to room temperature. The entire reaction mixture was stored at -20 °C for additional 12 h. Then the desired product was collected by filtration, washed with cold hexane, and air dried. The white precipitate (2.46 g, 8.3 mmol, 83% yield) was pure enough for next step, no further purification was required. The ¹H-NMR and ¹³C-NMR data was consistent with literature report.⁶

Step 2: Tetrafluoroboric acid diethyl ether complex (1.2 mL; 8.72 mmol; 1.05 equiv) was added dropwise to a suspension of 3,5-di-*t*ert-butyl-2-hydroxy-N-phenylaniline (2.465 g, 8.3 mmol) with 8 mL of dry dichloromethane in 50 ml flask under nitrogen atmosphere. After 5 min finishing the addition, the suspension became a red

homogenous solution. Further stirringat room temperature for additional 25 min, then the solvent was carefully removed by rotavap. The resulting solid was dissolved in triethyl orthoformate (21 mL) at room temperature, white solid cake precipitate out after several minutes. The suspension was stirred at room temperature under nitrogen atmosphere for additional 8 hours. The desired product was collected by filtration as a white powder. The solid was further washed with 100 ml dry diethyl ether to give the pure NHC salts. (2.95 g; 7.5 mmol; 91%). ¹H-NMR and ¹³C-NMR data are consistent with literature report.⁶

4. General Procedure for Deoxygenative Divergent Functionalizations of

Alcohols

4.1 General Procedure A

To an oven dried 25 mL schlenk tube equipped with a N_2 was added NHC-1 (0.5 mmol, 1.00 equiv), **1a** (0.50 mmol, 1.00 equiv), and anhydrous MTBE (2.5 ml). Pyridine (0.53 mmol, 1.05 equiv) was added dropwise, and the suspension was stirred at room temperature under nitrogen atmosphere for 15 minutes.

Another oven-dried 25mL schlenk tube was charged with iridium photocatalyst PC-2 (2.0 μ mol, 1 mol%), cesium acetate (0.60 mmol, 3.00 equiv) and **2a** (0.20 mmol, 1.0 equiv) and THF (2.5 ml) was added to the mixture.

The methyl *t*ert-butyl ether suspension was transferred to a 2.5 mL syringe under air. Then a syringe filter and new needle were installed on the syringe, before the methyl *t*ert-butyl ether solution was injected through the syringe filter into the THF solution. The reaction solution was degassed by sparging with nitrogen for 15 minutes. TMG (0.02 mmol, 10 mol%) was added upon completion of the sparge. The mixture was then stirred irradiated with a 45 W Blue LED (approximately 5 cm away from the light source) at room temperature for 36 h. The crude reaction mixture was directly concentrated to remove both methyl *t*ert-butyl ether and THF solvents. EtOAc was added to the concentrated crude reaction mixture followed by filtration through a silica plug. The reaction mixture was then directly purified by column chromatography.

4.2 General Procedure B

To an oven dried 25 mL schlenk tube equipped with a N_2 was added NHC-1 (0.5 mmol, 1.00 equiv), **1** (0.50 mmol, 1.00 equiv), and anhydrous MTBE (2.5 ml). Pyridine (0.53 mmol, 1.05 equiv) was added dropwise, and the suspension was stirred at room temperature under nitrogen atmosphere for 15 minutes.

Another oven-dried 25mL schlenk tube was charged with iridium photocatalyst PC-2 (2.0 μ mol, 1 mol%), cesium acetate (0.60 mmol, 3.00 equiv) and **2** (0.20 mmol, 1.0 equiv) and THF (2.5 ml) was added to the mixture.

The methyl tert-butyl ether suspension was transferred to a 2.5 mL syringe under air. Then a syringe filter and new needle were installed on the syringe, before the methyl *t*ert-butyl ether solution was injected through the syringe filter into the THF solution. The reaction solution was degassed by sparging with nitrogen for 15 minutes. The mixture was then stirred irradiated with a 45 W Blue LED (approximately 5 cm away from the light source) at room temperature for 36 h. The crude reaction mixture was directly concentrated to remove both methyl *t*ert-butyl ether and THF solvents. EtOAc was added to the concentrated crude reaction mixture followed by filtration through a silica plug. The reaction mixture was then directly purified by column chromatography.

4.3 General Procedure C

To an oven dried 25 mL schlenk tube equipped with a N_2 was added NHC-4 (0.5 mmol, 1.00 equiv), **1** (0.50 mmol, 1.00 equiv), and anhydrous MTBE (2.5 ml). Pyridine (0.53 mmol, 1.05 equiv) was added dropwise, and the suspension was stirred at room temperature under nitrogen atmosphere for 15 minutes.

Another oven-dried 25mL schlenk tube was charged with iridium photocatalyst PC-2 (2.0 μ mol, 1 mol%), cesium acetate (0.60 mmol, 3.00 equiv) and **2** (0.20 mmol, 1.0 equiv) and THF (2.5 ml) was added to the mixture.

The methyl *t*ert-butyl ether suspension was transferred to a 2.5 mL syringe under air. Then a syringe filter and new needle were installed on the syringe, before the methyl *t*ert-butyl ether solution was injected through the syringe filter into the THF solution. The reaction solution was degassed by sparging with nitrogen for 15 minutes. The mixture was then stirred irradiated with a 45 W Blue LED (approximately 5 cm away from the light source) at room temperature for 36 h. The crude reaction mixture was directly concentrated to remove both methyl *t*ert-butyl ether and THF solvents. EtOAc was added to the concentrated crude reaction mixture followed by filtration through a silica plug. The reaction mixture was then directly purified by column chromatography.

4.4 General Procedure D

To an oven dried 25 mL schlenk tube equipped with a N_2 was added NHC-1 (0.5 mmol, 1.00 equiv), **1** (0.50 mmol, 1.00 equiv), and anhydrous MTBE (2.5 ml). Pyridine (0.53 mmol, 1.05 equiv) was added dropwise, and the suspension was stirred at room temperature under nitrogen atmosphere for 15 minutes.

Another oven-dried 25mL schlenk tube was charged with iridium photocatalyst PC-2

(2.0 μ mol, 1 mol%), cesium acetate (0.60 mmol, 3.00 equiv) and 4 (0.20 mmol, 1.0 equiv) and THF (2.5 ml) was added to the mixture.

The methyl *t*ert-butyl ether suspension was transferred to a 2.5 mL syringe under air. Then a syringe filter and new needle were installed on the syringe, before the methyl *t*ert-butyl ether solution was injected through the syringe filter into the THF solution. The reaction solution was degassed by sparging with nitrogen for 15 minutes. The mixture was then stirred irradiated with a 45 W Blue LED (approximately 5 cm away from the light source) at room temperature for 36 h. The crude reaction mixture was directly concentrated to remove both methyl *t*ert-butyl ether and THF solvents. EtOAc was added to the concentrated crude reaction mixture followed by filtration through a silica plug. The reaction mixture was then directly purified by column chromatography.

4.5 General Procedure E

To an oven dried 25 mL schlenk tube equipped with a N_2 was added NHC-1 (0.5 mmol, 1.00 equiv), **1** (0.50 mmol, 1.00 equiv), and anhydrous MTBE (2.5 ml). Pyridine (0.53 mmol, 1.05 equiv) was added dropwise, and the suspension was stirred at room temperature under nitrogen atmosphere for 15 minutes.

Another oven-dried 25mL schlenk tube was charged with iridium photocatalyst PC-6 (10 μ mol, 5 mol%), cesium acetate (0.60 mmol, 3.00 equiv) and 4 (0.20 mmol, 1.0 equiv) and THF (2.5 ml) was added to the mixture.

The methyl *t*ert-butyl ether suspension was transferred to a 2.5 mL syringe under air. Then a syringe filter and new needle were installed on the syringe, before the methyl *t*ert-butyl ether solution was injected through the syringe filter into the THF solution. The reaction solution was degassed by sparging with nitrogen for 15 minutes. The mixture was then stirred irradiated with a 45 W Blue LED (approximately 5 cm away from the light source) at room temperature for 36 h. The crude reaction mixture was directly concentrated to remove both methyl *t*ert-butyl ether and THF solvents. EtOAc was added to the concentrated crude reaction mixture followed by filtration through a silica plug. The reaction mixture was then directly purified by column chromatography.

5. Experimental data for products

product was prepared according to General Procedure A. Colorless oil, 38.7 mg (88% yield). ¹H NMR (600 MHz, 3a **CDCl**₃) δ 7.41 – 7.35 (m, 2H), 7.34 – 7.21 (m, 8H), 2.97 – 2.89 (m, 2H), 2.83 - 2.77 (m, 1H), 1.28 (d, J = 6.6 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 152.5, 139.6, 131.5, 129.4, 128.2, 127.6, 126.3, 123.9, 94.1, 81.6, 43.2, 28.6, 20.6; **HRMS m/z (ESI)** calcd for $C_{17}H_{17}$ (M + H)⁺ 221.1325, found 221.1325.

(3-Methylbut-1-yne-1,4-diyl)dibenzene (3a): The desired

Ph Pent-1-yne-1,5-divldibenzene (3b): The desired product was Ph prepared according to General Procedure B. Colorless oil, 20.4 mg 3b (46% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.44 – 7.40 (m, 2H),

7.32 - 7.27 (m, 5H), 7.25 - 7.18 (m, 3H), 2.80 (t, J = 7.6 Hz, 2H), 2.43 (t, J = 7.0 Hz, 2H), 1.94 (p, J = 7.1 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 141.6, 131.6, 128.6, 128.4, 128.2, 127.5, 125.9, 124.0, 89.8, 81.2, 34.8, 30.3, 18.8; HRMS m/z (ESI) calcd for $C_{17}H_{17}$ (M + H)⁺ 221.1325, found 221.1324.

(3-Cyclohexylprop-1-yn-1-yl)benzene (3c): The desired product Ph was prepared according to General Procedure B. Colorless oil, 22.2 3c mg (56% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.42 – 7.38 (m, 2H), 7.30 - 7.24 (m, 3H), 2.30 (d, J = 6.7 Hz, 2H), 1.91 - 1.84 (m, 2H), 1.75 (dt, J = 13.4, 3.5 Hz, 2H), 1.70 – 1.66 (m, 1H), 1.57 (dddd, J = 14.7, 11.4, 6.7, 3.3 Hz, 1H), 1.33 – 1.24 (m, 2H), 1.19 (tt, J = 12.6, 3.4 Hz, 1H), 1.07 (qd, J = 12.2, 3.3 Hz, 2H); ¹³C NMR (**151 MHz, CDCl₃**) δ 131.5, 128.1, 127.4, 124.1, 89.3, 81.4, 37.5, 32.8, 27.2, 26.3, 26.2; **HRMS m/z (ESI)** calcd for $C_{15}H_{19}$ (M + H)⁺ 199.1482, found 199.1482.

1-Chloro-4-(3-phenylprop-2-yn-1-yl)benzene (3d): The desired product was prepared according to General Procedure B. Yellow oil, 19.5 mg (43% yield). ¹H NMR (600 MHz, CDCl₃)

δ 7.46 – 7.43 (m, 2H), 7.35 (d, J = 8.5 Hz, 2H), 7.32 – 7.30 (m, 5H), 3.80 (s, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 135.2, 132.4, 131.6, 129.3, 128.6, 128.3, 128.0, 123.4, 86.8, 83.0, 25.2; HRMS m/z (ESI) calcd for C₁₅H₁₂Cl (M + H)⁺ 227.0622, found 227.0634.

1-Bromo-2-(4-phenylbut-3-yn-1-yl)benzene (3e): The desired product was prepared according to General Procedure B. Colorless oil, 36.7 mg (65% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.56 (dd, J = 8.0, 1.4 Hz, 1H), 7.39 – 7.33 (m, 3H), 7.30 – 7.26 (m, 4H), 7.10 (td, J =7.7, 1.8 Hz, 1H), 3.06 (t, J = 7.5 Hz, 2H), 2.74 (t, J = 7.4 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 139.7, 132.8, 131.5, 130.9, 128.2, 128.1, 127.6, 127.3, 124.4, 123.7, 89.0, 81.5, 35.4, 19.8; HRMS m/z (ESI) calcd for C₁₆H₁₄Br (M + H)⁺ 285.0274, found 285.0273.

CDCl₃) δ 7.41 – 7.39 (m, 2H), 7.28 (dd, J = 4.9, 1.9 Hz, 3H), 3.79 (t, J = 5.9 Hz, 2H), 3.73 (t, J = 7.1 Hz, 2H), 3.65 (t, J = 5.9 Hz, 2H), 2.72 (t, J = 7.0 Hz, 2H); ¹³**C NMR** (151 MHz, CDCl₃) δ 131.6, 128.2, 127.8, 123.5, 86.3, 81.7, 71.0, 69.6, 42.7, 20.8; HRMS m/z (ESI) calcd for C₁₂H₁₄ClO (M + H)⁺ 209.0728, found 209.0728.

(6,6,6-Frifluorohex-1-yn-1-yl)benzene (3g): The desired product was prepared according to General Procedure B. Colorless oil, 21.0 mg (49% yield). ¹H NMR (600 MHz, CDCl₃)

δ 7.41 – 7.38 (m, 2H), 7.30 (dt, J = 4.4, 2.8 Hz, 3H), 2.53 (t, J = 6.9 Hz, 2H), 2.34 – 2.24 (m, 2H), 1.92 – 1.84 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 131.6, 128.3, 127.9,

127.1 (q, J = 276.2 Hz) 123.4, 87.9, 81.9, 32.8 (q, J = 28.7 Hz), 21.3 (q, J = 3.0 Hz), 18.6; ¹⁹F NMR (565 MHz, CDCl₃) δ -66.1; HRMS m/z (ESI) calcd for C₁₂H₁₂F₃ (M + H)⁺ 213.0886, found 213.0885.

product was prepared according to General Procedure B. Brown oil, 29.5 mg (60% yield). ¹H NMR (600 **MHz, CDCl₃**) δ 7.60 – 7.57 (m, 2H), 7.54 – 7.51 (m, 3h 2H), 7.48 - 7.42 (m, 4H), 7.37 - 7.33 (m, 1H), 2.58 (t, J = 7.0 Hz, 2H), 2.40 (td, J =7.1, 2.7 Hz, 2H), 2.00 (t, J = 2.7 Hz, 1H), 1.86 (p, J = 7.1 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 140.5, 140.4, 132.0, 128.8, 127.5, 127.0, 126.9, 122.7, 89.6, 83.6, 81.1, 68.9, 27.6, 18.6, 17.6; **HRMS m/z (ESI)** calcd for $C_{14}H_{15}$ (M + H)⁺ 245.1325, found 245.1324.

4-(Hepta-1,6-diyn-1-yl)-1,1'-biphenyl (3h): The desired

 M_6 3i

prepared according to General Procedure B. Light yellow, 25.2 mg (52% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.39 (dd, J = 7.6, 2.2 Hz, 2H), 7.29 - 7.26 (m, 3H), 5.82 (ddt, J = 17.0, 10.2, 6.6 Hz, 1H), 5.03 - 4.90 (m, 2H), 2.40 (t, J = 7.2 Hz, 2H), 2.05 (q, J = 7.0 Hz, 2H), 1.60 (p, J = 7.2 Hz, 2H), 1.48 -1.42 (m, 2H), 1.38 (q, J = 7.0 Hz, 2H), 1.34 – 1.31 (m, 6H); ¹³C NMR (151 MHz, CDCl₃) § 139.2, 131.5, 128.2, 127.4, 124.1, 114.1, 90.4, 80.5, 33.8, 29.4, 29.09, 29.08, 28.91, 28.89, 28.7, 19.4; **HRMS m/z (ESI)** calcd for $C_{18}H_{25}$ (M + H)⁺ 241.1951, found 241.1949.

Dodec-11-en-1-yn-1-ylbenzene (3i): The desired product was

MHz, **CDCl**₃) δ 7.59 – 7.56 (m, 2H), 7.53 (d, J = 8.5 Hz, 2H), 7.48 – 7.42 (m, 4H), 7.36 - 7.33 (m, 1H), 2.69 (t, J = 7.2 Hz, 2H), 2.58 (t, J = 7.0 Hz, 2H), 2.14 (s, 3H), 1.92 (p, J = 7.0 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 140.45, 140.38, 131.9, 128.8,

127.5, 127.0, 126.9, 122.7, 89.8, 81.1, 33.2, 28.1, 18.5, 15.5; **HRMS m/z (ESI)** calcd for C₁₈H₁₉S (M + H)⁺ 267.1202, found 267.1200.

 $\begin{array}{c} \mbox{Me} & \mbox{General Procedure B. Yellow oil, 23.8 mg (69\%)} \\ \mbox{3k} & \mbox{yield}. {}^{1}\mbox{H} \ \mbox{MMR} \ (600 \ \mbox{MHz}, \mbox{CDCl}_{3}) \ \delta \ 7.39 - 7.36 \ \mbox{(m, 2H)}, 7.27 \\ \mbox{(dd, } J = 5.0, 1.8 \ \mbox{Hz}, 3\ \mbox{M}), 2.77 \ \mbox{(dd, } J = 8.2, 6.2 \ \mbox{Hz}, 2\ \mbox{H}), 2.67 \ \mbox{(dd, } J = 8.5, 6.4 \ \mbox{Hz}, 2\ \mbox{H}), \\ 2.21 \ \mbox{(s, 3H)}; {}^{13}\ \mbox{C} \ \mbox{NMR} \ \mbox{(151 MHz, CDCl}_{3}) \ \delta \ 206.6, 131.5, 128.2, 127.7, 123.6, 88.5, \\ 81.0, 42.5, 29.9, 14.0; \ \mbox{HRMS} \ \mbox{m/z} \ \mbox{(ESI)} \ \mbox{calcd for } C_{12}\ \mbox{H}_{13}\ \mbox{O} \ \mbox{(M + H)}^+ \ 173.0961, \ \mbox{found} \\ 173.0963. \end{array}$

Ph **3-(3-Phenylprop-2-yn-1-yl)pyridine (3l):** The desired product was prepared according to General Procedure B. Brownish-black solid, 25.5 mg (66% yield). ¹H NMR (600 MHz, CDCl₃) δ 8.65 (d, J = 2.5 Hz, 1H), 8.53 – 8.50 (m, 1H), 7.78 (dd, J = 7.8, 2.1 Hz, 1H), 7.47 – 7.42 (m, 2H), 7.33 – 7.27 (m, 4H), 3.84 (s, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 149.4, 148.1, 135.6, 132.5, 131.6, 128.3, 128.1, 123.5, 123.2, 85.9, 83.3, 23.3; HRMS m/z (ESI) calcd for C₁₄H₁₂N (M + H)⁺ 194.0964, found 194.0964.

Ph **3-(4-Phenylbut-3-yn-1-yl)thiophene (3m):** The desired product was prepared according to General Procedure B. Yellow oil, 39.0 mg (92% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.40 – 7.37 (m, 2H), 7.28 (ddd, J = 6.0, 3.6, 2.5 Hz, 4H), 7.08 (dq, J = 3.1, 1.0 Hz, 1H), 7.04 (dd, J =5.0, 1.4 Hz, 1H), 2.96 (td, J = 7.4, 0.8 Hz, 2H), 2.71 (t, J = 7.4 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 141.1, 131.5, 128.2, 128.1, 127.6, 125.4, 123.8, 120.9, 89.5, 81.3, 29.6, 20.9; HRMS m/z (ESI) calcd for C₁₄H₁₃S (M + H)⁺ 213.0733, found 213.0733.

(3-Methyloct-1-yn-1-yl)benzene (3n): The desired product was prepared according to General Procedure A. Yellow oil, 35.2 mg (88% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.40

(dd, J = 7.9, 1.7 Hz, 2H), 7.30 – 7.25 (m, 3H), 2.68 – 2.60 (m, 1H), 1.56 – 1.43 (m, 4H), 1.37 – 1.30 (m, 4H), 1.26 (d, J = 6.9 Hz, 3H), 0.92 (t, J = 7.1 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 131.6, 128.1, 127.4, 124.2, 94.9, 80.7, 37.0, 31.7, 27.1, 26.5, 22.6, 21.1, 14.0; HRMS m/z (ESI) calcd for C₁₅H₂₁ (M + H)⁺ 201.1638, found 201.1634.

Ph

(Phenylethynyl)cyclododecane (30): The desired product was prepared according to General Procedure A. Yellow oil, 45.6 mg (85% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.40 (dd, J =7.8, 2.2 Hz, 2H), 7.27 (q, J = 7.7, 7.0 Hz, 3H), 2.70 (tt, J = 7.5, 5.0 Hz, 1H), 1.71 (dq, J = 15.5, 8.6, 7.8 Hz, 2H), 1.64 – 1.52

(m, 4H), 1.44 - 1.29 (m, 16H); ¹³C NMR (151 MHz, CDCl₃) δ 131.6, 128.1, 127.3, 124.2, 94.9, 80.2, 29.9, 27.5, 23.93, 23.86, 23.5, 23.4, 22.2; HRMS m/z (ESI) calcd for C₂₀H₂₉ (M + H)⁺ 269.2264, found 269.2261.

2-(Phenylethynyl)adamantane (3p): The desired product was prepared according to General Procedure A. Colorless oil, 35.8 mg (76% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.42 (dd, *J* = 8.0, 1.9 Hz, 2H), 7.30 – 7.24 (m, 3H), 2.93 (s, 1H), 2.29 (dd, *J* = 12.7, 2.9 Hz, 2H), 2.07 – 2.04 (m, 2H), 1.90 – 1.87 (m, 4H), 1.80 –

1.76 (m, 4H), 1.63 (d, J = 12.6 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 131.5, 128.1, 127.3, 124.3, 94.2, 82.3, 38.2, 37.6, 37.5, 32.9, 32.7, 27.7, 27.3; HRMS m/z (ESI) calcd for C₁₈H₂₁ (M + H)⁺ 237.1638, found 237.1636.

5-(Phenylethynyl)cyclooct-1-ene (3q): The desired product was prepared according to General Procedure A. Colorless oil, 21.5 mg (51% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.40 – 7.37 (m, 2H), 7.28 – 7.25 (m, 3H), 5.74 – 5.61 (m, 2H), 2.84 (dddd, *J* = 9.1, 7.6, 4.5, 1.5 Hz, 1H), 2.45 (dddd, *J* = 14.3, 10.5, 8.0, 4.2 Hz,

1H), 2.33 (dddd, *J* = 13.3, 11.8, 5.9, 3.7 Hz, 1H), 2.17 – 2.04 (m, 2H), 1.95 – 1.89 (m, 1H), 1.87 – 1.74 (m, 4H); ¹³C NMR (151 MHz, CDCl₃) δ 131.4, 130.1, 130.0, 128.1,

127.4, 124.2, 94.9, 81.4, 35.2, 32.0, 30.0, 27.3, 25.4, 24.2; **HRMS m/z (ESI)** calcd for C₁₆H₁₉ (M + H)⁺211.1482, found 211.1480.

2-(Phenylethynyl)-2,3-dihydro-1H-indene (3r): The desired product was prepared according to General Procedure A. White solid, 38.4 mg (88% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.42 (dd, J = 7.5, 2.2 Hz, 2H), 7.32 – 7.27 (m, 3H),

7.24 (dd, J = 5.4, 3.3 Hz, 2H), 7.20 – 7.17 (m, 2H), 3.46 (p, J = 8.5 Hz, 1H), 3.33 (dd, J = 15.0, 8.1 Hz, 2H), 3.15 (dd, J = 15.1, 8.8 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 142.0, 131.6, 128.2, 127.6, 126.5, 124.3, 123.7, 93.0, 80.6, 40.3, 30.7; HRMS m/z (ESI) calcd for C₁₇H₁₅ (M + H)⁺ 219.1169, found 219.1167.

3-((4-Methoxyphenyl)ethynyl)oxetane (3s): The desired product was prepared according to General Procedure A. Yellow oil, 19.1 mg (51% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.35 (d, J = 8.9 Hz, 2H), 6.83 (d, J = 9.0 Hz, 2H),

4.86 (dd, J = 8.5, 5.5 Hz, 2H), 4.80 (dd, J = 7.4, 5.5 Hz, 2H), 4.06 (tt, J = 8.5, 7.4 Hz, 1H), 3.81 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 159.5, 133.0, 115.1, 113.9, 86.7, 83.9, 77.3, 55.3, 26.6; HRMS m/z (ESI) calcd for C₁₂H₁₃O₂ (M + H)⁺ 189.0910, found 189.0910.

2-(Phenylethynyl)tetrahydrofuran (3t): The desired product was prepared according to General Procedure A. Yellow oil, 30.7 mg (88% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.39 (dt, J = 5.8, 3.6

Hz, 2H), 7.28 (dd, J = 5.0, 1.9 Hz, 3H), 4.08 (t, J = 7.7 Hz, 1H), 3.96 (td, J = 8.2, 6.0 Hz, 1H), 3.88 (dt, J = 8.4, 6.7 Hz, 1H), 3.76 – 3.68 (m, 1H), 3.25 – 3.16 (m, 1H), 2.29 (dtd, J = 12.2, 8.3, 5.9 Hz, 1H), 2.07 (dq, J = 12.2, 6.8 Hz, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 131.6, 128.2, 127.8, 123.4, 90.0, 81.7, 73.3, 68.0, 33.7, 30.8; HRMS m/z (ESI) calcd for C₁₂H₁₂ONa (M + Na)⁺ 195.0780, found 195.0783.

Ph

3-(phenylethynyl)piperidine-1-carboxylate *tert*-Butyl (3u): The desired product was prepared according to General Procedure A. Yellow oil, 37.1mg (65% yield). ¹H **NMR (600 MHz, CDCl₃)** δ 7.39 (q, J = 3.0, 2.3 Hz, 2H),

3-(Phenylethynyl)-1-tosylpiperidine (3v): The desired

7.27 (dd, J = 5.0, 1.9 Hz, 3H), 3.94 (s, 1H), 3.76 (dt, J = 13.2, 4.1 Hz, 1H), 3.03 (s, 2H), 2.65 (tt, J = 9.4, 3.9 Hz, 1H), 2.08 – 2.00 (m, 1H), 1.75 (s, 1H), 1.69 – 1.61 (m, 1H), 1.48 - 1.45 (m, 10H); ¹³C NMR (151 MHz, CDCl₃) δ 154.6, 131.6, 128.1, 127.7, 123.4, 90.5, 81.7, 79.5, 49.1, 43.6, 31.0, 29.1, 28.4, 24.0; HRMS m/z (ESI) calcd for $C_{18}H_{24}NO_2 (M + H)^+ 286.1802$, found 286.1794.

product was prepared according to General Procedure A. Yellow oil, 61.9 mg (91% yield). ¹H NMR (600 MHz, 3v **CDCl₃**) δ 7.67 (d, J = 8.3 Hz, 2H), 7.38 – 7.36 (m, 2H), 7.32 (d, J = 8.1 Hz, 2H), 7.29 - 7.27 (m, 3H), 3.87 - 3.82 (m, 1H), 3.65 - 3.59 (m, 1H), 3.00-2.96 (m, 1H), 2.81 (tt, J = 10.5, 3.9 Hz, 1H), 2.47 (dd, J = 11.6, 9.9 Hz, 1H), 2.43 (s, 3H), 2.06 – 2.00 (m, 1H), 1.80 (dt, J = 13.7, 3.4 Hz, 1H), 1.64 (dp, J = 9.5, 6.1, 5.1 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 143.5, 133.5, 131.6, 129.7, 128.2, 128.0, 127.6, 123.1, 89.5, 82.2, 50.7, 46.2, 30.4, 29.0, 24.1, 21.5; HRMS m/z (ESI) calcd for $C_{20}H_{22}NO_2S (M + H)^+ 340.1366$, found 340.1363.

Benzyl 4-(phenylethynyl)piperidine-1-carboxylate (3w): The desired product was prepared according to General Procedure A. Yellow oil, 41.5 mg (65% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.41 – 7.39 (m, 2H), 7.37 (d, J = 4.5

Hz, 4H), 7.34 – 7.31 (m, 1H), 7.31 – 7.26 (m, 3H), 5.15 (s, 2H), 3.87 – 3.75 (m, 2H), 3.37 (ddd, J = 13.5, 8.2, 3.5 Hz, 2H), 2.84 (tt, J = 8.0, 4.0 Hz, 1H), 1.88 (s, 2H), 1.71 (s, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 155.2, 136.8, 131.5, 128.5, 128.2, 127.9, 127.83, 127.80, 123.4, 91.4, 82.1, 67.0, 42.3, 31.3, 27.4; HRMS m/z (ESI) calcd for $C_{21}H_{22}NO_2 (M + H)^+ 320.1645$, found 320.1646.

J = 4.9, 2.9 Hz, 3H), 3.55 (ddt, J = 16.5, 13.6, 5.0 Hz, 1H), 3.46 (dq, J = 22.6, 6.2, 5.5 Hz, 2H), 3.35 (ddd, J = 21.9, 13.6, 7.8, 5.3 Hz, 1H), 2.95 – 2.87 (m, 1H), 2.03 – 1.72 (m, 6H), 1.45 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 155.5, 131.6, 131.5, 128.2, 128.1, 127.62, 127.57, 123.8, 123.7, 92.7, 92.3, 82.1, 81.9, 79.2, 79.1, 46.3, 45.7, 44.3, 43.9, 34.9, 34.5, 32.5, 32.2, 30.8, 30.4, 28.5, 25.5, 25.3; HRMS m/z (ESI) calcd for C₁₉H₂₆NO₂ (M + H)⁺ 300.1958, found 300.1958.

14.0, 4.0 Hz, 1H), 1.34 (s, 3H), 1.31 - 1.28 (m, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 131.4, 128.2, 127.9, 123.2, 94.3, 82.6, 71.0, 49.7, 30.2, 29.0, 22.7, 22.3; HRMS m/z (ESI) calcd for C₁₄H₁₉O (M + H)⁺ 203.1431, found 203.1431.

((2-Isopropyl-5-methylcyclohexyl)ethynyl)benzene (3z): The desired product was prepared according to General Procedure A. Light yellow oil, 37.9 mg (78% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.76 – 7.72 (m, 2H), 7.63 – 7.58 (m, 3H), 2.76 – 2.65 (m, 2H), 2.42 (dtd, J = 12.9, 3.6, 2.2 Hz,

1H), 2.09 (dt, J = 12.7, 2.9 Hz, 1H), 2.01 (dq, J = 12.7, 3.2 Hz, 1H), 1.73 (tdq, J = 14.8, 6.5, 3.0 Hz, 1H), 1.63 (tt, J = 12.0, 3.1 Hz, 1H), 1.54 (dt, J = 12.9, 11.9 Hz, 1H), 1.38 – 1.26 (m, 8H), 1.19 (d, J = 7.0 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 131.6, 128.1, 127.3, 124.3, 93.6, 81.4, 47.5, 42.4, 34.9, 34.1, 32.5, 28.9, 24.4, 22.3, 21.3, 15.9; HRMS m/z (ESI) calcd for C₁₈H₂₅ (M + H)⁺ 241.1951, found 241.1949.

(3aS,4R,6aR)-4-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyl-6-

(phenylethynyl)tetrahydrofuro[3,4-

d][1,3]dioxole (3aa): The desired product was prepared according to General Procedure A. Light yellow oil, 30.2 mg (44% yield). ¹H NMR (600

MHz, CDCl₃) δ 7.45 – 7.40 (m, 2H), 7.32 (q, J = 6.9, 6.2 Hz, 3H), 4.95 (s, 1H), 4.91 (d, J = 6.0 Hz, 1H), 4.88 (dd, J = 6.1, 3.4 Hz, 1H), 4.44 (ddd, J = 7.8, 6.1, 4.7 Hz, 1H), 4.16 – 4.07 (m, 2H), 4.00 (dd, J = 7.8, 3.6 Hz, 1H), 1.51 (s, 3H), 1.47 (s, 3H), 1.39 (s, 3H), 1.36 (s, 3H); ¹³C **NMR (151 MHz, CDCl₃)** δ 131.8, 128.8, 128.3, 122.0, 112.9, 109.2, 87.3, 86.4, 84.6, 81.3, 80.4, 74.5, 73.0, 67.0, 26.9, 25.9, 25.2, 24.7; **HRMS m/z** (ESI) calcd for C₂₀H₂₅O₅ (M + H)⁺ 345.1697, found 345.1696.

3ab, d.r. > 20 : 1

From L-Threonine methyl ester

Methyl (2S)-2-(((benzyloxy)carbonyl)amino)-5-(4-methoxyphenyl)-3-methylpent-4-ynoate

(3ab): The desired product was prepared according to General Procedure A. Yellow oil, 45.7 mg (60% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.39 – 7.35 (m, 4H), 7.33 (dd, J = 6.3, 2.5 Hz, 1H), 7.30 – 7.28

(m, 2H), 6.83 - 6.78 (m, 2H), 5.49 (d, J = 9.7 Hz, 1H), 5.14 (s, 2H), 4.48 (dd, J = 9.7, 3.7 Hz, 1H), 3.795 (s, 3H), 3.786 (s, 3H), 3.39 (dd, J = 7.1, 3.7 Hz, 1H), 1.34 (d, J = 7.1 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 171.1, 159.5, 156.5, 136.1, 133.1, 128.5, 128.22, 128.17, 114.8, 113.8, 86.2, 83.7, 67.2, 57.8, 55.3, 52.6, 30.3, 18.2; HRMS m/z (ESI) calcd for C₂₂H₂₄NO₅ (M + H)⁺ 382.1649, found 382.1649.

17-yl)ethan-1-one (3ac): The desired product was prepared according to General Procedure A. Yellow oil, 44.0 mg (55% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.39 (dd, J = 7.7, 1.9 Hz, 2H), 7.27 (dd, J = 6.2, 1.7 Hz, 3H), 5.39 (d, J = 5.0 Hz, 1H, minor), 5.37 – 5.36 (m, 1H, major), 2.54 (t, J = 9.0 Hz, 1H), 2.46 – 2.40 (m, 2H), 2.34 (dd, J = 9.4, 2.2 Hz, 1H, major), 2.32 (d, J = 4.3 Hz, 1H, minor), 2.21 – 2.16 (m, 1H), 2.13 (s, 3H), 2.08 – 1.98 (m, 1H), 1.95 – 1.87 (m, 1H), 1.73 – 1.62 (m, 2H), 1.53 – 1.43 (m, 5H), 1.28 – 1.21 (m, 3H), 1.19 – 1.07 (m, 2H), 1.11 (d, J = 3.9 Hz, 2H), 1.04 (s, 3H, major), 1.02 (s, 3H, minor), 0.64 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 209.6, 141.4, 131.6, 128.2, 127.5, 123.8, 120.6, 93.9, 80.5, 63.7, 56.9, 50.1, 44.0, 39.0, 38.9, 38.8, 36.8, 31.8, 31.7, 31.5, 29.2, 24.5, 22.8, 20.9, 19.4, 13.2; HRMS m/z (ESI) calcd for C₂₉H₃₇O (M + H)⁺ 401.2839, found 401.2836.

 Ph
 (3,3-Dimethylbut-1-yne-1,4-diyl)dibenzene
 (3ad):
 The

 Ph
 desired product was prepared according to General Procedure
 C. Colorless oil, 26.1 mg (56% yield).
 ¹H NMR (600 MHz,

 3ad
 CDCl₃) δ 7.38 – 7.35 (m, 2H), 7.34 – 7.26 (m, 8H), 2.80 (s, 2H),

 1.30 (s, 6H);
 ¹³C NMR (151 MHz, CDCl₃) δ 138.3, 131.4, 130.6, 128.1, 127.7, 127.5,

 126.3, 124.0, 96.9, 81.6, 49.1, 32.8, 29.1; HRMS m/z (ESI) calcd for C₁₈H₁₉ (M + H)⁺

 235.1482, found 235.1482.

Ph(3,3-Dimethylpent-1-yne-1,5-diyl)dibenzene(3ae): The
desired product was prepared according to General Procedure
C. Colorless oil, 23.8 mg (48% yield). ¹H NMR (600 MHz,
CDCl₃) δ 7.44 - 7.40 (m, 2H), 7.28 (dddd, J = 8.8, 7.0, 4.7,
1.9 Hz, 5H), 7.25 - 7.21 (m, 2H), 7.18 (td, J = 7.1, 1.5 Hz, 1H), 2.89 - 2.82 (m, 2H),
1.85 - 1.76 (m, 2H), 1.36 (s, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 142.8, 131.6, 128.41,
128.35, 128.2, 127.5, 125.7, 124.0, 96.9, 80.9, 45.5, 32.1, 31.9, 29.3; HRMS m/z (ESI)
calcd for C₁₉H₂₁ (M + H)⁺ 249.1638, found 249.1636.

3af

was prepared according to General Procedure C. Colorless oil, 25.5 mg (69% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.40 – 7.36 (m, 2H), 7.29 – 7.22 (m, 3H), 2.01 – 1.95 (m, 2H), 1.89 – 1.79 (m, 2H), 1.75 – 1.66 (m, 2H), 1.62 – 1.55 (m, 2H), 1.36 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 131.5, 128.1, 127.3, 124.2, 98.4, 79.5, 41.6, 38.3, 27.4, 24.4; HRMS m/z (ESI) calcd for C₁₄H₁₇ (M + H)⁺ 185.1325, found 185.1325.

3ag

((1-Methylcyclohexyl)ethynyl)benzene (3ag): The desired product was prepared according to General Procedure C. Light yellow oil, 25.0 mg (63% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.42 – 7.38 (m, 2H), 7.27 (d, J = 8.3 Hz, 3H), 1.81 (dd, J = 12.9,

4.2 Hz, 2H), 1.71 (tddt, J = 16.5, 11.4, 7.5, 3.7 Hz, 3H), 1.60 (dt, J = 13.8, 3.9 Hz, 2H), 1.29 – 1.22 (m, 5H), 1.21 – 1.12 (m, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 131.6, 128.1, 127.3, 124.3, 96.8, 81.7, 39.5, 33.1, 30.2, 25.9, 23.4; HRMS m/z (ESI) calcd for C₁₅H₁₉ (M + H)⁺ 199.1482, found 199.1484.

3ah

1-(Phenylethynyl)adamantane (3ah): The desired product was prepared according to General Procedure C. Colorless oil, 42.5 mg (90% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.40 – 7.37 (m, 2H), 7.28 – 7.23 (m, 3H), 2.00 (p, *J* = 3.2 Hz, 3H), 1.97 (d, *J* = 3.3 Hz, 6H), 1.73 (t, *J* = 3.3 Hz, 6H); ¹³C NMR (151 MHz,

CDCl₃) δ 131.6, 128.1, 127.3, 124.1, 98.4, 79.4, 42.9, 36.4, 30.1, 28.1; **HRMS m/z** (ESI) calcd for C₁₈H₂₁ (M + H)⁺ 237.1638, found 237.1637.

3H), 1.27 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 133.8, 131.6, 128.1, 127.3, 124.2, 120.8, 96.6, 81.0, 43.9, 34.7, 31.0, 27.5, 27.3, 27.0, 24.8, 23.3; HRMS m/z (ESI) calcd for C₁₈H₂₃ (M + H)⁺ 239.1795, found 239.1791.

yl)benzene (3aj): The desired product was prepared according to General Procedure C. Yellow oil, 39.3 mg (84% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.34 – 7.26 (m, 5H), 7.26 – 7.21 (m, 2H), 7.11 – 7.07 (m,

1-Methyl-4-(3-methyl-4-phenylbut-1-yn-1-

2H), 2.95 - 2.87 (m, 2H), 2.81 - 2.75 (m, 1H), 2.34 (s, 3H), 1.27 (d, J = 6.7 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) 139.7, 137.5, 131.4, 129.4, 128.9, 128.1, 126.2, 120.9, 93.3, 81.6, 43.2, 28.6, 21.4, 20.6; HRMS m/z (ESI) calcd for C₁₈H₁₉ (M + H)⁺ 235.1482, found 235.1481.

1-Ethyl-4-(3-methyl-4-phenylbut-1-yn-1-yl)benzene (3ak): The desired product was prepared according to General Procedure C. Brown oil, 39.7 mg (80% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.34 – 7.26 (m, 6H), 7.25 – 7.21 (m, 1H), 7.10 (d, J = 8.3 Hz, 2H), 2.94 – 2.87 (m,

2H), 2.81 - 2.75 (m, 1H), 2.63 (q, J = 7.7 Hz, 2H), 1.26 (d, J = 6.6 Hz, 3H), 1.22 (t, J = 7.7 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 143.8, 139.7, 131.4, 129.4, 128.1, 127.7, 126.2, 121.1, 93.3, 81.6, 43.2, 28.7, 28.6, 20.6, 15.4; HRMS m/z (ESI) calcd for C₁₉H₂₁ (M + H)⁺ 249.1638, found 249.1633.

NMR (151 MHz, CDCl₃) δ 159.0, 139.7, 132.8, 129.3, 128.1, 126.2, 116.1, 113.8, 92.5, 81.2, 55.2, 43.3, 28.6, 20.6; HRMS m/z (ESI) calcd for C₁₈H₁₉O (M + H)⁺ 251.1431, found 251.1428.

4-(3-Methyl-4-phenylbut-1-yn-1-yl)-1,1'-biphenyl (3am): The desired product was prepared according to General Procedure A. Yellow oil, 37.3 mg (63% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.60 (dd, J = 8.2, 1.2 Hz, 2H), 7.53 (d, J = 8.3 Hz, 2H), 7.47 – 7.43 (m, 4H),

7.38 – 7.30 (m, 5H), 7.28 – 7.24 (m, 1H), 2.99 – 2.92 (m, 2H), 2.85 – 2.80 (m, 1H), 1.31 (d, J = 6.6 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 140.5, 140.3, 139.6, 131.9, 129.4, 128.8, 128.2, 127.4, 127.0, 126.8, 126.3, 122.9, 94.8, 81.4, 43.2, 28.7, 20.6; HRMS m/z (ESI) calcd for C₂₃H₂₁ (M + H)⁺ 297.1638, found 297.1643.

1-Fluoro-4-(3-methyl-4-phenylbut-1-yn-1-yl)benzene (3an): The desired product was prepared according to General Procedure A. Yellow oil, 22.5 mg (47% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.31 (t, J = 7.4 Hz, 2H), 7.28 – 7.21 (m, 7H), 2.94 – 2.85 (m, 2H), 2.81 – 2.75 (m,

1H), 1.26 (d, J = 6.7 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 162.1 (d, J = 248.2 Hz), 139.6, 133.3 (d, J = 7.7 Hz), 129.3, 128.2, 126.3, 120.0 (d, J = 3.3 Hz), 115.3 (d, J =21.6 Hz), 93.7, 80.5, 43.1, 28.5, 20.5. ¹⁹F NMR (565 MHz, CDCl₃) δ -112.31; HRMS m/z (ESI) calcd for C₁₇H₁₆F (M + H)⁺ 239.1231, found 239.1227.

2.82 - 2.75 (m, 1H), 1.26 (d, J = 6.7 Hz, 3H).; ¹³C NMR (151 MHz, CDCl₃) δ 139.5,

133.5, 132.7, 129.3, 128.4, 128.2, 126.3, 122.4, 95.1, 80.6, 43.1, 28.6, 20.5; **HRMS** m/z (ESI) calcd for C₁₇H₁₆Cl (M + H)⁺ 255.0935, found 255.0934.

1-Bromo-4-(3-methyl-4-phenylbut-1-yn-1yl)benzene (3ap): The desired product was prepared according to General Procedure A. Yellow oil, 31.1 mg (52% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.43 – 7.38 (m, 2H), 7.34 – 7.29 (m, 2H), 7.29 – 7.19 (m, 5H), 2.94

- 2.86 (m, 2H), 2.81 - 2.76 (m, 1H), 1.27 (d, J = 6.8 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) 139.5, 133.0, 131.4, 129.3, 128.2, 126.3, 122.9, 121.6, 95.3, 80.6, 43.0, 28.6, 20.4; HRMS m/z (ESI) calcd for C₁₇H₁₆Br (M + H)⁺ 299.0430, found 299.0426.

¹-(3-Methyl-4-phenylbut-1-yn-1-yl)-4-

(trifluoromethyl) benzene (3aq): The desired product was prepared according to General Procedure A. Colorless oil, 27.1 mg (47% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.53 – 7.51 (m, 2H), 7.44 – 7.41 (m,

2H), 7.33 – 7.29 (m, 2H), 7.25 (d, J = 11.4 Hz, 3H), 2.97 – 2.87 (m, 2H), 2.80 (dd, J = 12.9, 6.4 Hz, 1H), 1.28 (d, J = 6.7 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 139.4, 131.7, 129.4, 129.3, 129.2, 128.2, 127.8, 126.4, 125.1 (q, J = 3.9 Hz), 96.8, 80.6, 43.0, 28.7, 20.4; ¹⁹F NMR (565 MHz, CDCl₃) δ -62.8; HRMS m/z (ESI) calcd for C₁₈H₁₆F₃ (M + H)⁺ 289.1199, found 289.1190.

3-(3-Methyl-4-phenylbut-1-yn-1-yl)thiophene (3ar): The desired product was prepared according to General Procedure A. Yellow oil, 26.6 mg (59% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.32 – 7.20 (m, 7H), 7.03 (dd, *J* = 5.0, 1.2 Hz, 1H), 2.93 – 2.85 (m, 2H), 2.79 – 2.74 (m, 1H), 1.25

(d, J = 6.8 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 139.6, 130.0, 129.3, 128.1, 127.5, 126.3, 124.9, 122.8, 93.5, 76.6, 43.1, 28.6, 20.5; HRMS m/z (ESI) calcd for C₁₅H₁₅S

TIPSTriisopropyl(3-methyl-4-phenylbut-1-yn-1-yl)silane (3as):PhThe desired product was prepared according to General
Procedure A. Colorless oil, 37.8 mg (63% yield). ¹H NMR
(600 MHz, CDCl₃) δ 7.29 – 7.23 (m, 4H), 7.22 – 7.18 (m,3as(600 MHz, CDCl₃) δ 7.29 – 7.23 (m, 4H), 7.22 – 7.18 (m,1H), 2.81 (dd, J = 12.2, 7.1 Hz, 1H), 2.74 (ddd, J = 26.6, 12.7, 6.3 Hz, 2H), 1.20 (d, J= 6.5 Hz, 3H), 1.06 – 1.00 (m, 21H); ¹³C NMR (151 MHz, CDCl₃) δ 139.6, 129.3,128.1, 126.1, 113.1, 80.7, 43.2, 28.9, 21.0, 18.6, 11.3; HRMS m/z (ESI) calcd forC₂₀H₃₃Si (M + H)⁺ 301.2346, found 301.2343.

TIPSTriisopropyl(5-phenylpent-1-yn-1-yl)silane (3at): The
desired product was prepared according to General
Procedure A. Colorless oil, 25.2 mg (42% yield). ¹H NMR(600 MHz, CDCl₃) δ 7.29 (dd, J = 8.3, 6.8 Hz, 2H), 7.22 – 7.17 (m, 3H), 2.79 – 2.74
(m, 2H), 2.28 (t, J = 6.9 Hz, 2H), 1.85 (dq, J = 9.2, 6.9 Hz, 2H), 1.12 – 1.03 (m, 21H);
¹³C NMR (151 MHz, CDCl₃) δ 141.8, 128.6, 128.3, 125.8, 108.6, 80.7, 34.7, 30.7,
19.3, 18.6, 11.3; HRMS m/z (ESI) calcd for C₂₀H₃₃Si (M + H)⁺ 301.2346, found
301.2346.

(3-Phenoxyprop-1-yn-1-yl)cyclododecane (3au): The desired product was prepared according to General Procedure B. Yellow oil, 22.1 mg (37% yield).

¹H NMR (600 MHz, CDCl₃) δ 7.29 (dd, J = 8.8, 7.2

Hz, 2H), 7.01 – 6.95 (m, 3H), 4.68 (d, J = 2.0 Hz, 2H), 2.51 (dqd, J = 7.3, 5.1, 3.0 Hz, 1H), 1.59 (t, J = 7.0 Hz, 2H), 1.50 – 1.43 (m, 4H), 1.32 (q, J = 5.3, 4.3 Hz, 16H); ¹³C **NMR (151 MHz, CDCl₃)** δ 149.8, 129.3, 121.1, 115.0, 99.1, 92.8, 56.6, 29.7, 26.8, 23.7, 23.7, 23.4, 23.4, 22.1; **HRMS m/z (ESI)** calcd for C₂₁H₃₁O (M + H)⁺ 299.2370, found 299.2368.

2.11 (m, 2H), 1.44 (dq, J = 8.8, 7.2, 6.6 Hz, 2H), 1.36 – 1.24 (m, 6H), 1.14 (d, J = 6.7 Hz, 3H), 0.89 (t, J = 7.1 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 140.0, 129.3, 128.0, 126.1, 84.2, 81.3, 43.6, 31.4, 29.0, 28.5, 27.9, 22.6, 21.0, 18.7, 14.1; HRMS m/z (ESI) calcd for C₁₇H₂₅ (M + H)⁺ 229.1951, found 229.1949.

3aw

Undec-4-yn-1-ylbenzene (3aw): The desired product was prepared according to General Procedure B. Colorless oil, 18.4 mg (40% yield). ¹H NMR (600 MHz, **CDCl₃**) δ 7.28 (dd, J = 8.1, 6.9 Hz, 2H), 7.19 (dt, J = 8.3, 2.1 Hz, 3H), 2.73 – 2.70 (m, 2H), 2.20 – 2.13 (m, 4H),

1.80 (dq, J = 9.1, 6.9 Hz, 2H), 1.53 – 1.46 (m, 2H), 1.43 – 1.37 (m, 2H), 1.35 – 1.22 (m, 4H), 0.89 (t, J = 7.1 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 141.9, 128.5, 128.3, 125.8, 80.9, 79.6, 34.8, 31.4, 30.7, 29.1, 28.6, 22.6, 18.8, 18.2, 14.1; HRMS m/z (ESI) calcd for C₁₇H₂₅ (M + H)⁺ 229.1951, found 229.1949.

Ph Me Methyl(1-phenylpropan-2-yl)sulfane (5a): The desired product was prepared according to General Procedure D. Yellow oil, 20.0 mg (60% 5a yield). ¹H NMR (600 MHz, CDCl₃) δ 7.30 (t, J = 7.5 Hz, 2H), 7.24 – 7.18 (m, 3H), 2.99 (dd, J = 13.4, 5.9 Hz, 1H), 2.91 (dt, J = 8.4, 6.3 Hz, 1H), 2.67 (dd, J = 13.4, 8.4 Hz, 1H), 2.10 (s, 3H), 1.23 (d, J = 6.7 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 139.6, 129.2, 128.3, 126.3, 43.3, 42.8, 20.2, 13.7; HRMS m/z (ESI) calcd for $C_{10}H_{14}SNa (M + Na)^+$ 189.0708, found 189.0706.

28

Cyclohexyl(1-phenylpropan-2-yl)sulfane (5b): The desired product was prepared according to General Procedure E. Colorless

Ме

Ph

oil, 23.9 mg (51% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.29 (t, J = 7.5 Hz, 2H), 7.23 – 7.16 (m, 3H), 3.08 (dt, J = 9.0, 6.1 Hz, 1H), 2.98 (dd, J = 13.5, 5.5 Hz, 1H), 2.64 (ddd, J = 22.4, 13.8, 9.7 Hz, 2H), 1.99 – 1.90 (m, 2H), 1.76 (tt, J = 11.4, 3.4 Hz, 2H), 1.34 – 1.25 (m, 6H), 1.20 (d, J = 6.7 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 139.7, 129.2, 128.2, 126.2, 44.2, 42.4, 39.4, 34.1, 33.9, 25.8, 21.1; HRMS m/z (ESI) calcd for C₁₅H₂₃S (M + H)⁺ 235.1515, found 235.1515.

Ph $finite{Me}$ Phenyl(1-phenylpropan-2-yl)sulfane (5c): The desired product was prepared according to General Procedure E. Light yellow oil, 5c 24.7 mg (54% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.44 – 7.42 (m, 2H), 7.30 (dt, J = 10.9, 7.5 Hz, 4H), 7.25 – 7.20 (m, 2H), 7.18 – 7.15 (m, 2H), 3.45 (dqd, J = 9.1, 6.7, 5.1 Hz, 1H), 3.04 (dd, J = 13.7, 5.2 Hz, 1H), 2.65 (dd, J = 13.7, 9.1 Hz, 1H), 1.23 (d, J = 6.7 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 139.3, 135.1, 132.0, 129.2, 128.9, 128.3, 126.9, 126.4, 44.5, 43.1, 20.1; HRMS m/z (ESI) calcd for C₁₅H₁₇S (M + H)⁺ 229.1046, found 229.1054.

(2,3-Dihydro-1H-inden-2-yl)(phenyl)sulfane (5d): The desired product was prepared according to General Procedure D. Yellow oil, 25.0 mg (55% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.42 – 7.40 (m, 2H), 7.31 (dd, J = 8.5, 7.0 Hz, 2H), 7.24 – 7.22 (m, 1H), 7.21 – 7.19 (m, 2H), 7.17 (dt, J = 5.0, 3.6 Hz, 2H), 4.12 (tt, J = 7.5, 6.0 Hz, 1H), 3.38 (dd, J = 16.0, 7.5 Hz, 2H), 3.01 (dd, J = 16.0, 6.0 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 141.5, 136.1, 130.6, 128.9, 126.7, 126.4, 124.5, 45.3, 40.2; HRMS m/z (ESI) calcd for C₁₅H₁₅S (M + H)⁺ 227.0889, found 227.0889.

Me (2-isopropyl-5-Methylcyclohexyl)(phenyl)sulfane (5e): The desired product was prepared according to General Procedure E. 5e, d.r > 20:1
Colorless oil, 26.4 mg (53% yield). ¹H NMR (600 MHz, CDCl₃)
δ 7.41 - 7.38 (m, 2H), 7.27 (d, J = 7.5 Hz, 2H), 7.20 - 7.16 (m, 1H), 3.63 (d, J = 4.1 Hz, 1H), 2.02 (tdp, J = 13.2, 6.7, 3.3 Hz, 1H), 1.90 (dd, J = 13.5, 2.6 Hz, 1H), 1.77

(dddd, J = 16.3, 9.6, 5.8, 3.3 Hz, 3H), 1.27 – 1.23 (m, 1H), 1.18 (ddd, J = 12.8, 9.1, 3.2 Hz, 2H), 0.94 (dd, J = 6.6, 4.0 Hz, 6H), 0.92 – 0.87 (m, 1H), 0.85 (d, J = 6.6 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 136.9, 131.1, 128.8, 126.1, 49.7, 48.9, 40.5, 35.4, 30.2, 26.5, 26.2, 22.1, 21.1, 20.6; HRMS m/z (ESI) calcd for C₁₆H₂₅S (M + H)⁺ 249.1672, found 249.1674.

(4-Chlorophenyl)(2,3-dihydro-1H-inden-2-yl)sulfane (5f): The desired product was prepared according to General Procedure E. Colorless oil, 19.8 mg (38% yield). ¹H NMR (600

MHz, CDCl₃) δ 7.33 (d, J = 8.6 Hz, 2H), 7.28 (d, J = 8.6 Hz, 2H), 7.22 – 7.16 (m, 4H), 4.08 (tt, J = 7.4, 5.8 Hz, 1H), 3.37 (dd, J = 16.0, 7.5 Hz, 2H), 2.98 (dd, J = 16.0, 5.8 Hz, 2H); ¹³C **NMR (151 MHz, CDCl₃)** δ 141.3, 134.6, 132.5, 131.9, 129.1, 126.7, 124.5, 45.5, 40.1; **HRMS m/z (ESI)** calcd for C₁₅H₁₄ClS (M + H)⁺ 261.0499, found 261.0474.

 $\begin{array}{c} \textbf{3-((2,3-Dihydro-1H-inden-2-yl)thio)-2-methylfuran (5g):} \\ \textbf{Me} \\ \textbf{b} \\ \textbf{b} \\ \textbf{b} \\ \textbf{b} \\ \textbf{c} \\ \textbf{b} \\ \textbf{c} \\ \textbf{c$

Ph S StBu Me I-(tert-Butyl)-2-(1-phenylpropan-2-yl)disulfane (5h): The desired product was prepared according to General Procedure E. Colorless oil, 22.1 mg (46% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.29 (t, J =

7.4 Hz, 2H), 7.24 – 7.20 (m, 1H), 7.20 – 7.16 (m, 2H), 3.19 (dd, *J* = 13.5, 5.0 Hz, 1H), 3.07 – 2.99 (m, 1H), 2.57 (dd, *J* = 13.5, 9.3 Hz, 1H), 1.33 (s, 9H), 1.22 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 139.4, 129.3, 128.3, 126.3, 48.3, 47.7, 42.8, 30.1, 19.5; **HRMS m/z (ESI)** calcd for $C_{13}H_{21}S_2 (M + H)^+ 241.1079$, found 241.1079.

PhSe
MePhenyl(1-phenylpropan-2-yl)selane (5i): The desired product was
prepared according to General Procedure E. Yellow oil, 17.2 mg5i(31% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.58 – 7.55 (m, 2H),7.30 – 7.27 (m, 5H), 7.23 – 7.20 (m, 1H), 7.17 – 7.13 (m, 2H), 3.57 – 3.48 (m, 1H),3.09 (dd, J = 13.7, 5.5 Hz, 1H), 2.77 (dd, J = 13.7, 9.2 Hz, 1H), 1.35 (d, J = 6.9 Hz,3H); ¹³C NMR (151 MHz, CDCl₃) δ 139.8, 134.9, 129.3, 129.1, 128.9, 128.3, 127.5,126.4, 44.1, 40.0, 21.0; HRMS m/z (ESI) calcd for C₁₅H₁₇Se (M + H)⁺ 277.0490, found277.0487.

Ph Me **5**j, *E* : *Z* = 1 : 3 (3-Methylbut-1-ene-1,4-diyl)dibenzene (5j): The desired product was prepared according to General Procedure D. Colorless oil, 34.2 mg (77% yield, E:Z=1:3). ¹H NMR (600 MHz, CDCl₃) δ 7.33 (d, J = 7.2 Hz, 2H), 7.29 (td, J = 7.4, 3.6 Hz, 4H),

7.22 – 7.18 (m, 4H), 6.32 (d, J = 16.0 Hz, 1H), 6.20 (dd, J = 15.9, 6.8 Hz, 1H), 2.82 – 2.76 (m, 1H), 2.63 (qd, J = 7.5, 6.6, 3.0 Hz, 2H), 1.10 (d, J = 6.3 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 140.5, 137.8, 135.9, 129.3, 128.4, 128.2, 128.1, 126.8, 126.0, 125.8, 43.6, 38.8, 19.8; ¹H NMR (600 MHz, CDCl₃) δ 7.31 – 7.24 (m, 4H), 7.23 – 7.18 (m, 2H), 7.15 – 7.10 (m, 4H), 6.38 (d, J = 11.6 Hz, 1H), 5.52 (dd, J = 11.6, 10.3 Hz, 1H), 3.06 (dq, J = 10.4, 6.6 Hz, 1H), 2.74 (dd, J = 13.5, 6.9 Hz, 1H), 2.60 (dd, J = 13.5, 7.2 Hz, 1H), 1.04 (d, J = 6.6 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 140.3, 138.3, 137.7, 129.2, 128.5, 128.1, 128.1, 127.8, 126.4, 125.8, 43.6, 34.1, 20.6; HRMS m/z (ESI) calcd for C₁₇H₁₉ (M + H)⁺ 223.1482, found 223.1480.

J = 5.5, 3.2 Hz, 2H), 6.21 (d, J = 1.7 Hz, 1H), 5.58 (d, J = 1.4 Hz, 1H), 3.77 (s, 3H),

3.04 (dd, J = 15.1, 7.6 Hz, 2H), 2.71 (dt, J = 14.6, 7.3 Hz, 1H), 2.62 (dd, J = 15.3, 7.2 Hz, 2H), 2.48 (dd, J = 7.4, 1.3 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 167.7, 143.0, 139.5, 126.1, 125.8, 124.5, 51.8, 38.8, 38.2, 37.8; HRMS m/z (ESI) calcd for C₁₄H₁₇O₂ $(M + H)^+$ 217.1223, found 217.1223.

4-(1,1-Difluorobut-1-en-2-yl-4,4,4-d3)-1,1'-biphenyl (5l): The desired product was prepared according to General Procedure D. Light yellow oil, 22.3 mg (45% yield). ¹H NMR (600 MHz, **CDCl**₃) δ 7.62 – 7.58 (m, 4H), 7.45 (t, J = 7.8 Hz, 2H), 7.41 –

7.39 (m, 2H), 7.37 – 7.34 (m, 1H), 2.45 – 2.44 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 153.4 (dd, J = 290.5, 287.3 Hz), 140.6, 139.9, 132.7, 128.8, 128.5 (t, J = 3.3 Hz), 127.4, 127.1, 127.0, 93.5 (dd, J = 17.9, 10.3 Hz), 29.7, 20.8. ¹⁹F NMR (377 MHz, **CDCl**₃) δ -91.54 (d, J = 43.7 Hz), -91.72 (d, J = 43.7 Hz); **HRMS m/z (ESI)** calcd for $C_{16}H_{12}D_3F_2 (M + H)^+ 248.1325$, found 248.1329.

4-(5-(2-Chloroethoxy)-1,1-difluoropent-1-en-2-yl)-1,1'-biphenyl (5m): The desired product was prepared according to General Procedure D. Light yellow oil, 42.4 mg (63% yield). ¹H NMR (600 MHz, CDCl₃) δ

7.62 - 7.59 (m, 4H), 7.45 (t, J = 7.8 Hz, 2H), 7.41 (d, J = 7.9 Hz, 2H), 7.38 - 7.34 (m, 1H), 3.68 – 3.58 (m, 4H), 3.49 (t, J = 6.2 Hz, 2H), 2.59 – 2.52 (m, 2H), 1.75 – 1.67 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 153.7 (dd, J = 291.4, 288.4 Hz), 140.5, 140.1, 132.4, 128.8, 128.5 (t, J = 3.3 Hz), 127.4, 127.1, 127.0, 91.6 (dd, J = 19.9, 14.9 Hz), 70.8, 70.1, 42.8, 27.8 (t, J = 2.5 Hz), 24.0; ¹⁹F NMR (377 MHz, CDCl₃) δ -90.63 (dd, J = 6.9, 2.1 Hz; HRMS m/z (ESI) calcd for C₁₉H₂₀ClF₂O (M + H)⁺ 337.1165, found 337.1155.

Yellow oil, 31.0 mg (40% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.59 (dd, J = 8.2, 6.0 Hz, 4H), 7.45 (t, J = 7.7 Hz, 2H), 7.40 – 7.34 (m, 3H), 4.34 – 4.27 (m, 1H), 3.74 – 3.65 (m, 1H), 2.50 – 2.47 (m, 2H), 1.55 – 1.47 (m, 2H), 1.45 (s, 9H), 1.11 (d, J = 6.6 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 153.5 (dd, J = 292.9 Hz, 282.4 Hz), 140.5, 140.1, 132.3, 128.8, 128.5 (t, J = 3.3 Hz), 127.4, 127.2, 127.0, 91.6 (dd, J = 21.6, 13.8 Hz), 46.2, 37.0, 35.4, 28.4, 24.4, 21.4; ¹⁹F NMR (377 MHz, CDCl₃) δ -90.68 (d, J = 42.3 Hz), -90.89 (d, J = 43.0 Hz); HRMS m/z (ESI) calcd for C₂₃H₂₈F₂NO₂ (M + H)⁺ 388.2083, found 388.2083.

*t*ert-Butyl (S)-(4-([1,1'-biphenyl]-4-yl)-5,5-difluoro-1phenylpent-4-en-1-yl)carbamate (50): The desired product was prepared according to General Procedure D. Yellow oil, 36.8 mg (41% yield). ¹H NMR (600 MHz,

CDCl₃) δ 7.62 – 7.55 (m, 4H), 7.45 (dd, J = 8.6, 7.0 Hz, 2H), 7.36 (t, J = 7.4 Hz, 1H), 7.34 – 7.30 (m, 4H), 7.26 – 7.24 (m, 1H), 7.21 (d, J = 7.6 Hz, 2H), 4.79 (s, 1H), 4.67 (s, 1H), 2.51 (ddt, J = 11.5, 6.3, 2.4 Hz, 1H), 2.44 (dtt, J = 14.3, 9.0, 4.4 Hz, 1H), 1.84 (d, J = 7.3 Hz, 2H), 1.43 (s, 9H); ¹³**C NMR (151 MHz, CDCl₃)** δ 186.4, 153.6 (dd, J = 291.1, 287.2 Hz), 140.5, 140.1, 132.1, 128.8, 128.6, 128.5 (t, J = 3.3 Hz), 127.4, 127.3, 127.2, 127.1, 127.0, 126.3, 91.4 (dd, J = 21.4, 12.9 Hz), 54.4, 47.4, 34.9, 28.3, 24.5; ¹⁹**F NMR (377 MHz, CDCl₃)** δ -90.19 (d, J = 41.6 Hz), -90.58 (d, J = 41.6 Hz); **HRMS m/z (ESI)** calcd for C₂₈H₃₀F₂NO₂ (M + H)⁺ 450.2239, found 450.2239.

2-(3,3-Difluoro-2-(4-methoxyphenyl)allyl)-2,3-dihydro-1Hindene (5p): The desired product was prepared according to General Procedure D. Colorless oil, 54.1 mg (90% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.30 – 7.27 (m, 2H), 7.17 (dd, J =

5.4, 3.3 Hz, 2H), 7.13 – 7.11 (m, 2H), 6.92 (d, J = 8.8 Hz, 2H), 3.83 (s, 3H), 2.97 (dd, J = 15.3, 7.7 Hz, 2H), 2.64 (dd, J = 15.3, 7.4 Hz, 2H), 2.60 – 2.54 (m, 2H), 2.48 (p, J = 7.6 Hz, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 158.7, 153.9 (dd, J = 288.6, 285.8 Hz), 142.9, 129.5, 126.1, 125.7 (q, J = 2.8 Hz), 124.4, 113.9, 91.2 (dd, J = 21.0, 14.4 Hz),

55.2, 38.6, 38.1 (t, J = 2.7 Hz), 33.3; ¹⁹F NMR (565 MHz, CDCl₃) δ -92.36 (d, J = 46.0 Hz), -92.51 (d, J = 47.0 Hz); HRMS m/z (ESI) calcd for C₁₉H₁₉F₂O (M + H)⁺ 301.1399, found 301.1399.

2-(3,3-Difluoro-2-(4-(trifluoromethoxy)phenyl)allyl)-

2,3-dihydro-1H-indene (5q): The desired product was prepared according to General Procedure D. Colorless oil, 34.9 mg (49% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.38

(dd, J = 8.8, 1.1 Hz, 2H), 7.24 – 7.22 (m, 2H), 7.15 (ddd, J = 25.3, 5.5, 3.3 Hz, 4H), 2.97 (dd, J = 15.2, 7.7 Hz, 2H), 2.64 (dd, J = 15.3, 7.4 Hz, 2H), 2.59 (dt, J = 7.6, 2.3 Hz, 2H), 2.46 (pd, J = 7.6, 1.1 Hz, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 154.1 (dd, J =290.9, 287.4 Hz), 148.3, 142.7, 132.3 (dd, J = 4.6, 3.1 Hz), 129.8 (t, J = 3.3 Hz), 126.2, 124.4, 121.3, 121.0, 90.9 (dd, J = 22.9, 13.0 Hz), 38.6, 38.0 (t, J = 2.6 Hz), 33.2; ¹⁹F NMR (377 MHz, CDCl₃) δ -57.82, -90.46 (dd, J = 42.0, 2.4 Hz), -90.86 (dd, J = 41.6, 2.8 Hz); HRMS m/z (ESI) calcd for C₁₉H₁₆F₅O (M + H)⁺ 355.1116, found 355.1125.

¹ 4-(1,1-Difluoro-4-methyl-5-phenylpent-1-en-2-yl)-1,1'-

biphenyl (5r): The desired product was prepared according to General Procedure D. Yellow oil, 60.1 mg (86% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.62 (dd, J = 8.3, 1.2 Hz, 2H),

7.58 (d, J = 8.4 Hz, 2H), 7.46 (dd, J = 8.6, 6.9 Hz, 2H), 7.39 – 7.34 (m, 1H), 7.31 (dd, J = 8.4, 1.4 Hz, 2H), 7.28 – 7.24 (m, 2H), 7.22 – 7.17 (m, 1H), 7.09 – 7.06 (m, 2H), 2.68 (dd, J = 13.5, 6.3 Hz, 1H), 2.51 – 2.38 (m, 2H), 2.30 (ddd, J = 14.4, 8.5, 2.7 Hz, 1H), 1.80 (hept, J = 7.2, 6.6 Hz, 1H), 0.89 (d, J = 6.6 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 154.1 (dd, J = 291.4 Hz, d, J = 286.9 Hz), 140.8, 140.5, 139.9, 132.5 (t, J = 3.9 Hz), 129.1, 128.8, 128.6 (t, J = 3.3 Hz), 128.2, 127.4, 127.1, 127.0, 125.8, 91.1 (dd, J = 22.0, 12.8 Hz), 43.1, 34.3, 33.2, 19.1; ¹⁹F NMR (565 MHz, CDCl₃) δ -90.59 (d, J = 42.9 Hz), -90.86 (d, J = 42.9 Hz); HRMS m/z (ESI) calcd for C₂₄H₂₃F₂ (M + H)⁺ 349.1763, found 349.1769.

2-(3,3-Difluoro-2-(4-(trifluoromethyl)phenyl)allyl)

tetrahydrofuran (5s): The desired product was prepared according to General Procedure D. Yellow oil, 28.3 mg (48% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.63 (d, J = 8.4 Hz, 2H),

7.42 (d, J = 8.4 Hz, 2H), 3.86 (td, J = 8.3, 5.0 Hz, 1H), 3.75 (dd, J = 8.5, 6.9 Hz, 1H), 3.70 (dt, J = 8.5, 7.4 Hz, 1H), 3.39 (dd, J = 8.5, 6.2 Hz, 1H), 2.52 (dd, J = 7.7, 2.5 Hz, 2H), 2.18 (p, J = 7.3 Hz, 1H), 1.93 (dtd, J = 12.7, 7.7, 5.1 Hz, 1H), 1.55 (dq, J = 12.2, 7.2 Hz, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 154.2 (dd, J = 292.0, 288.5 Hz), 137.2, 129.6 (dd, J = 65.2, 32.6 Hz), 125.5 (q, J = 3.6 Hz), 124.8, 123.0, 91.0 (dd, J = 23.2, 13.3 Hz), 72.6, 67.7, 37.6 (t, J = 2.8 Hz), 31.7, 30.9; ¹⁹F NMR (377 MHz, CDCl₃) δ -62.70 (d, J = 3.5 Hz), -89.06 (dd, J = 38.8, 3.5 Hz), -89.60 (dd, J = 38.8, 3.5 Hz); HRMS m/z (ESI) calcd for C₁₄H₁₄F₅O (M + H)⁺ 293.0960, found 293.0961.

3-(1,1-Difluoro-3-(tetrahydrofuran-2-yl)prop-1-en-2-yl)

pyridinee (5t): The desired product was prepared according to General Procedure D. Yellow oil, 23.1 mg (51% yield). ¹H NMR (600 MHz, CDCl₃) δ 8.57 (s, 1H), 8.53 (dd, J = 4.8, 1.7

Hz, 1H), 7.62 (dt, *J* = 7.9, 1.3 Hz, 1H), 7.31 (ddd, *J* = 8.0, 4.9,

0.9 Hz, 1H), 3.86 (td, J = 8.3, 5.1 Hz, 1H), 3.76 (dd, J = 8.5, 7.0 Hz, 1H), 3.70 (dt, J = 8.6, 7.4 Hz, 1H), 3.39 (dd, J = 8.5, 6.3 Hz, 1H), 2.50 (dd, J = 7.6, 2.6 Hz, 2H), 2.20 (h, J = 7.6 Hz, 1H), 1.94 (dtd, J = 12.7, 7.7, 5.0 Hz, 1H), 1.55 (dq, J = 12.2, 7.2 Hz, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 154.3 (dd, J = 291.9, 288.6 Hz), 149.2 (t, J = 3.6 Hz), 148.6, 135.7 (t, J = 3.2 Hz), 129.4, 123.4, 88.9 (dd, J = 23.2, 13.9 Hz), 72.6, 67.7, 37.5 (t, J = 2.6 Hz), 31.6, 30.8; ¹⁹F NMR (377 MHz, CDCl₃) δ -88.75 (dd, J = 38.8, 2.8 Hz), -89.64 (dd, J = 38.8, 2.8 Hz); HRMS m/z (ESI) calcd for C₁₂H₁₄F₂NO (M + H)⁺ 226.1038, found 226.1048.

(3r,5r,7r)-1-(3,3-Difluoro-2-(4-methoxyphenyl)allyl)

adamantane (5u): The desired product was prepared according to General Procedure D. Light yellow oil, 40.0 mg (63% yield).
¹H NMR (600 MHz, CDCl₃) δ 7.25 – 7.22 (m, 2H), 6.87 (d, *J* = 8.8 Hz, 2H), 3.81 (s, 3H), 2.16 (s, 2H), 1.86 (t, *J* = 3.2 Hz, 3H), 1.62 (d, *J* = 12.3 Hz, 3H), 1.55 – 1.51 (m, 3H), 1.37 (d, *J* = 3.2 Hz, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 158.3, 143.8, 129.4 (t, *J* = 3.0 Hz), 113.7, 93.5, 55.2, 42.7, 42.0, 36.9, 34.6 (d, *J* = 2.8 Hz), 28.6; ¹⁹F NMR (377 MHz, CDCl₃) δ -90.06 (d, *J* = 43.7 Hz), -93.07 (dd, *J* = 43.3, 2.4 Hz); HRMS m/z (ESI) calcd for C₂₂H₂₅F₂O (M + H)⁺ 319.1868, found 319.1870.

6. Late-stage functionalization and synthetic applications.

(3aS,4R,6S,6aR)-4-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-6-ethynyl-2,2dimethyltetrahydrofuro[3,4-d][1,3]dioxole (6)

1) To an oven dried 25 mL schlenk tube equipped with a N_2 was added NHC-1 (0.5 mmol, 1.00 equiv), **1aa** (0.50 mmol, 1.00 equiv), and anhydrous MTBE (2.5 ml). Pyridine (0.53 mmol, 1.05 equiv) was added dropwise, and the suspension was stirred at room temperature under nitrogen atmosphere for 15 minutes.

2) Another oven-dried 25mL schlenk tube was charged with iridium photocatalyst PC-2 (2.0 μ mol, 1 mol%), cesium acetate (0.60 mmol, 3.00 equiv) and 2c (0.20 mmol, 1.0 equiv) and THF (2.5 ml) was added to the mixture.

The methyl *t*ert-butyl ether suspension was transferred to a 2.5 mL syringe under air. Then a syringe filter and new needle were installed on the syringe, before the methyl *t*ert-butyl ether solution was injected through the syringe filter into the THF solution. The reaction solution was degassed by sparging with nitrogen for 15 minutes. TMG (0.02 mmol, 10 mol%) was added upon completion of the sparge. The mixture was then stirred irradiated with a 45 W Blue LED (approximately 5 cm away from the light source) at room temperature for 36 h. The crude reaction mixture was directly concentrated to remove both methyl *t*ert-butyl ether and THF solvents. EtOAc was added to the concentrated crude reaction mixture followed by filtration through a silica plug. The residue was purified plash column chromatography through silica gel using petroleum ether/ethyl acetate as eluent to give **6-1** (53.0 mg, 62%) as a colorless oil: ¹H NMR (600 MHz, CDCl₃) δ 4.82 – 4.77 (m, 2H), 4.70 (s, 1H), 4.45 – 4.38 (m, 1H), 4.13 – 4.09 (m, 1H), 4.05 – 4.00 (m, 1H), 3.94 (dd, *J* = 8.2, 3.5 Hz, 1H), 1.48 (s, 3H), 1.43 (s, 3H), 1.38 (s, 3H), 1.34 (s, 3H), 1.06 (d, *J* = 1.5 Hz, 21H); ¹³C NMR (151 MHz, CDCl₃) δ 112.9, 109.3, 103.0, 89.3, 86.6, 81.2, 80.3, 74.4, 72.9, 67.2, 26.9, 25.9, 25.3, 24.7, 18.5, 11.0; HRMS m/z (ESI) calcd for C₂₃H₄₁O₅Si (M + H)⁺ 425.2718, found 425.2713.

3) To a solution of **6-1** (0.12 mmol, 53 mg, 1.0 equiv.) in dry THF (1 mL) was added TBAF solution (1 mmol, 1M in THF, 1 mL) dropwiseunder a nitrogen atmosphere. The reaction mixture was allowed to stir for 1 h at roomtemperature. The reaction was quenched by adding H₂O (0.5 mL) and the mixture wasextracted with EtOAc. The combined organic layers were dried overanhydrous Na₂SO₄, filtered and evaporated under vacuum. The residue was purifiedby flash column chromatography through silica gel using petroleum ether/ethyl acetate as eluent to give **6** (19.0 mg, 57%) as a light yellow oil: ¹H NMR (**600 MHz, CDCl₃**) δ 4.82 (d, *J* = 3.3 Hz, 2H), 4.71 (d, *J* = 2.6 Hz, 1H), 4.41 (ddd, *J* = 7.9, 6.2, 4.4 Hz, 1H), 4.10 (dd, *J* = 8.8, 6.2 Hz, 1H), 4.06 (dd, *J* = 8.8, 4.5 Hz, 1H), 3.92 (dd, *J* = 7.8, 3.0 Hz, 1H), 2.48 (d, *J* = 2.4 Hz, 1H), 1.48 (s, 3H), 1.46 (s, 3H), 1.38 (s, 3H), 1.33 (s, 3H); ¹³C NMR (**151 MHz, CDCl₃**) δ 113.0, 109.3, 86.2, 81.2, 80.3, 75.6, 73.7, 72.9, 67.0, 26.9, 25.9, 25.2, 24.6, 18.4; HRMS m/z (ESI) calcd for C₁₄H₂₁O₅ (M + H)⁺ 269.1384, found 269.1382.

Methyl (28,38)-2-(((benzyloxy)carbonyl)amino)-3-methylpent-4-ynoate (7)

1) To an oven dried 25 mL schlenk tube equipped with a N_2 was added NHC-1 (0.5 mmol, 1.00 equiv), **1ab** (0.50 mmol, 1.00 equiv), and anhydrous MTBE (2.5 ml). Pyridine (0.53 mmol, 1.05 equiv) was added dropwise, and the suspension was stirred at room temperature under nitrogen atmosphere for 15 minutes.

2) Another oven-dried 25mL schlenk tube was charged with iridium photocatalyst PC-2 (2.0 μ mol, 1 mol%), cesium acetate (0.60 mmol, 3.00 equiv) and 2c (0.20 mmol, 1.0 equiv) and THF (2.5 ml) was added to the mixture.

The methyl *t*ert-butyl ether suspension was transferred to a 2.5 mL syringe under air. Then a syringe filter and new needle were installed on the syringe, before the methyl *t*ert-butyl ether solution was injected through the syringe filter into the THF solution. The reaction solution was degassed by sparging with nitrogen for 15 minutes. TMG (0.02 mmol, 10 mol%) was added upon completion of the sparge. The mixture was then stirred irradiated with a 45 W Blue LED (approximately 5 cm away from the light source) at room temperature for 36 h. The crude reaction mixture was directly concentrated to remove both methyl *t*ert-butyl ether and THF solvents. EtOAc was added to the concentrated crude reaction mixture followed by filtration through a silica plug. The residue was purifiedby flash column chromatography through silica gel using petroleum ether/ethyl acetate as eluent to give **7-1** (44 mg, 51%) as a light yellow oil: **¹H NMR (600 MHz, CDCl₃)** δ 7.39 – 7.30 (m, 5H), 5.42 (d, *J* = 9.7 Hz, 1H), 5.14 (s, 2H), 4.40 (dd, *J* = 9.7, 3.6 Hz, 1H), 3.74 (s, 3H), 3.24 (dd, *J* = 7.1, 3.6 Hz, 1H), 1.27 (d, *J* = 7.1 Hz, 3H), 1.04 (d, *J* = 4.6 Hz, 21H); ¹³C NMR (151 MHz, CDCl₃) δ 170.9, 156.4, 136.3, 128.5, 128.1, 127.8, 106.6, 84.3, 67.0, 57.6, 52.5, 30.7, 18.5, 18.3, 11.0;

HRMS m/z (ESI) calcd for $C_{24}H_{38}NO_4S (M + H)^+ 432.2565$, found 432.2565.

3) To a solution of **7-1** (0.10 mmol, 44 mg, 1.0 equiv.) in dry THF (1 mL) was added TBAF solution (1 mmol, 1M in THF, 1 mL) dropwiseunder a nitrogen atmosphere. The reaction mixture was allowed to stir for 1 h at roomtemperature. The reaction was quenched by adding H₂O (0.5 mL) and the mixture wasextracted with EtOAc. The combined organic layers were dried overanhydrous Na₂SO₄, filtered and evaporated under vacuum. The residue was purifiedby flash column chromatography through silica gel using Petroleum ether/ethyl acetate as eluent to give **7** (19.6 mg, 70%) as a colorless oil: ¹H NMR (600 MHz, CDCl₃) δ 7.39 – 7.32 (m, 5H), 5.45 (d, *J* = 10.0 Hz, 1H), 5.14 (s, 2H), 4.43 (dd, *J* = 9.7, 3.5 Hz, 1H), 3.77 (s, 3H), 3.19 (dt, *J* = 6.8, 3.3 Hz, 1H), 2.12 (d, *J* = 2.5 Hz, 1H), 1.28 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 170.9, 156.4, 136.1, 128.6, 128.3, 128.1, 82.6, 71.9, 67.3, 57.4, 52.7, 29.4, 18.0; HRMS m/z (ESI) calcd for C₁₅H₁₈NO₄ (M + H)⁺ 276.1231, found 276.1229.

2-Ethynyl-2,3-dihydro-1H-indene (8)

1) To an oven dried 25 mL schlenk tube equipped with a N_2 was added NHC-1 (2.0 mmol, 1.00 equiv), **1r** (2.0 mmol, 1.00 equiv), and anhydrous MTBE (10 ml). Pyridine (2.1 mmol, 1.05 equiv) was added drop wise, and the suspension was stirred at room temperature under nitrogen atmosphere for 15 minutes.

2) Another oven-dried 25mL schlenk tube was charged with iridium photocatalyst PC-2 (8.0 μ mol, 1 mol%), cesium acetate (2.4 mmol, 3.00 equiv) and **2c** (0.80 mmol, 1.0 equiv) and THF (10.0 ml) was added to the mixture.

The methyl *t*ert-butyl ether suspension was transferred to a 10.0 mL syringe under air. Then a syringe filter and new needle were installed on the syringe, before the methyl *t*ert-butyl ether solution was injected through the syringe filter into the THF solution. The reaction solution was degassed by sparging with nitrogen for 15 minutes. TMG (0.08 mmol, 10 mol%) was added upon completion of the sparge. The mixture was then stirred irradiated with a 45 W Blue LED (approximately 5 cm away from the light source) at room temperature for 36 h. The crude reaction mixture was directly concentrated to remove both methyl *t*ert-butyl ether and THF solvents. EtOAc was added to the concentrated crude reaction mixture followed by filtration through a silica plug. The residue was purified plash column chromatography through silica gel using Petroleum ether/ethyl acetate as eluent to give **8-1** (122 mg, 52%) as a colorless oil. ¹H-NMR and ¹³C-NMR data are consistent with literature report.⁷ ¹H NMR (600 MHz, CDCl₃) δ 7.20 (dd, *J* = 5.5, 3.3 Hz, 2H), 7.17 – 7.13 (m, 2H), 3.30 – 3.22 (m, 3H), 3.10 – 3.03 (m, 2H), 1.09 – 1.03 (m, 21H).

3) To a solution of **8-1** (0.40 mmol, 122 mg, 1.0 equiv.) in dry THF (4 mL) was added TBAF solution (0.48 mmol, 1M in THF, 0.48 mL, 1.2 equiv) dropwiseunder a nitrogen atmosphere. The reaction mixture was allowed to stir for 1 h at roomtemperature. The reaction was quenched by adding H₂O (0.5 mL) and the mixture wasextracted with EtOAc. The combined organic layers were dried overanhydrous Na₂SO₄, filtered and evaporated under vacuum. The residue was purifiedby flash column chromatography through silica gel using Petroleum ether/ethyl acetate as eluent to give **8** (55.7 mg, 98%) as a colorless oil. ¹H-NMR and ¹³C-NMR data are consistent with literature report.⁷ ¹H NMR (600 MHz, CDCl₃) δ 7.22 (dd, *J* = 5.4, 3.3 Hz, 2H), 7.19 – 7.15 (m, 2H), 3.26 (d, *J* = 12.2 Hz, 3H), 3.09 – 3.04 (m, 2H), 2.11 (d, *J* = 2.2 Hz, 1H).

4-(2,3-Dihydro-1H-inden-2-yl)-1-tosyl-1H-1,2,3-triazole (9)

Flame-dried 10 mL schlenk tube filled with N₂. 2-Ethynyl-2,3-dihydro-1H-indene **8** (0.2 mmol, 1.0 equiv), TsN₃ (0.2 mmol), CuTc (0.02 mmol, 10 mol%) were added at 0 °C, and DCM (1.0 mL) was added under N₂. The formed mixture was stirred at r.t. for

12 h as monitored by TLC. The solvent was removed under vacuum directly. The residue was purifiedby flash column chromatography through silica gel using Petroleum ether/ethyl acetate as eluent to give **9** as a white solid (50.2 mg, 74%): ¹H **NMR (600 MHz, CDCl₃)**: δ 7.98 (d, J = 8.4 Hz, 2H), 7.84 (s, 1H), 7.38 (d, J = 8.3 Hz, 2H), 7.23 (dd, J = 5.4, 3.3 Hz, 2H), 7.17 (dd, J = 5.6, 3.2 Hz, 2H), 3.83 (p, J = 7.9 Hz, 1H), 3.38 (dd, J = 15.4, 8.2 Hz, 2H), 3.10 (dd, J = 15.4, 7.7 Hz, 2H), 2.45 (s, 3H); ¹³C **NMR (151 MHz, CDCl₃)** δ 151.5, 147.1, 141.8, 133.2, 130.4, 128.7, 126.7, 124.5, 119.6, 39.3, 36.3, 21.8; **HRMS m/z (ESI)** calcd for C₁₈H₁₈N₃O₂S (M + H)⁺ 340.1114, found 340.1113.

2-(2,3-Dihydro-1H-inden-2-yl)-1-tosyl-1H-indole (10)

Flame-dried 10 mL schlenk tube filled with N₂. 2-Ethynyl-2,3-dihydro-1H-indene **8** (0.2 mmol, 1.0 equiv), N-(2-iodophenyl)-4-methylbenzenesulfonamide (0.26 mmol, 1.3 equiv), PdCl₂(PPh₃)₂ (0.01 mmol, 5 mol%) , CuI (0.01 mmol, 5 mol%), TMG (0.4 mmol, 2.0 equiv) were added in a glovebox, and DMF (1.0 mL) was added under N₂ outside the glovebox. The formed mixture was stirred at 40 °C for 4 h as monitored by TLC. The solvent was removed under vacuum directly. The residue was purifiedby flash column chromatography through silica gel using Petroleum ether/ethyl acetate as eluent to give **10** as a white solid (39.2 mg, 50%): ¹**H NMR (600 MHz, CDCl₃)**: δ 8.20 (dd, *J* = 8.4, 0.9 Hz, 1H), 7.62 (d, *J* = 8.4 Hz, 2H), 7.37 (dt, *J* = 7.7, 1.0 Hz, 1H), 7.28 – 7.23 (m, 3H), 7.21 – 7.18 (m, 5H), 6.44 (d, *J* = 0.9 Hz, 1H), 4.42 – 4.35 (m, 1H), 3.48 (dd, *J* = 15.4, 8.0 Hz, 2H), 3.13 (dd, *J* = 15.5, 6.8 Hz, 2H), 2.34 (s, 3H); ¹³**C NMR (151 MHz, CDCl₃)** δ 145.8, 144.6, 142.2, 137.5, 136.2, 129.8, 129.7, 126.5, 126.2, 124.4, 124.1, 123.6, 120.3, 115.1, 107.9, 40.4, 38.4, 21.5; **HRMS m/z (ESI)** calcd for C₂₄H₂₂NO₂S (M + H)⁺ 388.1366, found 388.1366.

11-2: Flame-dried 100 mL tube filled with N₂. 9-Bromo-1-nonanol **11-1** (10 mmol, 1.0 equiv), Ac₂O (13 mmol, 1.3 equiv), DMAP (1 mmol, 10 mol%), TEA (42 mmol, 4.2 equiv), TMG (0.4 mmol, 2.0 equiv) were added, and DCM (20.0 mL) was added under N₂. The formed mixture was stirred at 0 °C for 1 h as monitored by TLC. Neutralized by a aqueous HCl (0.1 M), and neutralized by NaHCO₃ solution and extracted with DCM. The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated to dryness under reduced pressure. Afford the product **11-2** as a colorless oil (2.64 g, 99%).¹H-NMR and ¹³C-NMR data are consistent with literature report.⁸ ¹H **NMR (600 MHz, CDCl₃):** δ 4.04 (t, *J* = 6.8 Hz, 2H), 3.39 (t, *J* = 6.8 Hz, 2H), 2.03 (s, 3H), 1.87 – 1.79 (m, 2H), 1.63 – 1.56 (m, 2H), 1.43 – 1.39 (m, 2H), 1.30 (h, *J* = 4.4, 3.7 Hz, 8H); ¹³C **NMR (151 MHz, CDCl₃)** δ 171.2, 64.5, 33.9, 32.7, 29.2, 29.1, 28.6, 28.5, 28.1, 25.8, 21.0.

11-3: Flame-dried 100 mL tube filled with N₂. 3-Lodobenzyl alcohol (9 mmol, 1.0 equiv), NaH (10.8 mmol, 1.2 equiv) and DMF (1M) were added, the formed mixture was stirred at 0 °C for 0.5 h. Then **11-2** (9.9 mmol, 1.1 equiv) in DMF (1M) was added under N₂ at 0 °C. The formed mixture was stirred at room tempurature for 2 h as monitored by TLC. Neutralized by a aqueous HCl (0.1 M), and neutralized by NaHCO3 solution and extracted with DCM. The combined organic layers were dried over

anhydrous Na₂SO₄ and concentrated to dryness under reduced pressure. The residue was purifiedby flash column chromatography through silica gel using Petroleum ether/ethyl acetate as eluent to give product **11-3** as a light yellow oil (1.90 g, 45%). ¹H **NMR (600 MHz, CDCl₃)** δ 7.69 (d, J = 1.7 Hz, 1H), 7.60 (dd, J = 7.9, 1.3 Hz, 1H), 7.29 (d, J = 7.7 Hz, 1H), 7.07 (t, J = 7.7 Hz, 1H), 4.43 (s, 2H), 4.05 (t, J = 6.8 Hz, 2H), 3.45 (t, J = 6.6 Hz, 2H), 2.04 (s, 4H), 1.61 (dt, J = 7.6, 3.9 Hz, 4H), 1.30 (t, J = 5.9 Hz, 10H); ¹³C **NMR (151 MHz, CDCl₃)** δ 171.2, 141.1, 136.5, 136.4, 130.1, 126.6, 94.3, 71.9, 70.7, 64.6, 29.7, 29.4, 29.3, 29.2, 28.6, 26.1, 25.9, 21.0; **HRMS m/z (ESI)** calcd for C₁₈H₂₇IO₃Na (M + Na)⁺ 441.0897, found 441.0899.

11-4: Flame-dried 10 mL schlenk tube filled with N₂. 9-((3-Iodobenzyl)oxy)nonyl acetate **11-3** (4.5 mmol, 1.0 equiv), $PdCl_2(PPh_3)_2$ (0.18 mmol, 4 mol%), Trimethylsilylacetylene (6.75 mmol, 1.5 equiv), CuI (0.18 mmol, 4 mol%) were added in a glovebox, and TEA (4.5 mL) was added under N₂ outside the glovebox. The formed mixture was stirred at 60 °C for 9 h as monitored by TLC. The solvent was removed under vaccum directly. The residue was purifiedby flash column chromatography through silica gel using Petroleum ether/ethyl acetate as eluent to giveproduct **11-4** as a light yellow oil (1.61 g, 92%): ¹H NMR (600 MHz, CDCl₃) δ 7.44 (d, *J* = 2.1 Hz, 1H), 7.39 – 7.36 (m, 1H), 7.31 – 7.27 (m, 2H), 4.45 (s, 2H), 4.04 (t, *J* = 6.8 Hz, 2H), 3.43 (t, *J* = 6.6 Hz, 2H), 2.04 (s, 3H), 1.63 – 1.57 (m, 4H), 1.35 – 1.28 (m, 10H), 0.24 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 171.2, 138.8, 134.1, 131.1, 131.0, 128.2, 127.7, 123.1, 105.1, 94.1, 72.3, 70.6, 64.6, 29.7, 29.4, 29.3, 29.2, 28.6, 26.1, 25.9, 21.0; HRMS m/z (ESI) calcd for C₂₃H₃₇O₃Si (M + H)⁺ 389.2507, found 389.2509.

11-5: To a solution of 9-((3-((trimethylsilyl)ethynyl)benzyl)oxy)nonyl acetate **11-4** (4 mmol, 1.0 equiv.) in dry THF (4 mL) was added TBAF solution (4.8 mmol, 1M in THF, 4.8 mL, 1.2 equiv) dropwiseunder a nitrogen atmosphere. The reaction mixture was allowed to stir for 1 h at 0 °C. The reaction was quenched by adding H₂O (0.5 mL) and the mixture wasextracted with Et₂O. The combined organic layers were dried overanhydrous Na₂SO₄, filtered and evaporated under vacuum. The residue was

purifiedby flash column chromatography through silica gel using petroleum ether/ethyl acetate as eluent to give **11-5** (1.14 g, 90%) as a white solid: ¹H NMR (600 MHz, CDCl₃) δ 7.5 (s, 1H), 7.4 (dt, J = 7.2, 1.8 Hz, 1H), 7.3 – 7.3 (m, 2H), 4.5 (s, 2H), 4.0 (t, J = 6.8 Hz, 2H), 3.4 (t, J = 6.6 Hz, 2H), 3.1 (s, 1H), 2.0 (s, 3H), 1.6 – 1.6 (m, 4H), 1.3 (t, J = 6.0 Hz, 10H); ¹³C NMR (151 MHz, CDCl₃) δ 171.2, 139.0, 131.2, 131.2, 128.3, 128.0, 122.1, 83.6, 77.1, 72.3, 70.6, 64.6, 29.7, 29.4, 29.3, 29.2, 28.6, 26.1, 25.9, 21.0; HRMS m/z (ESI) calcd for C₂₀H₂₉O₃ (M + H)⁺ 317.2111, found 317.2116.

11-6: To a suspension sodium *p*-toluenesulfinate (7.2 mmol, 2.00 equiv.) in THF (18 mL) was added 9-((3-ethynylbenzyl)oxy)nonyl acetate **11-5** (5.0 mmol, 1.00 equiv.) followed by iodine (1.8 mmol, 0.50 equiv.), TBHP (10.8 mmol, 3 equiv) at 0 °C. The mixture was stirred for 16 h at room temperature before the excess iodine quenched with 10% aq. sodium thiosulfate. Sat. aq. NaHCO₃ was added and the product extracted into DCM. The combined organic phases were washed with H₂O, brine, dried with MgSO₄, filtered, and concentrated in vacuo. The crude product was purified by flash column chromatography using petroleum ether/ethyl acetate as eluent to give **11-6** (0.67 g, 40%) as a colorless oil: ¹H NMR (600 MHz, CDCl₃) δ 8.0 (d, *J* = 8.4 Hz, 2H), 7.5 (d, *J* = 1.8 Hz, 1H), 7.4 (dt, *J* = 8.1, 1.7 Hz, 2H), 7.4 (d, *J* = 8.3 Hz, 2H), 7.3 (t, *J* = 7.7 Hz, 1H), 4.5 (s, 2H), 4.0 (t, *J* = 6.8 Hz, 2H), 3.4 (t, *J* = 6.7 Hz, 2H), 2.5 (s, 3H), 2.0 (s, 3H), 1.6 (t, *J* = 3.3 Hz, 4H), 1.3 – 1.3 (m, 10H); ¹³C NMR (151 MHz, CDCl₃) δ 171.2, 145.3, 139.7, 138.9, 131.7, 131.5, 130.5, 130.0, 128.7, 127.5, 118.0, 93.0, 85.5, 71.9, 70.9, 64.6, 29.6, 29.4, 29.3, 29.2, 28.6, 26.1, 25.9, 21.7, 21.0; HRMS m/z (ESI) calcd for C₂₇H₃₅O₅S (M + H)⁺ 471.2200, found 471.2201.

11: To a solution of 9-((3-(tosylethynyl)benzyl)oxy)nonyl acetate 11-6 (1.44 mmol, 1.0 equiv.) in dry MeOH (6 mL) was added K_2CO_3 (1.73 mmol, 1.2 equiv) wiseunder a nitrogen atmosphere. The reaction mixture was allowed to stir for 40 min at 0 °C. The reaction was quenched by adding H₂O (0.5 mL) and the mixture wasextracted with DCM. The combined organic layers were dried overanhydrous Na₂SO₄, filtered and evaporated under vacuum. The residue was purifiedby flash column chromatography

through silica gel using petroleum ether/ethyl acetate as eluent to give **11** (0.31 g, 50%) as a colorless oil: ¹**H NMR (600 MHz, CDCl₃)** δ 7.95 (d, *J* = 8.3 Hz, 2H), 7.50 (s, 1H), 7.42 (dd, *J* = 5.6, 3.8 Hz, 2H), 7.39 (d, *J* = 8.3 Hz, 2H), 7.34 (t, *J* = 7.7 Hz, 1H), 4.45 (s, 2H), 3.63 (t, *J* = 6.6 Hz, 2H), 3.44 (t, *J* = 6.6 Hz, 2H), 2.47 (s, 3H), 1.59 (dd, *J* = 15.5, 7.6 Hz, 4H), 1.35 – 1.28 (m, 10H); ¹³C NMR (151 MHz, CDCl₃) δ 145.4, 139.6, 138.9, 131.7, 131.5, 130.5, 130.0, 128.7, 127.5, 118.0, 93.0, 85.4, 71.8, 70.9, 63.0, 32.7, 29.7, 29.6, 29.5, 29.3, 26.1, 25.7, 21.7; HRMS m/z (ESI) calcd for C₂₅H₃₂O₄SNa (M + Na)⁺ 451.1913, found 451.1915.

12: To an oven dried 25 mL schlenk tube equipped with a N_2 was added NHC-1 (0.3 mmol, 1.00 equiv), 11 (0.30 mmol, 1.00 equiv), and anhydrous MTBE (1.5 ml). Pyridine (0.32 mmol, 1.05 equiv) was added dropwise, and the suspension was stirred at room temperature under nitrogen atmosphere for 15 minutes.

Another oven-dried 25mL schlenk tube was charged with iridium photocatalyst PC-2 $Ir[dF(CF_3)ppy)]_2(dtbbpy)PF_6$ (2.0 µmol, 1 mol%), cesium acetate (0.90 mmol, 3.00 equiv) and THF (21 ml) was added to the mixture.

The methyl *t*ert-butyl ether suspension was transferred to a 2.5 mL syringe under air. Then a syringe filter and new needle were installed on the syringe, before the methyl *t*ert-butyl ether solution was injected through the syringe filter into the THF solution. The reaction solution was degassed by sparging with nitrogen for 15 minutes. The mixture was then stirred irradiated with a 45 W Blue LED (approximately 5 cm away from the light source) at room temperature for 36 h. The crude reaction mixture was directly concentrated to remove both methyl *t*ert-butyl ether and THF solvents. EtOAc was added to the concentrated crude reaction mixture followed by filtration through a silica plug. The residue was purifiedby flash column chromatography through silica gel using petroleum ether/ethyl acetate as eluent to give **12** (18.6 mg, 36%) as a yellow oil:

¹H NMR (600 MHz, CDCl₃) δ 7.65 (s, 1H), 7.21 (d, J = 4.7 Hz, 2H), 7.03 – 6.99 (m, 1H), 4.58 (s, 2H), 3.47 (t, J = 5.2 Hz, 2H), 2.44 – 2.41 (m, 2H), 1.63 (tdd, J = 11.2, 7.8, 4.4 Hz, 8H), 1.46 – 1.36 (m, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 139.4, 130.4, 128.5, 128.0, 125.4, 124.4, 91.9, 81.9, 71.3, 68.6, 30.0, 29.3, 28.8, 28.7, 28.4, 27.2, 26.4, 19.6;

HRMS m/z (ESI) calcd for $C_{18}H_{25}O (M + H)^+ 257.1900$, found 257.1894.

7. Mechanistic experiments.

7.1 The Radical Clock Experiment

To an oven dried 25 mL schlenk tube equipped with a N_2 was added NHC-1 (0.5 mmol, 1.00 equiv), **13** (0.50 mmol, 1.00 equiv), and anhydrous MTBE (2.5 ml). Pyridine (0.53 mmol, 1.05 equiv) was added dropwise, and the suspension was stirred at room temperature under nitrogen atmosphere for 15 minutes.

Another oven-dried 25mL schlenk tube was charged with iridium photocatalyst PC-2 Ir[dF(CF₃)ppy)]₂(dtbbpy)PF₆ (2.0 μ mol, 1 mol%), **2a** (0.2 mmol, 1.0 equiv) cesium acetate (0.90 mmol, 3.00 equiv) and THF (2.5 ml) was added to the mixture.

The methyl *t*ert-butyl ether suspension was transferred to a 2.5 mL syringe under air. Then a syringe filter and new needle were installed on the syringe, before the methyl *t*ert-butyl ether solution was injected through the syringe filter into the THF solution. The reaction solution was degassed by sparging with nitrogen for 15 minutes. The mixture was then stirred irradiated with a 45 W Blue LED (approximately 5 cm away from the light source) at room temperature for 36 h. The crude reaction mixture was directly concentrated to remove both methyl *t*ert-butyl ether and THF solvents. EtOAc was added to the concentrated crude reaction mixture followed by filtration through a silica plug. The residue was purified by flash column chromatography through silica gel using petroleum ether/ethyl acetate as eluent to give **14** (22.0 mg, 42%) as a colorless oil. ¹H-NMR and ¹³C-NMR data are consistent with literature report. ⁹: ¹H NMR (600 MHz, CDCl₃) δ 7.32 (t, *J* = 7.6 Hz, 4H), 7.24 – 7.21 (m, 2H), 7.19 – 7.16 (m, 4H), 5.41 (ddt, *J* = 17.1, 10.2, 7.0 Hz, 2H), 4.81 – 4.67 (m, 4H), 2.88 – 2.80 (m, 2H), 2.15 (dddd,

To an oven dried 25 mL schlenk tube equipped with a N_2 was added NHC-1 (0.5 mmol, 1.00 equiv), **15** (0.50 mmol, 1.00 equiv), and anhydrous MTBE (2.5 ml). Pyridine (0.53 mmol, 1.05 equiv) was added dropwise, and the suspension was stirred at room temperature under nitrogen atmosphere for 15 minutes.

Another oven-dried 25mL schlenk tube was charged with iridium photocatalyst PC-2 (2.0 μ mol, 1 mol%), **2a** (0.2 mmol, 1.0 equiv) cesium acetate (0.90 mmol, 3.00 equiv) and THF (2.5 ml) was added to the mixture.

The methyl *t*ert-butyl ether suspension was transferred to a 2.5 mL syringe under air. Then a syringe filter and new needle were installed on the syringe, before the methyl *t*ert-butyl ether solution was injected through the syringe filter into the THF solution. The reaction solution was degassed by sparging with nitrogen for 15 minutes. The mixture was then stirred irradiated with a 45 W Blue LED (approximately 5 cm away from the light source) at room temperature for 36 h. The crude reaction mixture was directly concentrated to remove both methyl *t*ert-butyl ether and THF solvents. EtOAc was added to the concentrated crude reaction mixture followed by filtration through a silica plug. The residue was purifiedby flash column chromatography through silica gel using petroleum ether/ethyl acetate as eluent to give **16** (20.3 mg, 55%) as a colorless oil: **¹H NMR (600 MHz, CDCl₃)** δ 7.40 (dd, *J* = 7.8, 1.7 Hz, 2H), 7.30 – 7.25 (m, 3H), 2.42 (d, *J* = 6.8 Hz, 2H), 2.14 (hept, *J* = 7.7 Hz, 1H), 1.89 – 1.80 (m, 2H), 1.72 – 1.63 (m, 2H), 1.58 (tddd, *J* = 9.6, 7.4, 5.0, 2.9 Hz, 2H), 1.42 – 1.32 (m, 2H); ¹³C **NMR (151 MHz, CDCl₃)** δ 131.5, 128.1, 127.4, 124.1, 89.9, 80.6, 39.1, 32.0, 25.3, 25.2; **HRMS m/z (ESI)** calcd for C₁₄H₁₇ (M + H)⁺ 185.1325, found 185.1325.

7.2. Emission Quenching Experiments (Stern–Volmer Studies)

Fluorescence quenching studies were performed using an EDINBURCH

INSTRUMENTS Spectrofluorometer FS5. In each experiment, the photocatalyst and varying concentrations of quencher were weighed and diluted in the glove box, and combined in a THF in screw top 1.0 cm quartz cuvettes. THF were degassed separately outside of the glove box by sparging with N₂ for 5 minutes, the emission of the sample was collected. For the emission quenching of $Ir[dF(CF_3)ppy)]_2(dtbbpy)PF_6$, the photocatalyst concentration was 2.0×10^{-5} M, the solution was irradiated at 430 nm, and the emission intensity was observed at 480 nm. Plots were constructed according to the Stern–Volmer equation $I_0/I = 1+k_q\tau_0[Q]$.

Figure S2. Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ emission quenching with Alkyne.

Figure S4. $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ emission quenching with NHC-alcohol.

Figure S5. Stern–Volmer fluorescence quenching

8. References

1 F.Y. Yue, H.A. Ma, H.J. Song, et al., Chem. Sci. 13 (2022) 13466-13474.

2 Z. Lu, T. Kumon, G.B. Hammond, T. Umemoto, *Angew. Chem. Int. Ed.* 60 (2021) 16171-16177.

3 W. Li, L. Zhou, Org. Lett. 24 (2022) 3976-3981.

- 4 Y. Gui, L. Qiu, Y. Li, H. Li, S. Dong, J. Am. Chem. Soc. 138 (2016) 4890-4899.
- 5 L. Gnägi, S.V. Martz, D. Meyer, R. M. Schärer, P. Renaud, Org. Lett. 25 (2019) 11646-11649.
- 6 Z. Dong, D.W.C. MacMillan, Nature 598 (2021) 451-456.
- 7 H. Huang, G. Zhang, L. Gong, S. Zhang, Y. Chen, J. Am. Chem. Soc. 136 (2014) 2280-2283.
- 8 S. Kudret, J. Kesters, S. Janssen, et al., React. Funct. Polym. 75 (2014) 22-30.
- 9 H. Wang, J.-F. Zhao, X.-L. Zhu, Q.-Q. Tian, W. He, Org. Lett. 25 (2023) 6485-6489.

9. Copies of NMR Spectra

¹H NMR Spectrum of 3b

¹H NMR Spectrum of 3c

¹H NMR Spectrum of 3d

¹H NMR Spectrum of 3e

¹H NMR Spectrum of 3f

¹H NMR Spectrum of 3g

¹⁹F NMR Spectrum of 3g

¹³C NMR Spectrum of 3h

50 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 f1 (ppm)

¹³C NMR Spectrum of 30

¹³C NMR Spectrum of 3z

¹³C NMR Spectrum of 3aa

¹³C NMR Spectrum of 3ab

¹³C NMR Spectrum of 3ac

¹³C NMR Spectrum of 3ad

140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 f1 (ppm)

¹³C NMR Spectrum of 3ae

¹³C NMR Spectrum of 3af

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -: f1 (ppm)

¹H NMR Spectrum of 3ag

¹³C NMR Spectrum of 3ag

¹³C NMR Spectrum of 3ah

¹³C NMR Spectrum of 3am

-55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 f1 (ppm)

¹H NMR Spectrum of 3ao

¹H NMR Spectrum of 3ap

¹H NMR Spectrum of 3aq

145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 F1 (ppm)

¹⁹F NMR Spectrum of 3aq

-40 -45 f1 (ppm)

-35

-90

-85

-80

-75

-65

-15

-25

¹H NMR Spectrum of 3as

¹³C NMR Spectrum of 3as

145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 f1 (ppm)

¹³C NMR Spectrum of 3at

¹³C NMR Spectrum of 3au

145 140 135 130 125 120 115 110 105 100 75 70 f1 (ppm)

¹H NMR Spectrum of 3aw

¹H NMR Spectrum of 5a

¹³C NMR Spectrum of 5a

145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 f1 (ppm)

¹³C NMR Spectrum of 5b

150 145 140 135 130 125 120 115 110 105 100 80 75 f1 (ppm)

¹H NMR Spectrum of 5c

- 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 Γι (ρρω)

¹H NMR Spectrum of 5f

¹³C NMR Spectrum of 5f

145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 f1 (ppm)

¹³C NMR Spectrum of 5g

¹H NMR Spectrum of 5j(*E*)

145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 85 80 55 50 45 40 35 30 25 20 15 10 5 0 r1 (ppm)

¹H NMR Spectrum of 5j(Z)

¹³C NMR Spectrum of 5j(*Z*)

145 140 135 130 125 120 115 110 105 100 95 90 85 80

75 70 f1 (ppm)

65 60

55 50

45 40 35 30

5 0

25 20

15 10

¹³C NMR Spectrum of 5k

¹³C NMR Spectrum of 51

¹⁹F NMR Spectrum of 5l

¹H NMR Spectrum of 5n

¹³C NMR Spectrum of 5n

¹⁹F NMR Spectrum of 5n

¹H NMR Spectrum of 50

¹³C NMR Spectrum of 5q

¹³C NMR Spectrum of 5r

¹⁹F NMR Spectrum of 5r

-90.55 -90.63 -90.90

¹H NMR Spectrum of 5s

¹³C NMR Spectrum of 5s

¹⁹F NMR Spectrum of 5t

¹H NMR Spectrum of 5u

¹³C NMR Spectrum of 5u

¹⁹F NMR Spectrum of 5u

¹H NMR Spectrum of 6-1

-50

-55 -60

-35 -40

¹³C NMR Spectrum of 6-1

140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 f1 (ppm)

¹³C NMR Spectrum of 6

¹H NMR Spectrum of 7-1

¹³C NMR Spectrum of 7-1

¹H NMR Spectrum of 7

¹³C NMR Spectrum of 7

¹H NMR Spectrum of 9

¹H NMR Spectrum of 11-4
$\begin{array}{c} - 4.45 \\ 4.05 \\ 4.03 \\ 4.03 \\ 3.43 \\ 3.42 \\ 3.42 \end{array}$

¹³C NMR Spectrum of 11-4 - 138.84 - 134.12 - 131.01 - 131.01 - 128.25 - 123.09 - 123.09 - 171.24 29.70 29.35 20.35 20.55 TMS OAc Ο 11-4 f1 (ppm)

¹³C NMR Spectrum of 11-5

¹³C NMR Spectrum of 11

¹H NMR Spectrum of 12

^{145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0} f1 (ppm)

¹H NMR Spectrum of 14

¹H NMR Spectrum of 16

¹³C NMR Spectrum of 16

135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 f1 (ppm)