Selective photochemical synthesis of primary arylamines and symmetric diarylamines via amination of aryl bromides using Ni(NH$_3$)$_6$Cl$_2$ as a nitrogen source and catalyst

Zhehui Xu, Jianyang Dong, Geyang Song, Fuqiang Kong, Gang Li, Dong Xue*

*Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062 (China).

E-mail: xuedong_welcome@snnu.edu.cn

Table of contents

1. General information .. S1
2. Optimization of reaction conditions .. S2
3. General procedure for reactions .. S9
4. Analytical data of products .. S13
5. References ... S28
6. Copies of 1H NMR, 13C NMR and 19F NMR spectra of products .. S31
1. General information

Unless otherwise specified, the chemicals were obtained commercially and used
without further purification. All reactions were carried out under argon atmosphere with
dry solvents under anhydrous conditions. Analytical thin-layer chromatography (TLC)
was conducted with TLC plates (Silica gel 60 F254, Qingdao Haiyang) and
visualization on TLC was achieved by UV light and the use of ninhydrin and iodine
color developer to assist. Flash column chromatography was performed on silica gel
200-300 mesh.

1H NMR spectra, 13C{1H} NMR spectra and 19F NMR spectra were recorded on a
Bruker Advance 400 MHz spectrometer. 1H NMR spectra was reported in units of parts
per million (ppm) relative to tetramethylsilane (δ 0 ppm), CDCl$_3$ (δ 7.26 ppm) or
DMSO-d$_6$ (δ 2.50 ppm). Multiplicities are given as: br (broad), s (singlet), d (doublet),
t (triplet), q (quartet), dd (doublets of doublet), dt (doublets of triplet) or m (multiplet).
13C{1H} NMR spectra was reported in ppm relative to tetramethylsilane (δ 0 ppm),
CDCl$_3$ (δ 77.16 ppm) or DMSO-d$_6$ (δ 39.52 ppm). HRMS (ESI) were performed on
fourier transform ion cyclotron resonance mass spectrometer.

The purple LED lamp used in the experiments was assembled by ourselves (Figure
S1). Each of lamp include: 9 W purple LED (390-395 nm, 3 LED lamp beads in series),
aluminium radiator with fan, electric driver (XC-8W600-OS). The optical power up to
200 ± 10 mw at 1 cm axis distance detected by Thorlabs’ Optical Power Meter
(PM100D, S120VC). The LED beads were purchased from Zhuhai UV Optoelectronics
Co., Ltd. (THUV395T3WL-3535-60).

Figure S1. Pictures of photo device and reaction tube
2. Optimization of reaction conditions

2.1 The reaction conditions for preparation of primary arylamines

Table S1. The screening of solvents

<table>
<thead>
<tr>
<th>entry</th>
<th>solvent (2.0 mL)</th>
<th>diarylamine</th>
<th>arylamine</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DMSO</td>
<td>13%</td>
<td>59%</td>
</tr>
<tr>
<td>2</td>
<td>DMF</td>
<td>16%</td>
<td>51%</td>
</tr>
<tr>
<td>3</td>
<td>DMAc</td>
<td>13%</td>
<td>42%</td>
</tr>
<tr>
<td>4</td>
<td>THF</td>
<td>N.D.</td>
<td>trace</td>
</tr>
<tr>
<td>5</td>
<td>1,4-Dioxane</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>6</td>
<td>CH$_3$CN</td>
<td>N.D.</td>
<td>7%</td>
</tr>
<tr>
<td>7</td>
<td>2-MeTHF</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>8</td>
<td>DMSO:THF=5:1</td>
<td>5%</td>
<td>35%</td>
</tr>
<tr>
<td>9</td>
<td>DMSO:THF=9:1</td>
<td>5%</td>
<td>16%</td>
</tr>
</tbody>
</table>

Reaction conditions: aryl bromide (0.2 mmol), Ni(NH$_3$)$_6$Cl$_2$ (35 mol%), d-Me bpy (5 mol%), DBU (1.5 equiv), solvent (2.0 mL), purple LEDs (390-395 nm), 65-70 °C, Ar, 24 h. Yields determined by 1H NMR using 1,3-benzodioxole as an internal standard.

Table S2. The screening of bases

<table>
<thead>
<tr>
<th>entry</th>
<th>base (1.5 equiv)</th>
<th>diarylamine</th>
<th>arylamine</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DBU</td>
<td>13%</td>
<td>59%</td>
</tr>
<tr>
<td>2</td>
<td>DBN</td>
<td>7%</td>
<td>31%</td>
</tr>
<tr>
<td>3</td>
<td>TBD</td>
<td>23%</td>
<td>40%</td>
</tr>
<tr>
<td>4</td>
<td>MTBD</td>
<td>trace</td>
<td>98%</td>
</tr>
<tr>
<td>5</td>
<td>DMTHPM</td>
<td>18%</td>
<td>61%</td>
</tr>
<tr>
<td>6</td>
<td>DABCO</td>
<td>5%</td>
<td>trace</td>
</tr>
<tr>
<td>7</td>
<td>TMG</td>
<td>6%</td>
<td>41%</td>
</tr>
<tr>
<td>8</td>
<td>t-BuTMG</td>
<td>trace</td>
<td>86%</td>
</tr>
<tr>
<td>9</td>
<td>DIPEA</td>
<td>trace</td>
<td>N.D.</td>
</tr>
<tr>
<td>10</td>
<td>Et$_3$N</td>
<td>5%</td>
<td>trace</td>
</tr>
</tbody>
</table>

Reaction conditions: aryl bromide (0.2 mmol), Ni(NH$_3$)$_6$Cl$_2$ (35 mol%), d-Me bpy (5 mol%), base (1.5 equiv), DMSO (2.0 mL), purple LEDs (390-395 nm), 65-70 °C, Ar, 24 h. Yields determined by 1H NMR using 1,3-benzodioxole as an internal standard.
Table S3. The screening of ligands

<table>
<thead>
<tr>
<th>Ligand</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>76%</td>
</tr>
<tr>
<td>b</td>
<td>83%</td>
</tr>
<tr>
<td>c</td>
<td>81%</td>
</tr>
<tr>
<td>d</td>
<td>N.D.</td>
</tr>
<tr>
<td>e</td>
<td>61%</td>
</tr>
<tr>
<td>f</td>
<td>80%</td>
</tr>
<tr>
<td>g</td>
<td>4%</td>
</tr>
<tr>
<td>h</td>
<td>39%</td>
</tr>
<tr>
<td>i</td>
<td>51%</td>
</tr>
<tr>
<td>j</td>
<td>53%</td>
</tr>
<tr>
<td>k</td>
<td>34%</td>
</tr>
</tbody>
</table>

Reaction conditions: aryl bromide (0.2 mmol), Ni(NH$_3$)$_6$Cl$_2$ (35 mol%), ligand (5 mol%), t-BuTMG (1.5 equiv), DMSO (2.0 mL), purple LEDs (390-395 nm), 65-70 °C, Ar, 24 h. The yields of arylamines were determined by 1H NMR using 1,3-benzodioxole as an internal standard.

Table S4. The screening of the amount of DMSO

<table>
<thead>
<tr>
<th>Entry</th>
<th>DMSO (x mL)</th>
<th>Diarylamine</th>
<th>Arylamine</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0 mL</td>
<td>5%</td>
<td>70%</td>
</tr>
<tr>
<td>2</td>
<td>1.5 mL</td>
<td>trace</td>
<td>77%</td>
</tr>
<tr>
<td>3</td>
<td>2.0 mL</td>
<td>trace</td>
<td>80%</td>
</tr>
<tr>
<td>4</td>
<td>2.5 mL</td>
<td>trace</td>
<td>76%</td>
</tr>
<tr>
<td>5</td>
<td>3.0 mL</td>
<td>trace</td>
<td>65%</td>
</tr>
</tbody>
</table>

Reaction conditions: aryl bromide (0.2 mmol), Ni(NH$_3$)$_6$Cl$_2$ (35 mol%), d-Meppy (5 mol%), t-BuTMG (1.5 equiv), DMSO (x mL), purple LEDs (390-395 nm), 65-70 °C, Ar, 24 h. Yields determined by 1H NMR using 1,3-benzodioxole as an internal standard.
Table S5. The screening of Ni(NH$_3$)$_6$X$_2$ (x mol%) for diarylation

<table>
<thead>
<tr>
<th>entry</th>
<th>[Ni]-NH$_3$ (x mol%)</th>
<th>diaryamine</th>
<th>arylamine</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ni(NH$_3$)$_6$Br$_2$ (35 mol%)</td>
<td>5%</td>
<td>62%</td>
</tr>
<tr>
<td>2</td>
<td>Ni(NH$_3$)$_6$I$_2$ (35 mol%)</td>
<td>trace</td>
<td>40%</td>
</tr>
<tr>
<td>3</td>
<td>Ni(NH$_3$)$_6$Cl$_2$ (17 mol%)</td>
<td>trace</td>
<td>75%</td>
</tr>
<tr>
<td>4</td>
<td>Ni(NH$_3$)$_6$Cl$_2$ (20 mol%)</td>
<td>trace</td>
<td>74%</td>
</tr>
<tr>
<td>5</td>
<td>Ni(NH$_3$)$_6$Cl$_2$ (25 mol%)</td>
<td>trace</td>
<td>79%</td>
</tr>
<tr>
<td>6</td>
<td>Ni(NH$_3$)$_6$Cl$_2$ (30 mol%)</td>
<td>trace</td>
<td>79%</td>
</tr>
<tr>
<td>7</td>
<td>Ni(NH$_3$)$_6$Cl$_2$ (35 mol%)</td>
<td>trace</td>
<td>83%</td>
</tr>
<tr>
<td>8</td>
<td>Ni(NH$_3$)$_6$Cl$_2$ (40 mol%)</td>
<td>trace</td>
<td>80%</td>
</tr>
</tbody>
</table>

Reaction conditions: aryl bromide (0.2 mmol), Ni(NH$_3$)$_6$X$_2$ (x mol%), d-MeCy (5 mol%), t-BuTMG (1.5 equiv), DMSO (x mL), purple LEDs (390-395 nm), 65-70 °C, Ar, 24 h. Yields determined by 1H NMR using 1,3-benzodioxole as an internal standard.

Table S6. Control experiments

<table>
<thead>
<tr>
<th>entry</th>
<th>reaction conditions</th>
<th>diaryamine</th>
<th>arylamine</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Standard conditions</td>
<td>trace</td>
<td>98%</td>
</tr>
<tr>
<td>2</td>
<td>No Ni(NH$_3$)$_6$Cl$_2$</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>3</td>
<td>No ligand</td>
<td>N.D.</td>
<td>11%</td>
</tr>
<tr>
<td>4</td>
<td>No base</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>5</td>
<td>No light, 70 °C</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>6</td>
<td>Air instead of Ar</td>
<td>N.D.</td>
<td>31%</td>
</tr>
</tbody>
</table>

Reaction conditions: aryl bromide (0.2 mmol), Ni(NH$_3$)$_6$Cl$_2$ (35 mol%), d-MeCy (5 mol%), MTBD (1.5 equiv), DMSO (2.0 mL), purple LEDs (390-395 nm), 65-70 °C, Ar, 24 h. Yields determined by 1H NMR using 1,3-benzodioxole as an internal standard.
2.2 The reaction conditions for preparation of symmetric diarylamines

Table S7. The screening of photosensitizers

<table>
<thead>
<tr>
<th>entry</th>
<th>PS (2.0 mol%)</th>
<th>diaryamine</th>
<th>arylamine</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>—</td>
<td>10%</td>
<td>48%</td>
</tr>
<tr>
<td>2</td>
<td>BP (5.0 mol%)</td>
<td>23%</td>
<td>49%</td>
</tr>
<tr>
<td>3</td>
<td>[Ir(dtbbpy)(ppy)$_2$][PF$_6$] (2.0 mol%)</td>
<td>45%</td>
<td>45%</td>
</tr>
<tr>
<td>4</td>
<td>[Ir(dF(CF$_3$)$_2$ppy)$_2$(dtbbpy)][PF$_6$] (2.0 mol%)</td>
<td>22%</td>
<td>8%</td>
</tr>
<tr>
<td>5</td>
<td>Ru(2,2'-bpy)$_2$Cl$_2$·6H$_2$O (2.0 mol%)</td>
<td>10%</td>
<td>36%</td>
</tr>
</tbody>
</table>

Reaction conditions: aryl bromide (0.2 mmol), Ni(NH$_3$)$_6$Cl$_2$ (35 mol%), d-Mebpy (5 mol%), PS (2.0 mol% / 5.0 mol%), DBU (1.5 equiv), DMSO:THF=1:1 (2.0 mL), purple LEDs (390-395 nm), 65-70 °C, Ar, 24 h. Yields determined by 1H NMR using 1,3,5-trimethoxybenzene as an internal standard.

Table S8. The screening of bases

<table>
<thead>
<tr>
<th>entry</th>
<th>base (1.5 equiv)</th>
<th>diaryamine</th>
<th>arylamine</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DBU</td>
<td>46%</td>
<td>45%</td>
</tr>
<tr>
<td>2</td>
<td>DBN</td>
<td>42%</td>
<td>24%</td>
</tr>
<tr>
<td>3</td>
<td>TBD</td>
<td>trace</td>
<td>14%</td>
</tr>
<tr>
<td>4</td>
<td>MTBD</td>
<td>5%</td>
<td>6%</td>
</tr>
<tr>
<td>5</td>
<td>DMTHPM</td>
<td>31%</td>
<td>46%</td>
</tr>
<tr>
<td>6</td>
<td>DABCO</td>
<td>trace</td>
<td>6%</td>
</tr>
<tr>
<td>7</td>
<td>TMG</td>
<td>29%</td>
<td>30%</td>
</tr>
<tr>
<td>8</td>
<td>t-BuTMG</td>
<td>38%</td>
<td>58%</td>
</tr>
<tr>
<td>9</td>
<td>DIPEA</td>
<td>trace</td>
<td>trace</td>
</tr>
<tr>
<td>10</td>
<td>DIPA</td>
<td>31%</td>
<td>12%</td>
</tr>
<tr>
<td>11</td>
<td>Et$_3$N</td>
<td>trace</td>
<td>7%</td>
</tr>
</tbody>
</table>

Reaction conditions: aryl bromide (0.2 mmol), Ni(NH$_3$)$_6$Cl$_2$ (35 mol%), d-Mebpy (5 mol%), [Ir(dtbbpy)(ppy)$_2$][PF$_6$] (2.0 mol%), base (1.5 equiv), DMSO:THF=1:1 (2.0 mL), purple LEDs (390-395 nm), 65-70 °C, Ar, 24 h. Yields determined by 1H NMR using 1,3,5-trimethoxybenzene as an internal standard.
Table S9. The screening of solvents, light sources and additives

![Reaction conditions diagram]

<table>
<thead>
<tr>
<th>entry</th>
<th>solvent (2.0 mL)</th>
<th>light source</th>
<th>additive (1.0 equiv)</th>
<th>diarylamine</th>
<th>aryamine</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DMSO:THF=1:1</td>
<td>390-395 nm</td>
<td>—</td>
<td>45%</td>
<td>45%</td>
</tr>
<tr>
<td>2</td>
<td>THF</td>
<td>390-395 nm</td>
<td>—</td>
<td>20%</td>
<td>trace</td>
</tr>
<tr>
<td>3</td>
<td>1,4-Dioxane</td>
<td>390-395 nm</td>
<td>—</td>
<td>23%</td>
<td>trace</td>
</tr>
<tr>
<td>4</td>
<td>CH$_3$CN</td>
<td>390-395 nm</td>
<td>—</td>
<td>21%</td>
<td>60%</td>
</tr>
<tr>
<td>5</td>
<td>2-MeTHF</td>
<td>390-395 nm</td>
<td>—</td>
<td>17%</td>
<td>8%</td>
</tr>
<tr>
<td>6</td>
<td>Toluene</td>
<td>390-395 nm</td>
<td>—</td>
<td>15%</td>
<td>trace</td>
</tr>
<tr>
<td>7</td>
<td>DMSO</td>
<td>390-395 nm</td>
<td>—</td>
<td>46%</td>
<td>46%</td>
</tr>
<tr>
<td>8</td>
<td>DMAc</td>
<td>390-395 nm</td>
<td>—</td>
<td>45%</td>
<td>18%</td>
</tr>
<tr>
<td>9</td>
<td>DMF</td>
<td>390-395 nm</td>
<td>—</td>
<td>50%</td>
<td>17%</td>
</tr>
<tr>
<td>10</td>
<td>DMF</td>
<td>365-370 nm</td>
<td>—</td>
<td>21%</td>
<td>35%</td>
</tr>
<tr>
<td>11</td>
<td>DMF</td>
<td>460-465 nm</td>
<td>—</td>
<td>35%</td>
<td>45%</td>
</tr>
<tr>
<td>12</td>
<td>DMF</td>
<td>490-495 nm</td>
<td>—</td>
<td>32%</td>
<td>57%</td>
</tr>
<tr>
<td>13</td>
<td>DMF</td>
<td>520-530 nm</td>
<td>—</td>
<td>26%</td>
<td>54%</td>
</tr>
<tr>
<td>14</td>
<td>DMF</td>
<td>390-395 nm</td>
<td>TBAC</td>
<td>32%</td>
<td>29%</td>
</tr>
<tr>
<td>15</td>
<td>DMF</td>
<td>390-395 nm</td>
<td>TBAB</td>
<td>39%</td>
<td>18%</td>
</tr>
<tr>
<td>16</td>
<td>DMF</td>
<td>390-395 nm</td>
<td>TBAI</td>
<td>9%</td>
<td>63%</td>
</tr>
<tr>
<td>17</td>
<td>DMF</td>
<td>390-395 nm</td>
<td>NaCl</td>
<td>44%</td>
<td>24%</td>
</tr>
<tr>
<td>18</td>
<td>DMF</td>
<td>390-395 nm</td>
<td>NaBr</td>
<td>38%</td>
<td>27%</td>
</tr>
<tr>
<td>19</td>
<td>DMF</td>
<td>390-395 nm</td>
<td>KBr</td>
<td>45%</td>
<td>27%</td>
</tr>
<tr>
<td>20</td>
<td>DMF</td>
<td>390-395 nm</td>
<td>KI</td>
<td>8%</td>
<td>74%</td>
</tr>
</tbody>
</table>

Reaction conditions: aryl bromide (0.2 mmol), Ni(NH$_3$)$_6$Cl$_2$ (35 mol%), d-Me bpy (5 mol%), [Ir(dtbbpy)(ppy)$_2$][PF$_6$] (2.0 mol%), DBU (1.5 equiv), additive (1.0 equiv), solvent (2.0 mL), light source, 65-70 °C, Ar, 24 h. Yields determined by 1H NMR using 1,3,5-trimethoxybenzene as an internal standard.
Table S10. The screening of the amount of DBU, DMSO and [Ir(dtbbpy)(ppy)2][PF6]

<table>
<thead>
<tr>
<th>entry</th>
<th>DBU (y equiv)</th>
<th>DMSO (z mL)</th>
<th>[Ir] (x mol%)</th>
<th>diarylamine</th>
<th>arylamine</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5</td>
<td>2.0 mL</td>
<td>2.0 mol%</td>
<td>32%</td>
<td>11%</td>
</tr>
<tr>
<td>2</td>
<td>1.0</td>
<td>2.0 mL</td>
<td>2.0 mol%</td>
<td>61%</td>
<td>21%</td>
</tr>
<tr>
<td>3</td>
<td>1.5</td>
<td>2.0 mL</td>
<td>2.0 mol%</td>
<td>47%</td>
<td>38%</td>
</tr>
<tr>
<td>4</td>
<td>2.0</td>
<td>2.0 mL</td>
<td>2.0 mol%</td>
<td>48%</td>
<td>39%</td>
</tr>
<tr>
<td>5</td>
<td>2.5</td>
<td>2.0 mL</td>
<td>2.0 mol%</td>
<td>42%</td>
<td>46%</td>
</tr>
<tr>
<td>6</td>
<td>3.0</td>
<td>2.0 mL</td>
<td>2.0 mol%</td>
<td>39%</td>
<td>48%</td>
</tr>
<tr>
<td>7</td>
<td>3.5</td>
<td>2.0 mL</td>
<td>2.0 mol%</td>
<td>36%</td>
<td>51%</td>
</tr>
<tr>
<td>8</td>
<td>1.0</td>
<td>1.0 mL</td>
<td>2.0 mol%</td>
<td>63%</td>
<td>11%</td>
</tr>
<tr>
<td>9</td>
<td>1.0</td>
<td>1.5 mL</td>
<td>2.0 mol%</td>
<td>59%</td>
<td>17%</td>
</tr>
<tr>
<td>10</td>
<td>1.0</td>
<td>2.5 mL</td>
<td>2.0 mol%</td>
<td>55%</td>
<td>17%</td>
</tr>
<tr>
<td>11</td>
<td>1.0</td>
<td>3.0 mL</td>
<td>2.0 mol%</td>
<td>54%</td>
<td>20%</td>
</tr>
<tr>
<td>12</td>
<td>1.0</td>
<td>1.0 mL</td>
<td>0.5 mol%</td>
<td>36%</td>
<td>39%</td>
</tr>
<tr>
<td>13</td>
<td>1.0</td>
<td>1.0 mL</td>
<td>1.0 mol%</td>
<td>50%</td>
<td>32%</td>
</tr>
<tr>
<td>14</td>
<td>1.0</td>
<td>1.0 mL</td>
<td>1.5 mol%</td>
<td>61%</td>
<td>17%</td>
</tr>
<tr>
<td>15</td>
<td>1.0</td>
<td>1.0 mL</td>
<td>2.5 mol%</td>
<td>65%</td>
<td>24%</td>
</tr>
<tr>
<td>16</td>
<td>1.0</td>
<td>1.0 mL</td>
<td>3.0 mol%</td>
<td>65%</td>
<td>25%</td>
</tr>
<tr>
<td>17</td>
<td>1.0</td>
<td>1.0 mL</td>
<td>3.5 mol%</td>
<td>72%</td>
<td>15%</td>
</tr>
<tr>
<td>18</td>
<td>1.0</td>
<td>1.0 mL</td>
<td>4.0 mol%</td>
<td>69%</td>
<td>15%</td>
</tr>
</tbody>
</table>

Reaction conditions: aryl bromide (0.2 mmol), Ni(NH3)6Cl2 (35 mol%), d-Meppy (5 mol%), [Ir(dtbbpy)(ppy)2][PF6] (x mol%), DBU (y equiv), DMSO (z mL), purple LEDs (390-395 nm), 65-70 °C, Ar, 24 h. Yields determined by 1H NMR using 1,3,5-trimethoxybenzene as an internal standard.

Table S11. The screening of Ni(NH3)6X2

<table>
<thead>
<tr>
<th>entry</th>
<th>[Ni]-NH3 (35 mol%)</th>
<th>diarylamine</th>
<th>arylamine</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ni(NH3)6Cl2</td>
<td>73%</td>
<td>15%</td>
</tr>
<tr>
<td>2</td>
<td>Ni(NH3)6Br2</td>
<td>61%</td>
<td>8%</td>
</tr>
<tr>
<td>3</td>
<td>Ni(NH3)6I2</td>
<td>8%</td>
<td>79%</td>
</tr>
</tbody>
</table>

Reaction conditions: aryl bromide (0.2 mmol), Ni(NH3)6X2 (35 mol%), d-Meppy (5 mol%), [Ir(dtbbpy)(ppy)2][PF6] (3.5 mol%), DBU (1.0 equiv), DMSO (1.0 mL), purple LEDs (390-395 nm), 65-70 °C, Ar, 24 h. Yields determined by 1H NMR using 1,3,5-trimethoxybenzene as an internal standard.
Table S12. The screening of ligands

Ni(NH$_3$)$_6$Cl$_2$ (35 mol%) & ligand (5 mol%) & [Ir(dtbbpy)(ppy)$_2$][PF$_6$] (3.5 mol%)

DBU (1.0 equiv) & DMSO (1.0 mL) & 390-395 nm, 65-70 °C, 24 h

<table>
<thead>
<tr>
<th>Ligand</th>
<th>Diarylamine</th>
<th>Arylamine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>42%</td>
<td>30%</td>
</tr>
<tr>
<td></td>
<td>63%</td>
<td>62%</td>
</tr>
<tr>
<td></td>
<td>64%</td>
<td>72%</td>
</tr>
<tr>
<td></td>
<td>50%</td>
<td>66%</td>
</tr>
<tr>
<td></td>
<td>14%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>65%</td>
<td></td>
</tr>
</tbody>
</table>

Reaction conditions: aryl bromide (0.2 mmol), Ni(NH$_3$)$_6$Cl$_2$ (35 mol%), ligand (5 mol%), [Ir(dtbbpy)(ppy)$_2$][PF$_6$] (3.5 mol%), DBU (1.0 equiv), DMSO (1.0 mL), purple LEDs (390-395 nm), 65-70 °C, Ar, 24 h. The yields of diarylamines were determined by 1H NMR using 1,3,5-trimethoxybenzene as an internal standard.

Table S13. Control experiments

Ni(NH$_3$)$_6$Cl$_2$ (35 mol%) & d-MeBpy (5 mol%) & [Ir(dtbbpy)(ppy)$_2$][PF$_6$] (3.5 mol%)

DBU (1.0 equiv) & DMSO (1.0 mL) & 390-395 nm, 65-70 °C, 24 h

<table>
<thead>
<tr>
<th>Entry</th>
<th>Reaction conditions</th>
<th>Diarylamine</th>
<th>Arylamine</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Standard conditions</td>
<td>72%</td>
<td>15%</td>
</tr>
<tr>
<td>2</td>
<td>No Ni(NH$_3$)$_6$Cl$_2$</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>3</td>
<td>No dMeBpy</td>
<td>58%</td>
<td>25%</td>
</tr>
<tr>
<td>4</td>
<td>No [Ir]</td>
<td>11%</td>
<td>47%</td>
</tr>
<tr>
<td>5</td>
<td>No DBU</td>
<td>N.D.</td>
<td>trace</td>
</tr>
<tr>
<td>6</td>
<td>No light, 70 °C</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>7</td>
<td>Air instead of Ar</td>
<td>33%</td>
<td>33%</td>
</tr>
<tr>
<td>8</td>
<td>390-395 nm, R.T.</td>
<td>19%</td>
<td>4%</td>
</tr>
</tbody>
</table>

Reaction conditions: aryl bromide (0.2 mmol), Ni(NH$_3$)$_6$Cl$_2$ (35 mol%), d-MeBpy (5 mol%), [Ir(dtbbpy)(ppy)$_2$][PF$_6$] (3.5 mol%), DBU (1.0 equiv), DMSO (1.0 mL), purple LEDs (390-395 nm), 65-70 °C, Ar, 24 h. Yields determined by 1H NMR using 1,3,5-trimethoxybenzene as an internal standard.
3. General procedure for reactions

3.1 Synthesis of [(NH₃)₆Ni]X₂[2]

\[
\text{NiX}_2 + \text{NH}_4\text{X}, \text{excessive NH}_3\text{H}_2\text{O} \xrightarrow{\text{ice bath}} [(\text{NH}_3)_{6}\text{Ni}]\text{X}_2
\]

In an ice bath, a magnetic stir bar, NiX₂, NH₄X and excessive ammonia water, were placed into an oven-dried 25 mL dried round-bottomed flask. The reaction mixture for 2-12 h when the reaction is completed. The resulting purplish solution was rinsed with ammonia water and ethanol. The precipitate was filtered collected on a frit, rinsed with ethanol and residual solvent was removed under vacuum to give the compound. The compound was used without further purification.

3.2 Standard procedure for exploration of the scope of arylamines

\[
\begin{align*}
\text{Ni(NH}_3)_6\text{Cl}_2 (35 \text{ mol}) & \quad \text{d-Mebpy (5 mol\%)} \\
& \quad \text{t-BuTMG (1.5 equiv)} \\
& \quad \text{DMSO (2.0 mL)} \\
\text{R} & \quad \text{Br} & \quad \text{R} & \quad \text{NH}_2
\end{align*}
\]

To an oven-dried 10 mL of storage tube were added solid aryl bromides (0.2 mmol) (liquid aryl bromides were added via syringe after purged and evacuated), Ni(NH₃)₆Cl₂ (35 mol%), d-Mebpy (4,4’-dimethyl-2,2’-bipyridine) (5 mol%) and a magnetic stir bar under argon atmosphere. The mixture was evacuated and backfilled with argon for at least three times. Then t-BuTMG (1.5 equiv) or MTBD (1.5 equiv) and DMSO (2.0 mL) were added. The tube was sealed with a Teflon screw valve. The reaction mixture was then irradiated with 9 W purple LEDs (390-395 nm, 1 cm away from the tube, optical power: 200 ± 10 mw/cm²) at 65-70 °C for 24 hours. After the reaction was completed, the mixture was diluted with ethyl acetate after cooling to room temperature. The organic phases were washed with saturated brine or saturated NH₄Cl (3×10 mL), dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The crude product was then purified by column chromatography on silica gel to give the desired product.

3.3 Standard procedure for exploration of the scope of symmetric diarylamines

\[
\begin{align*}
\text{Ni(NH}_3)_6\text{Cl}_2 (35 \text{ mol}) & \quad \text{d-Mebpy (5 mol\%)} \\
& \quad \text{[Ir(dibppy)(ppy)]PF}_6 (3.5 \text{ mol\%}) \\
& \quad \text{DBU (1.0 equiv)} \\
& \quad \text{DMSO (1.0 mL)} \\
\text{R} & \quad \text{Br} & \quad \text{R} & \quad \text{R}
\end{align*}
\]

S10
To an oven-dried 10 mL of storage tube were added solid aryl bromides (0.2 mmol) (liquid aryl bromides were added via syringe after purged and evacuated), Ni(NH$_3$)$_6$Cl$_2$ (35 mol%), d-Mebpy (4,4'-dimethyl-2,2'-bipyridine) (5 mol%), [Ir(dtbbpy)(ppy)$_2$][PF$_6$] (3.5 mol%) and a magnetic stir bar under argon atmosphere. The mixture was evacuated and backfilled with argon for at least three times. Then DBU (1.0 equiv) and DMSO (1.0 mL) were added. The tube was sealed with a Teflon screw valve. The reaction mixture was then irradiated with 9 W purple LEDs (390-395 nm, 1 cm away from the tube, optical power: 200 ± 10 mw/cm2) at 65-70 °C for 24 hours. After the reaction was completed, the mixture was diluted with ethyl acetate after cooling to room temperature. The organic phases were washed with saturated brine or saturated NH$_4$Cl (3×10 mL), dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The crude product was then purified by column chromatography on silica gel to give the desired product.

3.5 Preparation of antioxidant at gram scale

To an oven-dried 200 mL of storage tube were added solid aryl bromides (0.2 mmol), Ni(NH$_3$)$_6$Cl$_2$ (35 mol%), d-Mebpy (4,4'-dimethyl-2,2'-bipyridine) (5 mol%) and a magnetic stir bar under argon atmosphere. The mixture was evacuated and backfilled with argon for at least three times. Then ethyl 4-bromobenzoate (10 mmol), t-BuTMG (1.5 equiv) and DMSO (100 mL) were added. The tube was sealed with a Teflon screw valve. The reaction mixture was then irradiated with purple LEDs (390-395 nm, 1 cm away from the tube) at 65-70 °C for 24 hours. After the reaction was completed, the mixture was diluted with ethyl acetate after cooling to room temperature. The organic phases were washed with saturated brine or saturated NH$_4$Cl, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The crude product was then purified by column chromatography on silica gel to give the desired product.
To an oven-dried 100 mL of storage tube were added Ni(NH$_3$)$_6$Cl$_2$ (35 mol%), d-Mebpy (4,4'-dimethyl-2,2'-bipyridine) (5 mol%), [Ir(dtbbpy)(ppy)$_2$][PF$_6$] (3.5 mol%) and a magnetic stir bar under argon atmosphere. The mixture was evacuated and backfilled with argon for at least three times. Then 1-bromo-4-octylbenzene (5 mmol), DBU (1.0 equiv) and DMSO (25 mL) were added. The tube was sealed with a Teflon screw valve. The reaction mixture was then irradiated with purple LEDs (390-395 nm, 1 cm away from the tube) at 65-70 °C for 48 hours. After the reaction was completed, the mixture was diluted with ethyl acetate after cooling to room temperature. The organic phases were washed with saturated brine or saturated NH$_4$Cl, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The crude product was then purified by column chromatography on silica gel to give the desired product.

3.6 Preparation of bis(4-methoxyphenyl)amine

To an oven-dried 10 mL of storage tube were added Ni(NH$_3$)$_6$Cl$_2$ (35 mol%), d-Mebpy (4,4'-dimethyl-2,2'-bipyridine) (5 mol%), [Ir(dtbbpy)(ppy)$_2$][PF$_6$] (3.5 mol%) and a magnetic stir bar under argon atmosphere. The mixture was evacuated and backfilled with argon for at least three times. Then 4-bromoanisole (2 mmol), DBU (1.0 equiv) and DMSO (4 mL) were added. The tube was sealed with a Teflon screw valve. The reaction mixture was then irradiated with purple LEDs (390-395 nm, 1 cm away from the tube) at 65-70 °C for 24 hours. After the reaction was completed, the mixture was diluted with ethyl acetate after cooling to room temperature. The organic phases were washed with saturated brine or saturated NH$_4$Cl, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The crude product was then purified by column chromatography on silica gel to give the desired product.
3.7 Preparation of organic hole-transporting material Spiro-OMeTAD

According to literature, Spiro-OMeTAD was synthesized.[22] To an oven-dried 10 mL of storage tube were added 2,2',7,7'-tetraiodo-9,9'-spirobi[9H-fluorene] (0.2 mmol), 4,4'-dimethoxydiphenylamine (0.9 mmol), sodium tert-butoxide (6.0 equiv), tris(dibenzylideneacetone)dipalladium(0) (5 mol%), tri-tert-butylphosphine (10 mol%) and a magnetic stir bar under argon atmosphere. The mixture was evacuated and backfilled with argon for at least three times. Then toluene (2 mL) was added. The tube was sealed with a Teflon screw valve. The reaction mixture was heated at 110 °C for 16 h. After the reaction was completed, the mixture was diluted with ethyl acetate after cooling to room temperature. The organic phases were washed with saturated brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The crude product was then purified by column chromatography on silica gel to give the desired product.

4. Analytical data of products

\textbf{Aniline (4):} light yellow oil; 1H NMR (400 MHz, CDCl\textsubscript{3}) δ 7.19 (t, J = 7.6 Hz, 2H), 6.79 (t, J = 7.6 Hz, 1H), 6.71 (d, J = 8.0 Hz, 2H), 3.61 (br, 2H). 13C\{1H\} NMR (100 MHz, CDCl\textsubscript{3}) δ 146.5, 129.4, 118.6, 115.2. Spectral datas obtained for the compound are in good agreement with the reported datas.[1]

\textbf{4-(Methylsulfonyl)aniline (5):} yellow solid; 1H NMR (400 MHz, CDCl\textsubscript{3}) δ 7.67 (d, J = 8.7 Hz, 2H), 6.70 (d, J = 8.7 Hz, 2H), 4.24 (br, 2H), 2.99 (s, 3H). 13C\{1H\} NMR (100 MHz, CDCl\textsubscript{3}) δ 151.5, 129.6, 128.9, 114.2, 45.1. Spectral datas obtained for the compound are in good agreement with the reported datas.[2]
4-Aminobenzenesulfonamide (6): yellow solid; 1H NMR (400 MHz, DMSO-d_6) δ 7.50 (d, $J = 8.7$ Hz, 2H), 6.93 (s, 2H), 6.64 (d, $J = 8.7$ Hz, 2H), 5.82 (s, 2H). 13C{1H} NMR (100 MHz, DMSO-d_6) δ 151.9, 130.1, 127.5, 112.5. Spectral data obtained for the compound are in good agreement with the reported data.$^{[3]}$

4-(Trifluoromethyl)aniline (7): light yellow solid; 1H NMR (400 MHz, CDCl$_3$) δ 7.40 (d, $J = 8.3$ Hz, 1H), 6.69 (d, $J = 8.3$ Hz, 1H), 3.94 (br, 1H). 13C{1H} NMR (100 MHz, CDCl$_3$) δ 149.5, 126.8 (q, $J = 4.0$ Hz), 125.0 (q, $J = 269.0$ Hz), 120.3 (q, $J = 32.0$ Hz), 114.3. 19F NMR (376 MHz, CDCl$_3$) δ -61.25. Spectral data obtained for the compound are in good agreement with the reported data.$^{[2]}$

4-Aminobenzonitrile (8): white solid; 1H NMR (400 MHz, CDCl$_3$) δ 7.40 (d, $J = 8.4$ Hz, 2H), 6.64 (d, $J = 8.4$ Hz, 2H), 4.17 (br, 2H). 13C{1H} NMR (100 MHz, CDCl$_3$) δ 150.6, 133.9, 120.3, 114.5, 100.2. Spectral data obtained for the compound are in good agreement with the reported data.$^{[2]}$

Methyl 4-aminobenzoate (9): white solid; 1H NMR (400 MHz, CDCl$_3$) δ 7.85 (d, $J = 8.7$ Hz, 2H), 6.63 (d, $J = 8.7$ Hz, 2H), 4.08 (br, 2H), 3.85 (s, 3H). 13C{1H} NMR (100 MHz, CDCl$_3$) δ 167.3, 150.9, 131.7, 119.9, 113.9, 51.7. Spectral data obtained for the compound are in good agreement with the reported data.$^{[2]}$

1-(4-Aminophenyl)ethan-1-one (10): light yellow solid; 1H NMR (400 MHz, CDCl$_3$) δ 7.81 (d, $J = 8.6$ Hz, 2H), 6.64 (d, $J = 8.6$ Hz, 2H), 4.13 (br, 2H), 2.50 (s, 3H). 13C{1H} NMR (100 MHz, CDCl$_3$) δ 196.6, 151.2, 130.9, 128.1, 113.9, 26.2. Spectral data obtained for the compound are in good agreement with the reported data.$^{[2]}$
N-(4-Aminophenyl)acetamide (11): yellow solid; 1H NMR (400 MHz, DMSO-d_6) δ 9.60 (s, 1H), 7.23 (d, $J = 8.6$ Hz, 2H), 6.52 (d, $J = 8.6$ Hz, 2H), 4.84 (br, 2H), 1.99 (s, 3H). 13C{1H} NMR (100 MHz, DMSO-d_6) δ 167.8, 145.0, 129.1, 121.3, 114.3, 24.1. Spectral data obtained for the compound are in good agreement with the reported data.[2]

4-Vinylaniline (12): yellow solid; 1H NMR (400 MHz, CDCl$_3$) δ 7.20 (d, $J = 8.3$ Hz, 2H), 6.60 (d, $J = 8.3$ Hz, 2H), 6.58 – 6.56 (m, 1H), 5.52 (d, $J = 17.6$ Hz, 1H), 5.01 (d, $J = 10.9$ Hz, 1H), 3.66 (br, 2H). 13C{1H} NMR (100 MHz, CDCl$_3$) δ 146.3, 136.7, 128.5, 127.5, 115.1, 110.1. 19F NMR (376 MHz, Chloroform-d) δ -126.85. Spectral data obtained for the compound are in good agreement with the reported data.[2]

4-Fluoroaniline (13): light yellow oil; 1H NMR (400 MHz, CDCl$_3$) δ 6.86 (t, $J = 8.7$ Hz, 1H), 6.63 – 6.60 (m, 1H), 3.53 (br, 1H). 13C{1H} NMR (100 MHz, CDCl$_3$) δ 156.6 (d, $J = 235.0$ Hz) 142.5, 116.2 (d, $J = 7.0$ Hz), 115.8 (d, $J = 23.0$ Hz). 19F NMR (376 MHz, CDCl$_3$) δ -126.85. Spectral data obtained for the compound are in good agreement with the reported data.[2]

4-Chloroaniline (14): light yellow solid; 1H NMR (400 MHz, CDCl$_3$) δ 7.10 (d, $J = 8.5$ Hz, 2H), 6.60 (d, $J = 8.5$ Hz, 2H), 3.63 (br, 2H). 13C{1H} NMR (100 MHz, CDCl$_3$) δ 145.1, 129.2, 123.2, 116.3. Spectral data obtained for the compound are in good agreement with the reported data.[2]

4-Bromoaniline (15): yellow solid; 1H NMR (400 MHz, CDCl$_3$) δ 7.23 (d, $J = 8.8$ Hz, 2H), 6.56 (d, $J = 8.8$ Hz, 2H), 3.66 (br, 2H). 13C{1H} NMR (100 MHz, CDCl$_3$) δ 145.5, 132.1, 116.8, 110.3. Spectral data obtained for the compound are in good agreement with the reported data.[2]
[1,1'-Biphenyl]-4-amine (16): white solid; 1H NMR (400 MHz, CDCl$_3$) δ 7.55 (d, J = 7.3 Hz, 2H), 7.44 – 7.39 (m, 4H), 7.30 – 7.26 (m, 1H), 6.77 (d, J = 8.5 Hz, 2H), 3.72 (br, 2H). 13C{1H} NMR (100 MHz, CDCl$_3$) δ 146.0, 141.3, 131.7, 128.8, 128.2, 126.5, 126.4, 115.5. Spectral data obtained for the compound are in good agreement with the reported data.[2]

p-Toluidine (17): white solid; 1H NMR (400 MHz, CDCl$_3$) δ 6.98 (d, J = 7.7 Hz, 2H), 6.62 (d, J = 7.7 Hz, 2H), 3.44 (br, 2H), 2.25 (s, 3H). 13C{1H} NMR (100 MHz, CDCl$_3$) δ 143.8, 129.9, 128.0, 115.4, 20.6. Spectral data obtained for the compound are in good agreement with the reported data.[7]

4-Isopropylaniline (18): light yellow oil; 1H NMR (400 MHz, CDCl$_3$) δ 7.06 (d, J = 8.2 Hz, 2H), 6.66 (d, J = 8.2 Hz, 2H), 3.47 (br, 2H), 2.85 (hept, J = 6.9 Hz, 1H), 1.24 (d, J = 6.9 Hz, 6H). 13C{1H} NMR (100 MHz, CDCl$_3$) δ 144.3, 139.3, 127.2, 115.3, 33.3, 24.3. Spectral data obtained for the compound are in good agreement with the reported data.[2]

4-Octylaniline (19): yellow oil; 1H NMR (400 MHz, CDCl$_3$) δ 6.9 (d, J = 8.3 Hz, 2H), 6.63 (d, J = 8.3 Hz, 2H), 3.48 (br, 2H), 2.50 (t, J = 7.6 Hz, 2H), 1.56 (p, J = 7.2 Hz, 2H), 1.31 – 1.27 (m, 10H), 0.89 (t, J = 6.7 Hz, 3H). 13C{1H} NMR (100 MHz, CDCl$_3$) δ 144.1, 133.3, 129.3, 115.4, 35.2, 32.0, 32.0, 29.6, 29.4, 29.4, 22.8, 14.2. Spectral data obtained for the compound are in good agreement with the reported data.[4]

4-Cyclopropylaniline (20): yellow oil; 1H NMR (400 MHz, CDCl$_3$) δ 6.91 (d, J = 8.1 Hz, 2H), 6.62 (d, J = 8.1 Hz, 2H), 3.27 (br, 2H), 1.85 – 1.78 (m, 1H), 0.86 (q, J = 5.1 Hz, 2H), 0.59 (q, J = 5.1 Hz, 2H). 13C{1H} NMR (100 MHz, CDCl$_3$) δ 144.1, 134.0, 126.9, 115.4, 14.7, 8.4. Spectral data obtained for the compound are in good agreement
with the reported data.

4-(Trifluoromethoxy)aniline (21): yellow oil; 1H NMR (400 MHz, CDCl$_3$) δ 7.01 (d, $J = 8.8$ Hz, 2H), 6.64 (d, $J = 8.8$ Hz, 2H), 3.68 (br, 2H). 13C{1H} NMR (100 MHz, CDCl$_3$) δ 145.4, 141.5, 122.5, 120.8 (d, $J = 256.5$ Hz), 115.6. 19F NMR (376 MHz, CDCl$_3$) δ -58.48. Spectral data obtained for the compound are in good agreement with the reported data.

4-Methoxyaniline (22): black solid; 1H NMR (400 MHz, CDCl$_3$) δ 6.75 (d, $J = 8.8$ Hz, 2H), 6.65 (d, $J = 8.8$ Hz, 2H), 3.75 (s, 3H), 3.32 (br, 2H). 13C{1H} NMR (100 MHz, CDCl$_3$) δ 153.3, 140.5, 116.9, 115.3, 56.3. Spectral data obtained for the compound are in good agreement with the reported data.

3,5-Dimethylaniline (2): yellow oil; 1H NMR (400 MHz, CDCl$_3$) δ 6.43 (s, 1H), 6.35 (s, 2H), 3.45 (br, 2H), 2.23 (s, 6H). 13C{1H} NMR (100 MHz, CDCl$_3$) δ 146.3, 139.1, 120.7, 113.2, 21.4. Spectral data obtained for the compound are in good agreement with the reported data.

o-Toluidine (23): light yellow oil; 1H NMR (400 MHz, CDCl$_3$) δ 7.11 – 7.07 (m, 2H), 6.76 (t, $J = 7.3$ Hz, 1H), 6.71 (d, $J = 7.8$ Hz, 1H), 3.59 (s, 2H), 2.21 (s, 3H). 13C{1H} NMR (100 MHz, CDCl$_3$) δ 144.7, 130.5, 127.0, 122.4, 118.7, 115.0, 17.4. Spectral data obtained for the compound are in good agreement with the reported data.

2-Isopropylaniline (24): yellow oil; 1H NMR (400 MHz, CDCl$_3$) δ 7.16 (dd, $J = 7.7$, 1.5 Hz, 1H), 7.04 (td, $J = 7.7$, 1.5 Hz, 1H), 6.80 (td, $J = 7.9$, 1.1 Hz, 1H), 6.69 (dd, $J = 7.9$, 1.1 Hz, 1H), 3.65 (s, 2H), 2.92 (hept, $J = 6.8$ Hz, 1H), 1.28 (d, $J = 6.8$ Hz, 6H). 13C{1H} NMR (100 MHz, CDCl$_3$) δ 143.4, 132.8, 126.6, 125.5, 119.2, 116.0, 27.8, 22.4. Spectral data obtained for the compound are in good agreement with the reported data.
3-Fluoroaniline (25): yellow oil; 1H NMR (400 MHz, CDCl$_3$) δ 7.12 – 7.06 (m, 1H), 6.47 – 6.36 (m, 3H), 3.71 (br, 2H). 13C{1H} NMR (100 MHz, CDCl$_3$) δ 164.0 (d, $J = 244.4$ Hz), 148.4 (d, $J = 11.1$ Hz), 130.6 (d, $J = 10.1$ Hz), 110.8 (d, $J = 2.0$ Hz), 105.2 (d, $J = 21.2$ Hz), 102.1 (d, $J = 25.3$ Hz). 19F NMR (376 MHz, CDCl$_3$) δ -113.20. Spectral data obtained for the compound are in good agreement with the reported data.$^{[10]}$

3-Chloroaniline (26): yellow oil; 1H NMR (400 MHz, CDCl$_3$) δ 7.07 (t, $J = 8.0$ Hz, 1H), 6.73 (dd, $J = 8.0$, 1.0 Hz, 1H), 6.67 (t, $J = 2.0$ Hz, 1H), 6.54 (dd, $J = 8.0$, 1.5 Hz, 1H), 3.67 (br, 2H). 13C{1H} NMR (100 MHz, CDCl$_3$) δ 147.8, 134.9, 130.4, 118.5, 115.0, 113.3. Spectral data obtained for the compound are in good agreement with the reported data.$^{[6]}$

3-(Difluoromethoxy)aniline (27): yellow oil; 1H NMR (400 MHz, CDCl$_3$) δ 7.12 (t, $J = 8.0$ Hz, 1H), 6.66 – 6.29 (m, 4H), 3.63 (br, 2H). 13C{1H} NMR (100 MHz, CDCl$_3$) δ 151.7, 147.2, 129.6, 115.2 (t, $J = 259.6$ Hz), 111.1, 107.8, 105.0. 19F NMR (376 MHz, CDCl$_3$) δ -80.24 (d, $J = 71.4$ Hz). Spectral data obtained for the compound are in good agreement with the reported data.$^{[12]}$

Naphthalen-2-amine (28): white solid; 1H NMR (400 MHz, CDCl$_3$) δ 7.74 – 7.68 (m, 2H), 7.63 (d, $J = 8.5$ Hz, 1H), 7.41 (t, $J = 7.1$ Hz, 1H), 7.27 (t, $J = 9.1$ Hz, 1H), 7.00 – 6.96 (m, 2H), 3.86 (br, 2H). 13C{1H} NMR (100 MHz, CDCl$_3$) δ 144.2, 135.1, 129.3, 128.1, 127.8, 126.5, 125.9, 122.6, 118.4, 108.7. Spectral data obtained for the compound are in good agreement with the reported data.$^{[8]}$

Pyridin-2-amine (29): light yellow oil; 1H NMR (400 MHz, CDCl$_3$) δ 8.02 (d, $J = 4.9$
Hz, 1H), 7.36 (td, J = 8.3, 1.8 Hz, 1H), 6.58 (td, J = 4.9, 1.8 Hz, 1H), 6.44 (d, J = 8.3 Hz, 1H), 4.57 (br, 2H). 13C{1H} NMR (100 MHz, CDCl$_3$) δ 158.6, 148.1, 137.7, 113.9, 108.6. Spectral data obtained for the compound are in good agreement with the reported data.

Pyridin-3-amine (30): light yellow oil; 1H NMR (400 MHz, CDCl$_3$) δ 8.04 (d, J = 2.7 Hz, 1H), 7.95 (d, J = 4.7 Hz, 1H), 7.00 (dd, J = 8.1, 4.7 Hz, 1H), 6.91 (dd, J = 8.1, 2.7 Hz, 1H), 3.82 (br, 2H). 13C{1H} NMR (100 MHz, CDCl$_3$) δ 142.8, 139.8, 137.4, 123.7, 121.4. Spectral data obtained for the compound are in good agreement with the reported data.

4-(Trifluoromethyl)pyridin-2-amine (31): brown oil; 1H NMR (400 MHz, CDCl$_3$) δ 8.25 (d, J = 5.5 Hz, 1H), 6.86 (d, J = 1.8 Hz, 1H), 6.62 (dd, J = 5.5, 1.8 Hz, 1H), 4.65 (br, 2H). 13C{1H} NMR (100 MHz, CDCl$_3$) δ 154.0, 150.4, 149.0 (q, J = 34.0 Hz), 121.8 (q, J = 272.0 Hz), 111.2, 106.4 (q, J = 2.0 Hz). 19F NMR (376 MHz, CDCl$_3$) δ -68.54. Spectral data obtained for the compound are in good agreement with the reported data.

3-Methylpyridin-2-amine (32): yellow oil; 1H NMR (400 MHz, CDCl$_3$) δ 7.89 (d, J = 6.0 Hz, 1H), 7.19 (d, J = 8.0 Hz, 1H), 6.54 (dd, J = 8.0, 6.0 Hz, 1H), 4.56 (br, 2H), 2.05 (s, 3H). 13C{1H} NMR (100 MHz, CDCl$_3$) δ 157.3, 145.6, 137.6, 116.5, 114.2, 17.1. Spectral data obtained for the compound are in good agreement with the reported data.

6-Methoxypyridin-3-amine (33): brown oil; 1H NMR (400 MHz, CDCl$_3$) δ 7.65 (d, J = 2.9 Hz, 1H), 7.01 (dd, J = 8.7, 2.9 Hz, 1H), 6.59 (d, J = 8.7 Hz, 1H), 3.85 (s, 3H), 3.16 (br, 2H). 13C{1H} NMR (100 MHz, CDCl$_3$) δ 158.2, 136.8, 133.0, 127.8, 110.8, 53.4. Spectral data obtained for the compound are in good agreement with the reported
5-Chloro-2-methoxypyridin-3-amine (34): yellow solid; 1H NMR (400 MHz, CDCl$_3$) δ 7.48 (d, $J = 2.2$ Hz, 1H), 6.84 (d, $J = 2.2$ Hz, 1H), 3.95 (s, 3H), 3.60 (br, 2H). 13C{1H} NMR (100 MHz, CDCl$_3$) δ 151.5, 132.7, 131.8, 124.4, 119.6, 53.7. Spectral datas obtained for the compound are in good agreement with the reported datas.$^{[9]}$

Dibenzo[b,d]furan-3-amine (35): light yellow solid; 1H NMR (400 MHz, CDCl$_3$) δ 7.78 (d, $J = 7.3$ Hz, 1H), 7.68 (d, $J = 8.2$ Hz, 1H), 7.47 (d, $J = 7.9$ Hz, 1H), 7.33 – 7.25 (m, 2H), 6.84 (s, 1H), 6.68 (d, $J = 8.0$ Hz, 1H), 3.36 (br, 2H). 13C{1H} NMR (100 MHz, CDCl$_3$) δ 158.1, 156.1, 146.9, 125.3, 125.0, 122.7, 121.4, 119.5, 115.8, 111.4, 111.3, 97.6. Spectral datas obtained for the compound are in good agreement with the reported datas.$^{[11]}$

1H-Indol-5-amine (36): yellow oil; 1H NMR (400 MHz, CDCl$_3$) δ 7.96 (br, 1H), 7.19 (d, $J = 8.5$ Hz, 1H), 7.12 (s, 1H), 6.95 (s, 1H), 6.67 (d, $J = 8.5$ Hz, 1H), 6.38 (s, 1H), 3.50 (br, 2H). 13C{1H} NMR (100 MHz, CDCl$_3$) δ 139.7, 130.9, 129.0, 124.8, 113.1, 111.6, 105.7, 101.7. Spectral datas obtained for the compound are in good agreement with the reported datas.$^{[2]}$

Benzo[b]thiophen-3-amine (37): yellow solid; 1H NMR (400 MHz, CDCl$_3$) δ 7.64 (d, $J = 8.5$ Hz, 1H), 7.38 (d, $J = 5.4$ Hz, 1H), 7.15 (d, $J = 5.4$ Hz, 1H), 7.10 (d, $J = 1.8$ Hz, 1H), 6.78 (dd, $J = 8.5$, 1.8 Hz, 1H), 3.58 (br, 2H). 13C{1H} NMR (100 MHz, CDCl$_3$) δ 143.7, 141.0, 130.6, 127.2, 123.2, 123.1, 115.0, 108.4. Spectral datas obtained for the compound are in good agreement with the reported datas.$^{[2]}$
2,3-Dihydrobenzo[b][1,4]dioxin-6-amine (38): yellow oil; 1H NMR (400 MHz, CDCl$_3$) δ 6.67 (d, $J = 8.5$ Hz, 1H), 6.24 (d, $J = 2.6$ Hz, 1H), 6.20 (dd, $J = 8.5$, 2.6 Hz, 1H), 4.22 – 4.20 (m, 2H), 4.18 – 4.16 (m, 2H), 3.28 (br, 2H). 13C {1H} NMR (100 MHz, CDCl$_3$) δ 144.0, 140.9, 136.5, 117.7, 108.8, 104.3, 64.8, 64.3. Spectral datas obtained for the compound are in good agreement with the reported datas.$^{[2]}$

5-Aminoisobenzofuran-1(3H)-one (39): yellow solid; 1H NMR (400 MHz, DMSO-d$_6$) δ 7.48 (d, $J = 8.4$ Hz, 1H), 6.70 (d, $J = 8.4$ Hz, 1H), 6.62 (s, 1H), 6.28 (s, 2H), 5.19 (s, 2H). 13C {1H} NMR (100 MHz, DMSO-d$_6$) δ 170.8, 154.7, 150.2, 126.2, 114.8, 111.1, 104.5, 68.7. Spectral datas obtained for the compound are in good agreement with the reported datas.$^{[2]}$

Quinolin-2-amine (40): brown solid; 1H NMR (400 MHz, CDCl$_3$) δ 7.86 (d, $J = 8.8$ Hz, 1H), 7.66 (d, $J = 8.4$ Hz, 1H), 7.61 (d, $J = 8.0$ Hz, 1H), 7.55 (td, $J = 7.0$, 1.3 Hz, 1H), 7.25 (t, $J = 7.0$ Hz, 1H), 6.71 (d, $J = 8.8$ Hz, 1H), 4.96 (br, 2H). 13C {1H} NMR (100 MHz, CDCl$_3$) δ 157.2, 147.8, 138.2, 129.9, 127.6, 126.1, 123.7, 122.8, 111.8. Spectral datas obtained for the compound are in good agreement with the reported datas.$^{[9]}$

Isoquinolin-3-amine (41): brown solid; 1H NMR (400 MHz, CDCl$_3$) δ 8.93 (s, 1H), 7.79 (d, $J = 8.2$ Hz, 1H), 7.55 – 7.49 (m, 2H), 7.26 (t, $J = 8.2$ Hz, 1H), 6.77 (s, 1H), 4.52 (br, 2H). 13C {1H} NMR (100 MHz, CDCl$_3$) δ 154.7, 151.8, 139.0, 130.5, 127.9, 124.8, 124.2, 123.2, 99.7. Spectral datas obtained for the compound are in good agreement with the reported datas.$^{[9]}$

4-(9H-Carbazol-9-yl)aniline (42): yellow solid; 1H NMR (400 MHz, CDCl$_3$) δ 8.18 (d, $J = 7.7$ Hz, 2H), 7.45 – 7.42 (m, 2H), 7.37 (d, $J = 7.9$ Hz, 2H), 7.33 – 7.28 (m, 4H), 6.86 (d, $J = 8.5$ Hz, 2H), 3.80 (br, 2H). 13C {1H} NMR (100 MHz, CDCl$_3$) δ 146.1,
Ethyl 4-aminobenzoate (76): yellow solid; 1H NMR (400 MHz, CDCl$_3$) δ 7.86 (d, J = 8.7 Hz, 2H), 6.63 (d, J = 8.7 Hz, 2H), 4.31 (q, J = 7.1 Hz, 2H), 4.05 (br, 2H), 1.36 (t, J = 7.1 Hz, 3H). 13C{1H} NMR (100 MHz, Chloroform-d) δ 166.83, 150.84, 131.69, 120.31, 113.92, 76.84, 60.43, 14.56. Spectral datas obtained for the compound are in good agreement with the reported datas.[2]

Diphenylamine (45): brown solid; 1H NMR (400 MHz, CDCl$_3$) δ 7.32 (t, J = 7.7 Hz, 4H), 7.12 (d, J = 8.1 Hz, 4H), 6.99 (t, J = 7.3 Hz, 2H), 5.72 (br, 1H). 13C{1H} NMR (100 MHz, CDCl$_3$) δ 143.3, 129.5, 121.2, 118.0. Spectral datas obtained for the compound are in good agreement with the reported datas.[13]

Di-p-tolylamine (46): white solid; 1H NMR (400 MHz, CDCl$_3$) δ 7.07 (d, J = 8.2 Hz, 4H), 6.95 (d, J = 8.2 Hz, 4H), 5.51 (br, 1H), 2.30 (s, 6H). 13C{1H} NMR (100 MHz, CDCl$_3$) δ 141.3, 130.3, 130.0, 118.1, 20.8. Spectral datas obtained for the compound are in good agreement with the reported datas.[13]

Bis(4-octylphenyl)amine (47): brown oil; 1H NMR (400 MHz, CDCl$_3$) δ 7.06 (d, J = 8.4 Hz, 4H), 6.97 (d, J = 8.4 Hz, 4H), 2.54 (t, J =7.6 Hz, 4H), 1.59 (p, J = 7.4 Hz, 4H), 1.34 – 1.26 (m, 20H), 0.88 (t, J = 6.8 Hz, 6H). 13C{1H} NMR (100 MHz, CDCl$_3$) δ 141.4, 135.6, 129.3, 118.0, 35.4, 32.1, 31.9, 29.7, 29.5, 29.4, 22.8, 14.3. Spectral datas obtained for the compound are in good agreement with the reported datas.[15]

Bis(4-decylphenyl)amine (48): black solid; 1H NMR (400 MHz, CDCl$_3$) δ 7.07 (d, J = 8.4 Hz, 4H), 6.98 (d, J = 8.4 Hz, 4H), 2.55 (t, J =7.6 Hz, 4H), 1.60 (p, J = 7.2 Hz,
1H NMR (100 MHz, CDCl$_3$) δ 141.4, 135.6, 129.3, 118.0, 35.4, 32.1, 31.9, 29.9, 29.8, 29.7, 29.5, 22.8, 14.3. HRMS (ESI) m/z calc. for C$_{32}$H$_{52}$N [M+H]$^+$: 450.4094, found: 450.4089.

Bis(4-dodecylphenyl)amine (49): brown solid; 1H NMR (400 MHz, CDCl$_3$) δ 7.06 (d, $J = 8.3$ Hz, 4H), 6.97 (d, $J = 8.3$ Hz, 4H), 5.56 (br, 1H), 2.62–2.47 (m, 4H), 1.65–1.53 (m, 6H), 1.27 (s, 34H), 0.89 (t, $J = 6.7$ Hz, 6H). 13C{1H} NMR (100 MHz, CDCl$_3$) δ 141.4, 135.6, 129.3, 118.0, 35.4, 32.1, 31.9, 29.8, 29.7, 29.5, 22.9, 14.3. HRMS (ESI) m/z calc. for C$_{36}$H$_{60}$N [M+H]$^+$: 506.4720, found: 334.2529.

Bis(4-cyclohexylphenyl)amine (50): brown solid; 1H NMR (400 MHz, CDCl$_3$) δ 7.10 (d, $J = 8.4$ Hz, 4H), 6.98 (d, $J = 8.4$ Hz, 4H), 2.52–2.39 (m, 2H), 1.94–1.67 (m, 11H), 1.39 (p, $J = 12.0$ Hz, 9H). 13C{1H} NMR (100 MHz, CDCl$_3$) δ 141.4, 140.7, 127.5, 43.82, 34.8 27.0, 26.21. HRMS (ESI) m/z calc. for C$_{24}$H$_{32}$N [M+H]$^+$: 334.2529, found: 334.2529.

N-(Bicyclo[4.2.0]octa-1,3,5-trien-3-yl)bicyclo[4.2.0]octa-1(6),2,4-trien-3-amine (51): brown solid; 1H NMR (400 MHz, CDCl$_3$) δ 6.92 (d, $J = 7.8$ Hz, 2H), 6.84 (d, $J = 7.8$ Hz, 2H), 6.81 (s, 2H), 3.12 (s, 8H). 13C{1H} NMR (100 MHz, CDCl$_3$) δ 146.6, 143.3, 138.2, 123.5, 117.6, 113.2, 29.3, 29.1. HRMS (ESI) m/z calc. for C$_{16}$H$_{16}$N [M+H]$^+$: 222.1277, found: 222.1275.

Bis(4-phenoxyphenyl)amine (52): gray solid; 1H NMR (400 MHz, CDCl$_3$) δ 7.36–7.29 (m, 4H), 7.11–6.92 (m, 14H), 5.55 (br, 1H). 13C{1H} NMR (100 MHz, CDCl$_3$) δ 158.4, 150.9, 139.8, 129.8, 122.7, 120.8, 119.5, 118.0. HRMS (ESI) m/z calc. for C$_{24}$H$_{20}$NO$_2$ [M+H]$^+$: 354.1489, found: 354.1488.
Bis(4-methoxyphenyl)amine (53): black solid; 1H NMR (400 MHz, CDCl$_3$) δ 6.94 (d, $J = 8.7$ Hz, 4H), 6.83 (d, $J = 8.7$ Hz, 4H), 5.30 (br, 1H), 3.78 (s, 6H). 13C (1H) NMR (100 MHz, CDCl$_3$) δ 154.4, 138.1, 119.7, 114.8, 55.8. Spectral datas obtained for the compound are in good agreement with the reported datas.[15]

![Bis(4-methoxyphenyl)amine](image)

Bis(4-(methylthio)phenyl)amine (54): black solid; 1H NMR (400 MHz, CDCl$_3$) δ 7.14 (d, $J = 7.0$ Hz, 4H), 6.89 (d, $J = 7.4$ Hz, 4H), 5.56 (br, 1H), 2.36 (s, 6H). 13C (1H) NMR (100 MHz, CDCl$_3$) δ 141.4, 130.0, 129.4, 118.7, 18.0. Spectral datas obtained for the compound are in good agreement with the reported datas.[16]

![Bis(4-(methylthio)phenyl)amine](image)

Bis(4-(trimethylsilyl)phenyl)amine (55): brown oil; 1H NMR (400 MHz, CDCl$_3$) δ 7.45 (d, $J = 8.4$ Hz, 4H), 7.11 (d, $J = 8.4$ Hz, 4H), 5.80 (br, 1H), 0.28 (s, 18H). 13C (1H) NMR (100 MHz, CDCl$_3$) δ 143.5, 134.7, 131.9, 117.2, -0.3. HRMS (ESI) m/z calc. for C$_{15}$H$_{28}$NSi$_2$ [M+H]$^+$: 314.1760, found: 314.1757.

![Bis(4-(trimethylsilyl)phenyl)amine](image)

Bis(4-fluorophenyl)amine (56): brown oil; 1H NMR (400 MHz, CDCl$_3$) δ 6.96 (m, 8H), 5.48 (br, 1H). 13C (1H) NMR (100 MHz, CDCl$_3$) δ 157.8 (d, $J = 240.4$ Hz), 139.8 (d, $J = 2.0$ Hz), 119.4 (d, $J = 8.1$ Hz), 116.0 (d, $J = 22.2$ Hz) 19F NMR (376 MHz, CDCl$_3$) δ -122.63. Spectral datas obtained for the compound are in good agreement with the reported datas.[13]

![Bis(4-fluorophenyl)amine](image)

Bis(4-(trifluoromethyl)phenyl)amine (57): brown oil; 1H NMR (400 MHz, CDCl$_3$) δ 7.55 (d, $J = 8.5$ Hz, 4H), 7.16 (d, $J = 8.5$ Hz, 4H), 6.11 (br, 1H). 13C (1H) NMR (100 MHz, CDCl$_3$) δ 145.1, 124.6 (d, $J = 271.7$ Hz), 127.1 (d, $J = 3.0$ Hz), 123.9 (d, $J = 32.3$ Hz), 116.0 (d, $J = 22.2$ Hz), 119.4 (d, $J = 8.1$ Hz), 116.0 (d, $J = 22.2$ Hz) 19F NMR (376 MHz, CDCl$_3$) δ -122.63. Spectral datas obtained for the compound are in good agreement with the reported datas.[13]

![Bis(4-(trifluoromethyl)phenyl)amine](image)
Hz), 117.7. 19F NMR (376 MHz, CDCl$_3$) δ -61.78. Spectral datas obtained for the compound are in good agreement with the reported datas.$^{[13]}$

1,1'-(Azanediylbis(4,1-phenylene))bis(ethan-1-one) (58): black solid; 1H NMR (400 MHz, CDCl$_3$) δ 7.92 (d, $J = 8.8$ Hz, 4H), 7.15 (d, $J = 8.8$ Hz, 4H), 2.56 (s, 6H). 13C{1H} NMR (100 MHz, CDCl$_3$) δ 196.6, 146.1, 131.0, 130.6, 117.1, 26.4. Spectral datas obtained for the compound are in good agreement with the reported datas.$^{[18]}$

Dimethyl 4,4'-azanediyl dibenzoate (44): yellow solid; 1H NMR (400 MHz, CDCl$_3$) δ 7.96 (d, $J = 8.6$ Hz, 4H), 7.12 (d, $J = 8.6$ Hz, 4H), 6.61 (br, 1H), 3.88 (s, 6H). 13C{1H} NMR (100 MHz, CDCl$_3$) δ 166.8, 146.0, 131.6, 123.3, 117.1, 52.0. Spectral datas obtained for the compound are in good agreement with the reported datas.$^{[18]}$

4,4'-Azanediyl dibenzonitrile (59): brown solid; 1H NMR (400 MHz, DMSO-d_6) δ 9.51 (br, 1H), 7.74 (d, $J = 7.4$ Hz, 4H), 7.30 (d, $J = 7.4$ Hz, 4H). 13C{1H} NMR (100 MHz, DMSO-d_6) δ 145.7, 133.7, 119.4, 117.3, 102.1. Spectral datas obtained for the compound are in good agreement with the reported datas.$^{[19]}$

Bis(4-chlorophenyl)amine (60): brown oil; 1H NMR (400 MHz, CDCl$_3$) δ 7.22 (d, $J = 8.7$ Hz, 4H), 6.96 (d, $J = 8.7$ Hz, 4H), 5.64 (br, 1H). 13C{1H} NMR (100 MHz, CDCl$_3$) δ 141.4, 129.4, 126.1, 112.0. Spectral datas obtained for the compound are in good agreement with the reported datas.$^{[13]}$

Di-o-tolylamine (61): white solid; 1H NMR (400 MHz, CDCl$_3$) δ 7.21 (d, $J = 7.4$ Hz, 2H), 7.13 (t, $J = 7.6$ Hz, 2H), 7.00 (d, $J = 7.9$ Hz, 2H), 6.92 (t, $J = 7.4$ Hz, 2H), 5.16 (br, 1H), 2.28 (s, 6H). 13C{1H} NMR (100 MHz, CDCl$_3$) δ 142.1, 131.0, 127.1, 126.9, 121.5,
118.4, 17.9. Spectral data obtained for the compound are in good agreement with the reported data.[14]

Bis(2-methoxyphenyl)amine (62): brown solid; 1H NMR (400 MHz, CDCl$_3$) δ 7.39 (d, $J = 7.6$ Hz, 2H), 6.95 – 6.84 (m, 6H), 6.52 (br, 1H), 3.91 (s, 6H). 13C{1H} NMR (100 MHz, CDCl$_3$) δ 149.2, 132.7, 120.9, 120.3, 115.7, 110.8, 55.8. HRMS (ESI) m/z calc. for C$_{14}$H$_{15}$NNaO$_2$ [M+Na]$^+$: 252.1000, found: 252.0990.

Bis(2-isopropylphenyl)amine (63): colorless oil; 1H NMR (400 MHz, CDCl$_3$) δ 7.30 (d, $J = 7.6$ Hz, 2H), 7.10 (t, $J = 7.6$ Hz, 2H), 7.02 – 6.94 (m, 4H), 5.33 (br, 1H), 3.12 (hept, $J = 6.8$ Hz, 2H), 1.30 (d, $J = 6.8$ Hz, 12H). 13C{1H} NMR (100 MHz, CDCl$_3$) δ 141.4, 138.2, 126.5, 125.8, 121.8, 119.4, 27.8, 22.8. Spectral data obtained for the compound are in good agreement with the reported data.[14]

Bis(2-isopropoxyphenyl)amine (64): brown solid; 1H NMR (400 MHz, CDCl$_3$) δ 7.43 (d, $J = 7.8$ Hz, 2H), 6.90 (t, $J = 7.7$ Hz, 4H), 6.81 (m, 2H), 4.55 (hept, $J = 5.7$ Hz, 2H), 1.39 (d, $J = 6.0$ Hz, 12H). 13C{1H} NMR (100 MHz, CDCl$_3$) δ 146.9, 134.1, 121.1, 119.7, 115.0, 114.3, 71.4, 22.5. HRMS (ESI) m/z calc. for C$_{18}$H$_{23}$NNaO$_2$ [M+Na]$^+$: 308.1626, found: 308.1621.

Bis(3-fluoro-4-methoxyphenyl)amine (65): black solid; 1H NMR (400 MHz, CDCl$_3$) δ 6.88 (t, $J = 9.0$ Hz, 2H), 6.79 (dd, $J = 12.8$, 2.7 Hz, 2H), 6.68 – 6.71 (m, 2H), 3.86 (s, 6H). 13C{1H} NMR (100 MHz, CDCl$_3$) δ 153.2 (d, $J = 246.4$ Hz), 142.5 (d, $J = 11.11$ Hz), 137.9 (d, $J = 9.1$ Hz), 115.3 (d, $J = 3.0$ Hz), 113.9 (d, $J = 4.0$ Hz), 107.3 (d, $J = 21.2$ Hz), 57.2. 19F NMR (376 MHz, CDCl$_3$) δ -132.92. HRMS (ESI) m/z calc. for C$_{14}$H$_{13}$F$_2$NNaO$_2$ [M+Na]$^+$: 288.0807, found: 288.0807.
Bis(3,5-difluoro-4-methoxyphenyl)amine (66): brown solid; 1H NMR (400 MHz, CDCl$_3$) δ 6.65 – 6.49 (m, 4H), 5.58 (br, 1H), 3.93 (s, 6H). 13C{1H} NMR (100 MHz, CDCl$_3$) δ 156.8 (dd, $J = 248.5$, 8.1 Hz), 138.0 (t, $J = 12.1$ Hz), 131.3 (t, $J = 15.2$ Hz), (102.5, 102.4, 102.3, 102.2), 62.3 (t, $J = 3.0$ Hz). 19F NMR (376 MHz, CDCl$_3$) δ -127.30. HRMS (ESI) m/z calc. for C$_{14}$H$_{11}$F$_4$NNaO$_2$ [M+Na]$^+$: 324.0618, found: 324.0622.

Di(thiophen-2-yl)amine (67): brown solid; 1H NMR (400 MHz, CDCl$_3$) δ 7.39 – 7.30 (m, 2H), 7.21 (dd, $J = 3.5$, 1.2 Hz, 2H), 7.00 – 6.92 (m, 2H). 13C{1H} NMR (100 MHz, CDCl$_3$) δ 135.7, 132.9, 129.8, 127.6. Spectral data obtained for the compound are in good agreement with the reported data.

Bis(6-methoxypyridin-3-yl)amine (68): brown oil; 1H NMR (400 MHz, CDCl$_3$) δ 7.86 (d, $J = 2.9$ Hz, 2H), 7.27 (dd, $J = 8.8$, 2.9 Hz, 2H), 6.67 (d, $J = 8.8$ Hz, 2H), 5.21 (br, 1H), 3.89 (s, 6H). 13C{1H} NMR (100 MHz, CDCl$_3$) δ 159.8, 137.0, 134.7, 130.5, 111.2, 53.6. HRMS (ESI) m/z calc. for C$_{12}$H$_{14}$N$_3$O$_2$ [M+H]$^+$: 232.1081, found: 232.1078.

Bis(6-methylpyridin-2-yl)amine (69): yellow oil; 1H NMR (400 MHz, CDCl$_3$) δ 7.47 (t, $J = 7.8$ Hz, 2H), 7.36 (d, $J = 8.2$ Hz, 2H), 7.28 (br, 1H), 6.69 (d, $J = 7.3$ Hz, 2H), 2.46 (s, 6H). 13C{1H} NMR (100 MHz, CDCl$_3$) δ 156.8, 153.6, 138.1, 115.6, 108.4, 24.4. Spectral data obtained for the compound are in good agreement with the reported data.

Bis(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)amine (70): black solid; 1H NMR (400 MHz, CDCl$_3$) δ 6.75 (d, $J = 8.6$ Hz, 2H), 6.56 (s, 2H), 6.50 (s, 2H), 4.30 – 4.14 (m, 8H).
13C-1H NMR (100 MHz, CDCl$_3$) δ 144.0, 138.5, 138.2, 117.7, 111.9, 107.3, 64.7, 64.4. HRMS (ESI) m/z calc. for C$_{16}$H$_{16}$NO$_4$ [M+H]$^+$: 286.1074, found: 286.1074.

Bis(4-(9H-carbazol-9-yl)phenyl)amine (71): black oil; 1H NMR (400 MHz, CDCl$_3$) δ 8.22 (d, J = 7.8 Hz, 4H), 7.63 – 7.45 (m, 13H), 7.37 – 7.34 (m, J = 7.9, 4.0 Hz, 7H). 13C-1H NMR (100 MHz, CDCl$_3$) δ 142.6, 141.4, 130.9, 128.5, 126.0, 123.3, 120.4, 119.9, 118.9, 109.9. Spectral data obtained for the compound are in good agreement with the reported data.$^{[21]}$

N$_2$N$_2$N$_2'$N$_2'$,N$_7$N$_7$,N$_7'$N$_7'$-Octakis(4-methoxyphenyl)-9,9'-spirobi[fluorene]-2,2',7,7'-tetraamine (74): yellow solid; 1H NMR (400 MHz, CDCl$_3$) δ 7.36 (d, J = 8.2 Hz, 4H), 6.92 (d, J = 8.9 Hz, 16H), 6.81 – 6.75 (m, 20H), 6.56 (d, J = 1.7 Hz, 4H), 3.77 (s, 24H). 13C-1H NMR (100 MHz, CDCl$_3$) δ 155.2, 150.2, 147.3, 141.7, 135.7, 125.2, 122.9, 119.9, 118.3, 114.6, 65.7, 55.6. Spectral data obtained for the compound are in good agreement with the reported data.$^{[22]}$

5. References

6. Copies of 1H NMR, 13C NMR and 19F NMR spectra of products

1H NMR (400 MHz, CDCl$_3$) spectrum of compound 4

13C{1H} NMR (100 MHz, CDCl$_3$) spectrum of compound 4
1H NMR (400 MHz, CDCl$_3$) spectrum of compound 5

13C{1H} NMR (100 MHz, CDCl$_3$) spectrum of compound 5
\(^1\)H NMR (400 MHz, DMSO-\textit{d}_6) spectrum of compound 6

\[^{13}\text{C}\{^1\text{H}\}\] NMR (100 MHz, DMSO-\textit{d}_6) spectrum of compound 6
1H NMR (400 MHz, CDCl$_3$) spectrum of compound 7

13C$_{(1)}$H NMR (100 MHz, CDCl$_3$) spectrum of compound 7
19F NMR (376 MHz, CDCl$_3$) spectrum of compound 7

1H NMR (400 MHz, CDCl$_3$) spectrum of compound 8
13C{1H} NMR (100 MHz, CDCl$_3$) spectrum of compound 8

1H NMR (400 MHz, CDCl$_3$) spectrum of compound 9
13C {\text{1H}}$ NMR (100 MHz, CDCl$_3$) spectrum of compound 9

1H NMR (400 MHz, CDCl$_3$) spectrum of compound 10
13C{\(^{1}H\)} NMR (100 MHz, CDCl$_3$) spectrum of compound 10

1H NMR (400 MHz, DMSO-d_6) spectrum of compound 11
13C(1H) NMR (100 MHz, DMSO-d_6) spectrum of compound 11

1H NMR (400 MHz, CDCl$_3$) spectrum of compound 12
13C{\(^1\)H} NMR (100 MHz, CDCl\(_3\)) spectrum of compound 12

1H NMR (400 MHz, CDCl\(_3\)) spectrum of compound 13
$^{13}\text{C}\{^1\text{H}\}$ NMR (100 MHz, CDCl$_3$) spectrum of compound 13

^{19}F NMR (376 MHz, CDCl$_3$) spectrum of compound 13
1H NMR (400 MHz, CDCl$_3$) spectrum of compound 14

13C{1H} NMR (100 MHz, CDCl$_3$) spectrum of compound 14
1H NMR (400 MHz, CDCl$_3$) spectrum of compound 15

13C{1H} NMR (100 MHz, CDCl$_3$) spectrum of compound 15
1H NMR (400 MHz, CDCl$_3$) spectrum of compound 16

13C{1H} NMR (100 MHz, CDCl$_3$) spectrum of compound 16
1H NMR (400 MHz, CDCl$_3$) spectrum of compound 17

13C{1H} NMR (100 MHz, CDCl$_3$) spectrum of compound 17
1H NMR (400 MHz, CDCl$_3$) spectrum of compound 18

13C{1H} NMR (100 MHz, CDCl$_3$) spectrum of compound 18
1H NMR (400 MHz, CDCl$_3$) spectrum of compound 19

13C\{1H} NMR (100 MHz, CDCl$_3$) spectrum of compound 19
$^1\text{H NMR}$ (400 MHz, CDCl$_3$) spectrum of compound 20

$^{13}\text{C}\{^1\text{H}\}$ NMR (100 MHz, CDCl$_3$) spectrum of compound 20
1H NMR (400 MHz, CDCl$_3$) spectrum of compound 21

13C{1H} NMR (100 MHz, CDCl$_3$) spectrum of compound 21
19F NMR (376 MHz, CDCl$_3$) spectrum of compound 21

1H NMR (400 MHz, CDCl$_3$) spectrum of compound 22
13C\{1H\} NMR (100 MHz, CDCl$_3$) spectrum of compound 22

1H NMR (400 MHz, CDCl$_3$) spectrum of compound 2
\textbf{13C\{^1H\} NMR (100 MHz, CDCl\textsubscript{3}) spectrum of compound 2}

\textbf{1H NMR (400 MHz, CDCl\textsubscript{3}) spectrum of compound 23}
13C{1H} NMR (100 MHz, CDCl$_3$) spectrum of compound 23

1H NMR (400 MHz, CDCl$_3$) spectrum of compound 24
13C{1H} NMR (100 MHz, CDCl$_3$) spectrum of compound 24

1H NMR (400 MHz, CDCl$_3$) spectrum of compound 25
13C{1H} NMR (100 MHz, CDCl$_3$) spectrum of compound 25

19F NMR (376 MHz, CDCl$_3$) spectrum of compound 25
1H NMR (400 MHz, CDCl$_3$) spectrum of compound 26

13C{$_^1$H} NMR (100 MHz, CDCl$_3$) spectrum of compound 26
1H NMR (400 MHz, CDCl$_3$) spectrum of compound 27

13C{1H} NMR (100 MHz, CDCl$_3$) spectrum of compound 27
19F NMR (376 MHz, CDCl$_3$) spectrum of compound 27

1H NMR (400 MHz, CDCl$_3$) spectrum of compound 28
13C{1H} NMR (100 MHz, CDCl$_3$) spectrum of compound 28

1H NMR (400 MHz, CDCl$_3$) spectrum of compound 29
13C{1H} NMR (100 MHz, CDCl$_3$) spectrum of compound 29

1H NMR (400 MHz, CDCl$_3$) spectrum of compound 30
13C\{(1H) NMR (100 MHz, CDCl$_3$) spectrum of compound 30

\begin{center}
\includegraphics[width=\textwidth]{c_nmr.png}
\end{center}

1H NMR (400 MHz, CDCl$_3$) spectrum of compound 31

\begin{center}
\includegraphics[width=\textwidth]{h_nmr.png}
\end{center}
13C$\{^1\text{H}\}$ NMR (100 MHz, CDCl$_3$) spectrum of compound 31

19F NMR (376 MHz, CDCl$_3$) spectrum of compound 31
1H NMR (400 MHz, CDCl$_3$) spectrum of compound 32

13C{1H} NMR (100 MHz, CDCl$_3$) spectrum of compound 32
1H NMR (400 MHz, CDCl$_3$) spectrum of compound 33

13C{$_1^1$H} NMR (100 MHz, CDCl$_3$) spectrum of compound 33
1H NMR (400 MHz, CDCl$_3$) spectrum of compound 34

13C{1H} NMR (100 MHz, CDCl$_3$) spectrum of compound 34
1H NMR (400 MHz, CDCl$_3$) spectrum of compound 35

13C{1H} NMR (100 MHz, CDCl$_3$) spectrum of compound 35
1H NMR (400 MHz, CDCl$_3$) spectrum of compound 36

13C{H} NMR (100 MHz, CDCl$_3$) spectrum of compound 36
1H NMR (400 MHz, CDCl$_3$) spectrum of compound 37

13C\{1H\} NMR (100 MHz, CDCl$_3$) spectrum of compound 37
1H NMR (400 MHz, CDCl$_3$) spectrum of compound 38

13C{1H} NMR (100 MHz, CDCl$_3$) spectrum of compound 38
1H NMR (400 MHz, DMSO-d_6) spectrum of compound 39

13C(1H) NMR (100 MHz, DMSO-d_6) spectrum of compound 39
1H NMR (400 MHz, CDCl$_3$) spectrum of compound 40

13C-{1H} NMR (100 MHz, CDCl$_3$) spectrum of compound 40
1H NMR (400 MHz, CDCl$_3$) spectrum of compound 41

13C{'^1}$H NMR (100 MHz, CDCl$_3$) spectrum of compound 41
1H NMR (400 MHz, CDCl$_3$) spectrum of compound 42

13C{1H} NMR (100 MHz, CDCl$_3$) spectrum of compound 42
1H NMR (400 MHz, CDCl$_3$) spectrum of compound 76

13C{1H} NMR (100 MHz, CDCl$_3$) spectrum of compound 76
1H NMR (400 MHz, CDCl$_3$) spectrum of compound 45

13C{1H} NMR (100 MHz, CDCl$_3$) spectrum of compound 45
1H NMR (400 MHz, CDCl$_3$) spectrum of compound 46

13C{1H} NMR (100 MHz, CDCl$_3$) spectrum of compound 46
1H NMR (400 MHz, CDCl$_3$) spectrum of compound 47

13C-1H NMR (100 MHz, CDCl$_3$) spectrum of compound 47
1H NMR (400 MHz, CDCl$_3$) spectrum of compound 48

13C-1H NMR (100 MHz, CDCl$_3$) spectrum of compound 48
1H NMR (400 MHz, CDCl$_3$) spectrum of compound 49

13C{1H} NMR (100 MHz, CDCl$_3$) spectrum of compound 49
1H NMR (400 MHz, CDCl$_3$) spectrum of compound 50

13C{1H} NMR (100 MHz, CDCl$_3$) spectrum of compound 50
1H NMR (400 MHz, CDCl$_3$) spectrum of compound 51

13C{1H} NMR (100 MHz, CDCl$_3$) spectrum of compound 51
1H NMR (400 MHz, CDCl$_3$) spectrum of compound 52

13C-1H NMR (100 MHz, CDCl$_3$) spectrum of compound 52
1H NMR (400 MHz, CDCl$_3$) spectrum of compound 53

13C{1H} NMR (100 MHz, CDCl$_3$) spectrum of compound 53
1H NMR (400 MHz, CDCl$_3$) spectrum of compound 54

13C{1H} NMR (100 MHz, CDCl$_3$) spectrum of compound 54
1H NMR (400 MHz, CDCl$_3$) spectrum of compound 55

13C{1H} NMR (100 MHz, CDCl$_3$) spectrum of compound 55
1H NMR (400 MHz, CDCl$_3$) spectrum of compound 56

13C{1H} NMR (100 MHz, CDCl$_3$) spectrum of compound 56
19F NMR (376 MHz, CDCl$_3$) spectrum of compound 56

1H NMR (400 MHz, CDCl$_3$) spectrum of compound 57
$^{13}\text{C}^{1}{\text{H}}$ NMR (100 MHz, CDCl$_3$) spectrum of compound 57

^{19}F NMR (376 MHz, CDCl$_3$) spectrum of compound 57
1H NMR (400 MHz, CDCl$_3$) spectrum of compound 58

13C\{1H} NMR (100 MHz, CDCl$_3$) spectrum of compound 58
1H NMR (400 MHz, CDCl$_3$) spectrum of compound 44

13C(1H) NMR (100 MHz, CDCl$_3$) spectrum of compound 44
1H NMR (400 MHz, DMSO-d_6) spectrum of compound 59

13C\{1H\} NMR (100 MHz, DMSO-d_6) spectrum of compound 59
1H NMR (400 MHz, CDCl$_3$) spectrum of compound 60

13C{1H} NMR (100 MHz, CDCl$_3$) spectrum of compound 60
1H NMR (400 MHz, CDCl$_3$) spectrum of compound 61

13C{1H} NMR (100 MHz, CDCl$_3$) spectrum of compound 61
1H NMR (400 MHz, CDCl$_3$) spectrum of compound 62

13C{1H} NMR (100 MHz, CDCl$_3$) spectrum of compound 62
1H NMR (400 MHz, CDCl$_3$) spectrum of compound 63

13C 1H NMR (100 MHz, CDCl$_3$) spectrum of compound 63
1H NMR (400 MHz, CDCl$_3$) spectrum of compound 64

13C{1H} NMR (100 MHz, CDCl$_3$) spectrum of compound 64
1H NMR (400 MHz, CDCl$_3$) spectrum of compound 65

13C {1H} NMR (100 MHz, CDCl$_3$) spectrum of compound 65
19F NMR (376 MHz, CDCl$_3$) spectrum of compound 65

1H NMR (400 MHz, CDCl$_3$) spectrum of compound 66
1H NMR (400 MHz, CDCl$_3$) spectrum of compound 67

13C{1H} NMR (100 MHz, CDCl$_3$) spectrum of compound 67
1H NMR (400 MHz, CDCl$_3$) spectrum of compound 68

13C\{1H\} NMR (100 MHz, CDCl$_3$) spectrum of compound 68
1H NMR (400 MHz, CDCl$_3$) spectrum of compound 69

13C{1H} NMR (100 MHz, CDCl$_3$) spectrum of compound 69
1H NMR (400 MHz, CDCl$_3$) spectrum of compound 70

13C{1H} NMR (100 MHz, CDCl$_3$) spectrum of compound 70
1H NMR (400 MHz, CDCl$_3$) spectrum of compound 71

13C-{1H} NMR (100 MHz, CDCl$_3$) spectrum of compound 71
1H NMR (400 MHz, CDCl$_3$) spectrum of compound 74

13C$^{'^1}$H NMR (100 MHz, CDCl$_3$) spectrum of compound 74