Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2024

Supporting Information

Modular Synthetic Strategies for Dipyrrolopyrazines

Justin Kahle, ^a Alexandra V. Mackenroth,^{‡a} Christopher Hüßler,^{‡a} Patrick D. Römgens ^{,a} Paul Schimanski^a, Petra Krämer,^a Margit Brückner,^a Thomas Oeser,^a Frank Rominger,^a Matthias Rudolph,^a and A. Stephen K. Hashmi^{*a,b}

[a] Organisch-Chemisches Institut (OCI), Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany. E-mail: hashmi@hashmi.de

[b] Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia

[‡] These authors contributed equally to this work.

Table of Contents

General Information	2-3
General Procedures	4
Optimisation Screenings.	5-7
Synthesis of Compounds	8-49
NMR Spectra	50-99
X-Ray Structures	
TGA & UV-Stability Measurements	104
UV/Vis, Fluorescence Characteristics & Spectra	
References	

General Information

Chemicals were purchased from commercial suppliers and used without further purification or synthesised by members of the *Hashmi* group using known literature procedures. Solvents were bought from commercial suppliers (abcr, Acros, Alfa Aesar, BLDPharm, Carbolution, Chempur, Fluka, Merck, Sigma Aldrich and TCI) and used without further purification. Dry solvents were dispensed from a Braun MB SPS-800 solvent purification system and used directly. Deuterated solvent for NMR spectroscopy were bought from Eurisiotop and Sigma Aldrich. Reactions excluding oxygen and moisture were performed using standard air-free techniques under an atmosphere of dry nitrogen with a rotary oil pump.

Melting points (m.p.) were measured in open glass capillaries on a Stuart SMP10 melting point apparatus and are uncorrected.

Rf-values were determined by analytical thin layer chromatography (TLC) on aluminium sheets coated with silica gel produced by Macherey-Nagel (ALUGRAM[®] Xtra SIL G/25 UV254). Detection is accomplished using UV-light (254 and 365 nm).

Nuclear magnetic resonance spectroscopy (NMR) was performed at the department of organic chemistry under supervision of Dr. J. Graf. If not stated otherwise, all spectra were recorded at room temperature. As measuring devices, the BRUKER AVANCE DRX-300, BRUKER AVANCE III 400, BRUKER AVANCE III 500, BRUKER AVANCE III 600 and Bruker Avance Neo 700 were used. Spectra were internally referenced to residual deuterated solvent. Chemical shifts are given in ppm and coupling constants are given in Hz.

In ¹**H-NMR** spectra the following abbreviations are used to describe the observed multiplicities: "s" (singlet), "d" (doublet), "t" (triplet), "q" (quartet), "qi" (quintet), "m" (multiplet), "dd" (doublet of a doublet). ¹³**C-NMR** spectra are proton decoupled and were interpreted with the help of DEPT- and/or 2D-spectra. The following abbreviations are used to describe the observed carbon multiplicities: "s" quaternary carbon, "d" CH carbon "t" CH₂ carbon and "q" CH₃ carbon. All spectra were analysed using MestReNova 14.2.

Mass spectrometry (MS) and **high-resolution mass spectrometry (HR/MS)** were recorded at the mass spectrometry facility of the department of organic chemistry under supervision of Dr. J. Gross on the following spectrometers JEOL AccuTOF GCx (EI), Bruker ApexQe hybrid 9.4 T FT-ICR (ESI, MALDI, DART), Finnigan LCQ (ESI), Bruker AutoFlex Speed (MALDI) and Bruker timsTOFfleX (ESI, MALDI).

2

For **flash column chromatography** silica gel (Sigma-Aldrich, pore size 60 Å, 70-230 mesh, 63-200 μ m) was used as stationary phase. As eluents different mixtures of petroleum ether (PE), ethyl acetate (EA) or dichloromethane (DCM) were used.

Infrared spectroscopy (IR) was performed using a FT-IR Bruker LUMOS with a Germanium ATR-crystal. The most significant bands are reported in wavenumbers (cm⁻¹) and solvent or matrix are mentioned in brackets.

Ultraviolet/Vis (UV/VIS) absorption spectra were measured on a JASCO V-670 spectrometer.

UV-Vis spectra (UV/VIS) were recorded on a Jasco UV-Vis V-660.

Fluorescence spectra were recorded on a Jasco FP6500. Quantum yields (QY) were recorded on a PTI QuantaMaster 40 with Ulbricht Sphere.

X-ray crystallography was carried out at the chemistry department of Heidelberg University under the supervision of Dr. F. Rominger on the following instruments: Bruker Smart APEX II Quazar (with Momicrosource) and Stoe Stradivari (with Co-microsource and Pilatus detector). The structures were processed with Mercury 4.3.0.3.

TGA/DSC were conducted with the Mettler Toledo TGA/DSC1 STARe System in 40- μ l Al crucibles for the temperature range 30 – 400 °C.

General Procedures

GP1 Sonogashira

A baked-out Schlenk flask was evacuated and backfilled with nitrogen three times. In this flask, a mixture of equal parts of anhydrous THF and Et_3N was degassed and aryl halide (1.00 eq.) and $PdCl_2(PPh_3)_2$ (10 mol%) were dissolved and the mixture was degassed again. Afterwards CuI (4 mol%) and the corresponding alkyne (2.20 eq.) were added and mixture was stirred at 60 °C overnight. The solvent was removed, the crude product was adsorbed onto silica gel, purified using flash column chromatography, followed by centrifugation with 3x 4 mL pentane and 1x 4 mL MeOH and then dried under vacuum.

GP2 Sonogashira

A baked-out Schlenk flask was evacuated and backfilled with nitrogen three times. In this flask a mixture of equal parts anhydrous THF and Et_3N was degassed and aryl halide (1.00 eq.) and $PdCl_2(PPh_3)_2$ (10 mol%) were dissolved and the mixture was degassed again. Afterwards Cul (4.00 mol%) and the corresponding alkyne (2.20 eq.) were added and mixture was stirred at 70 °C for 48 h. The solvent was removed, the crude product was adsorbed onto silica gel, purified using flash column chromatography and dried under vacuum.

GP3 Cu(I)-cyclisation

1 eq. of **BA** is cyclised with 0.20 eq. Cul in a mixture of 1:1 THF/Et₃N at 70 °C overnight. The solvent is removed under vacuum and the crude product purified *via* flash column chromatography on silica gel.

GP4 Au(I)-cyclisation

1 eq. of **BA** is cyclised with 0.10 eq. $IPrAuNTf_2$ in DCE at 60 °C overnight. After removing the solvent under vacuo, the crude product was centrifuged with 3x pentane and 1x MeOH to afford the product.

Optimisation Screenings

Prior the described Route for **DBC** in the manuscript (Scheme 2). The first approach towards **DBC** started by using 2,5-dibromo-3,6-dichloropyrazine. The conditions for the Buchwald-Hartwig reaction were optimised using this precursor and then applied to *tert*-butyl (5-bromo-3,6-dichloropyrazin-2-yl)carbamate.

Table 1: Buchwald-Hartwig Screening prior to Scheme 2, we optimised with the precursor 2,5-dibromo-3,6-dichloropyrazine. *Mono coupled product **3**. Screening reactions were carried out on a 326 µmol scale with 1.00 eq. (100.0 mg) of 2,5-dibromo-3,6-dichloropyrazine. The given yields constitute isolated yields after flash column chromatography.

Entry	Ligand	base	Eq.	Eq.	Eq.	time	Τ	Yield
			Pd(OAc)₂	Ligand	base	(h)	(°C)	(%)
1	-	Cs ₂ CO ₃	-	-	3.00	24	80	-
2	-	Cs_2CO_3	-	-	3.00	96	80	-
3	-	Cs_2CO_3	-	-	3.00	96	100	-
4	DPEPhos	KO ^t Bu	0.03	0.03	2.10	24	rt	
5	DPEPhos	KO ^t Bu	0.10	0.10	2.10	24	60	21*
6	XPhos	KO ^t Bu	0.05	0.05	2.10	24	rt	-
7	XantPhos	KO ^t Bu	0.05	0.05	2.10	24	rt	-
8	XantPhos	KO ^t Bu	0.05	0.1	2.10	24	100	8
9	XantPhos	Cs_2CO_3	0.05	0.10	2.10	48	100	11
10	XantPhos	Cs_2CO_3	0.06	0.10	3.00	96	60	10
11	XantPhos	KO ^t Bu	0.06	0.8	3.00	24	80	17
12	XantPhos	KO ^t Bu	0.06	0.8	3.00	48	60	24
13	XantPhos	NaOMe	0.06	0.8	3.00	48	60	-

Table 2: Bromination Screening. Entry 4.: 19% of mono-brominated product (NMR yield). Screening reactions were carried out on a 15.5 μ mol scale with 1.00 eq. (10.0 mg) of **DPPB2**. 2.20 eq. of NBS (1.76 mg, 30.9 μ mol) were used as a bromination agent. NMR yields are given.²

entry	t (°C)	Time (h)	solvent	Yield A (%)	
1	rt	0.5	CHCl ₃	-	
2	rt	3	CHCl₃	-	
3	50	6	CHCl₃	-	
4	50	24	CHCl₃	19*	
5	75	5	MeCN	quant.	

Table 3: Screening Deprotection. Screening reactions were carried out on a 15.5 µmol scale with 1.00 eq. (10.0 mg) of **DPPB2**. NMR yields are given. The given yields for entry 3 & 6 constitute isolated yields after flash column chromatography.

entries	Reagent	t (°C)	Time (h)	solvent	Yield (%)
1	TBAF ³	80	0.5	THF	10
2	TBAF ³	70	5	THF	50
2	-	180 ^{vacuo}	3	-	Decomp.
3	(COCI) ₂ ⁴	rt.	24	MeOH	80
4	HCl⁵	rt.	3	Dioxane	20
5	HCl⁵	rt.	3	EtOH	10
6	TMSOTf /	0 °C – rt.	5	DCM	71
	2,6-				
	lutidine ⁶				
7	TFA ⁷	0 °C – rt.	5	DCM	42

Table 4: Screening reactions were carried out on a 67.2 μ mol scale with 1.00 eq. (30.0 mg) of **DPP2**. The given yields constitute isolated yields after flash column chromatography.⁸

entry	base	alkylhalide	T (°C)	Time (h)	solvent	Yield (%)
1	4 eq.KO <i>t</i> Bu	20 eq. 1-iodohexane	rt	2	DMSO	mixture
2	6 eq.KO <i>t</i> Bu	20 eq. 1-iodohexane	rt	24	DMSO	mixture
3	3 eq.KO <i>t</i> Bu	8 eq. 1-bromohexane	Rt	24	THF	mixture
4	3 eq.KO <i>t</i> Bu	40 eq. 1-bromohexane	45	96	THF	8
5	3 eq.KO <i>t</i> Bu	20 eq. 1-bromohexane	100	24	toluene	11
6	3.2 eq.K ₂ CO ₃	2.8 eq. 1-bromohexane	80	48	DMF	35
7	6 eq. Cs ₂ CO ₃	2.2 eq. 1-bromohexane	rt.	24	DMF	79

Synthesis of Compounds

IPrAuCl

According to the Grela et al., [AuCl(DMS)] (1.00 g, 2.36 mmol, 1.00 eq.), IPrHCl (746 mg, 2.59 mmol, 1.10 eq.) and K_2CO_3 (488 mg, 3.54 mmol, 1.50 eq.) were suspended in 75 mL acetone and stirred at rt overnight. The solvent was evaporated *in vacuo* and then absorbed onto Celite[®]. After purification via flash column chromatography (DCM) 80% of a colorless solid were obstained (1.17 g, 1.89 mmol).

¹**H NMR** (301 MHz, CD₂Cl₂) δ 7.56 (t, *J* = 7.8 Hz, 2H), 7.34 (d, *J* = 7.8 Hz, 4H), 7.23 (s, 2H), 2.56 (d, *J* = 6.5 Hz, 4H), 1.33 (d, *J* = 6.9 Hz, 12H), 1.22 (d, *J* = 6.9 Hz, 12H).

The spectroscopic data correspond to those previously reported in the literature.9

IPrAuNTf₂

According to Grela et al., [IPrAuCl] (1.00 g, 1.61 mmol, 1.00 eq.) was dissolved in 20 mL DCM at rt in the absence of light. Then 1.05 eq. of AgNTf₂ (656 μ mol, 1.05 eq.) were added and the mixture was stirred under ultra-sonification for 15 min. The excess AgCl was removed via a short filtration over Celite [®] to yield 1.21 g of the catalyst (1.40 mmol, 87%).

¹**H NMR** (301 MHz, CDCl₃) δ 7.54 (t, *J* = 7.8 Hz, 2H), 7.36 – 7.25 (m, 6H), 2.47 (hept., *J* = 6.8 Hz, 4H), 1.31 (d, *J* = 6.9 Hz, 12H), 1.23 (d, *J* = 6.9 Hz, 12H)

¹⁹**F NMR** (283 MHz, CDCl₃) δ -75.99 (s, 6F).

The spectroscopic data correspond to those previously reported in the literature.⁹

[1,1':3',1"-Terphenyl]-5'-carbaldehyde

A degassed solution of Pd(OAc)₂ (85.1 mg, 378 μ mol, 0.10 eq.) and PPh₃ (398 mg, 1.52 mmol, 0.40 eq.) in toluene/H₂O (50 mL, 1:1) was stirred for 10 minutes at room temperature. 3,5-Dibromobenzaldehyde (1.00 g, 3.79 mmol, 1 eq.), phenylboronic acid (1.39 g, 11.4 mmol, 3.00 eq.), and Na₂CO₃ (1.20 g, 11.4 mmol, 3.0 eq.) were sequentially added to the reaction mixture in a Schlenk flask. The reaction mixture was then heated to 100°C overnight and then let to cool to rt. The crude reaction mixture was washed with water, extracted with EtOAc, dried with MgSO₄ and then subjected to flash-column (PE/EA 50:1) yielding 91% (890 mg, 3.45 mmol) of a colorless solid.

$R_{f}(DCM) = 0.57$

¹H NMR (300 MHz, CDCl₃) δ 10.16 (s, 1H), 8.08 (s, 3H), 7.69 (d, J = 8.0 Hz, 4H), 7.64 – 7.37 (m, 6H).
¹³C{¹H} NMR (126 MHz, CDCl₃) δ 192.47 (d, 1C), 142.91 (s, 2C), 139.87 (s, 2C), 137.58 (d, 1C), 131.99 (d, 1C), 129.19 (d, 4C), 128.28 (d, 2C), 127.39 (d, 4C), 127.32 (d, 2C).

The spectroscopic data correspond to those previously reported in the literature.¹⁰

4,4"-Di-tert-butyl-[1,1':3',1"-terphenyl]-5'-carbaldehyde

A degassed solution of Pd(OAc)₂ (85.1 mg, 378 μ mol, 0.1 eq.) and PPh₃ (397 mg, 1.52 mmol, 0.40 eq.) in toluene/H₂O (50 mL, 1:1) was stirred for 10 minutes at room temperature. 3,5-Dibromobenzaldehyde (1.00 g, 3.79 mmol, 1.00 eq.), (4-(*tert*-butyl)phenyl)boronic acid (2.02 g, 11.37 mmol, 3.00 eq.), and Na₂CO₃ (1.20 g, 11.37 mmol, 3.00 eq.) were sequentially added to the reaction mixture in a Schlenk flask. The reaction mixture was then heated to 100 °C overnight and then let to cool to rt. The crude reaction mixture was washed with water, extracted with EtOAc, dried with MgSO₄ and then subjected to flash-column chromatography (PE/EA 100:1) yielding 88% (622 mg, 1.60 mmol) of a colorless oil.

 $R_{f}(DCM) = 0.50$

¹**H NMR** (300 MHz, CDCl₃) δ 10.14 (s, 1H), 8.04 (s, 3H), 7.63 (d, *J* = 8.1 Hz, 4H), 7.52 (d, *J* = 8.6 Hz, 4H), 1.39 (s, 18H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 192.24 (d, 1C), 151.10 (s, 2C), 142.37 (s, 1C), 137.27 (s, 2C), 136.74 (s, 2C), 131.35 (d, 1C), 126.72 (d, 4C), 126.61 (d, 2C), 125.83 (d, 4C), 34.48 (s, 2C), 31.18 (q, 6C).

The spectroscopic data correspond to those previously reported in the literature.¹¹

5'-(2,2-Dibromovinyl)-1,1':3',1"-terphenyl

In a baked-out Schlenk flask, 2.00 equivalents of carbon tetrabromide (770 mg, 2.32 mmol) was added to a solution of 4.00 equivalents of triphenylphosphine (1.22 g, 4.65 mmol) in 20 mL of anhydrous DCM at 0 °C. The resulting mixture was stirred at 0 °C for 30 min until completely dissolved. In another flame dried Schlenk flask, 1.00 equivalent of [1,1':3',1''-terphenyl]-5'-carbaldehyde (300 mg, 1.16 mmol) was dissolved in 10 mL of anhydrous DCM. This solution was then transferred to the first Schlenk flask via a Teflon cannula. The combined reaction mixture was stirred at 0 °C for 30 minutes and then at room temperature for an additional 3 h. The reaction quenched with a saturated solution of NaHCO₃. The resulting phases were separated, and the aqueous layer was extracted with DCM. The combined organic layers were dried with MgSO₄, and the solvent was then removed under reduced pressure. The crude product was then purified *via* flash-column chromatography (PE:EA 200:1) to afford 327 mg (789 μ mol, 68%) of a colorless solid.

 $R_{f}(DCM) = 0.84$

¹**H NMR** (400 MHz, CDCl₃) δ 7.78 (s, 1H), 7.74 (s, 2H), 7.65 – 7.59 (m, 4H), 7.48 (t, *J* = 7.5 Hz, 4H), 7.39 (t, *J* = 7.3 Hz, 2H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 142.20 (s, 2C), 140.74 (s, 2C), 136.91 (d, 1C), 136.43 (d, 2C), 129.05 (d, 4C), 127.87 (d, 2C), 127.42 (d, 4C), 126.41 (d, 2C), 126.23 (d, 2C), 90.59 (s, 1C).

The spectroscopic data correspond to those previously reported in the literature.¹⁰

4,4"-Di-tert-butyl-5'-(2,2-dibromovinyl)-1,1':3',1"-terphenyl

In a baked-out Schlenk flask, 2.00 equivalents of carbon tetrabromide (895 mg, 2.70 mmol) was added to a solution of 4.00 equivalents of triphenylphosphine (1.42 g, 5.40 mmol) in 20 mL of anhydrous DCM at 0 °C. The resulting mixture was stirred at 0 °C for 30 min until completely dissolved. In another flame dried Schlenk flask, 1.00 equivalent of 4,4"-di-*tert*-butyl-[1,1':3',1"-terphenyl]-5'-carbaldehyde (500 mg, 1.35 mmol) was dissolved in 10 mL of anhydrous DCM. This solution was then transferred to the first Schlenk flask via a Teflon cannula. The combined reaction mixture was stirred at 0 °C for 30 minutes and then at room temperature for an additional 3 h. The reaction was quenched with a saturated solution of NaHCO₃. The resulting phases were separated, and the aqueous layer was extracted with DCM. The combined organic layers were dried with MgSO₄, and the solvent was then removed under reduced pressure. The crude product was then purified *via* flash-column chromatography (PE:EA 200:1) to afford 615 mg (1.17 mmol, 87%) of a colorless oil.

 $R_{f}(DCM) = 0.90$

¹**H NMR** (400 MHz, CDCl₃) δ 7.79 (s, 1H), 7.73 (s, 2H), 7.63 – 7.54 (m, 5H), 7.51 (d, *J* = 8.6 Hz, 4H), 1.40 (s, 18H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 150.90 (s, 2C), 141.93 (s, 2C), 137.88 (s, 2C), 137.06 (d, 1C), 136.23, 127.03 (d, 4C), 126.16 (d, 1C), 125.98 (d, 4C), 125.84 (d, 2C), 90.22 (s, 1C), 34.74 (s, 2C), 31.52 (q, 6C)).

The spectroscopic data correspond to those previously reported in the literature.¹¹

5'-Ethynyl-1,1':3',1"-terphenyl

In a flame dried Schlenk flask, 1.00 equivalent of 5'-(2,2-dibromovinyl)-1,1':3',1"-terphenyl (500 mg, 1.21 mmol) was dissolved in 20 mL of tetrahydrofuran (THF) and cooled to -78 °C. Then, 2.50 equivalents of *n*-BuLi solution (2.5 M in hexane, 1.21 mL, 3.02 mmol) were added dropwise, and the resulting solution was stirred overnight. The reaction was quenched by addition of an ice-cold saturated solution of NH_4CI . The resulting phases were separated, and the aqueous layer was extracted with DCM. The combined organic layers were then dried with MgSO₄. The solvent was removed under reduced pressure, and the crude product was filtered through a short silica gel plug using a DCM as eluent. The solvent was evaporated again under reduced pressure to give the desired compound as a colorless oil (292 mg, 1.15 mmol, 95% yield).

 $R_{f}(DCM) = 0.91$

¹**H NMR** (400 MHz, CDCl₃) δ 7.78 (s, 1H), 7.71 (s, 2H), 7.63 (d, *J* = 7.0 Hz, 4H), 7.52 – 7.43 (m, 4H), 7.39 (t, *J* = 7.3 Hz, 2H), 3.13 (s, 1H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 142.18 (s, 2C), 140.38 (s, 2C), 129.83 (d, 2C), 129.05 (d, 4C), 127.95 (d, 2C), 127.36 (d, 4C), 126.85 (d, 1C), 123.17 (q, 1C), 83.75 (s, 1H), 77.36 (d, 1H).

The spectroscopic data correspond to those previously reported in the literature.¹⁰

4,4"-Di-tert-butyl-5'-ethynyl-1,1':3',1"-terphenyl

In a flame dried flask, 1.00 equivalent of 4,4"-di-*tert*-butyl-5'-(2,2-dibromovinyl)-1,1':3',1"-terphenyl (500 mg, 949 µmol) was dissolved in 20 mL of tetrahydrofuran (THF) and cooled to -78 °C. Then, 2.50 equivalents of *n*-BuLi solution (2.5 M in hexane, 949 mmL, 2.37 mmol) were added dropwise, and the resulting solution was stirred overnight. The reaction was quenched by addition of an ice-cold saturated solution of NH_4CI . The resulting phases were separated, and the aqueous layer was extracted with DCM. The combined organic layers were then dried with MgSO₄. The solvent was removed under reduced pressure, and the crude product was filtered through a short silica gel plug using a DCM as eluent. The solvent was evaporated again under reduced pressure to give the desired compound as a colorless oil (313 mg, 854 µmol, 90% yield).

 $R_{f}(DCM) = 0.89$

¹**H NMR** (400 MHz, CDCl₃) δ 7.78 (s, 1H), 7.68 (s, 2H), 7.57 (d, *J* = 8.7 Hz, 4H), 7.49 (d, *J* = 8.2 Hz, 4H), 3.12 (s, 1H), 1.38 (s, 18H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 151.01 (s, 2C), 141.91 (s, 2C), 137.51 (s, 2C), 129.44 (d, 2C), 126.98 (d, 4C), 126.58 (d, 1C), 125.99 (d, 4C), 122.98 (s, 1C), 83.96 (s, 1C), 77.36 (d, 1C), 34.75 (s, 2C), 31.51 (q, 6C).

The spectroscopic data correspond to those previously reported in the literature.¹¹

5-Bromo-3,6-dichloropyrazine 2-amine (2)

5-Bromo-3-chloropyrazine 2-amine (10.1 g, 48.7 mmol, 1.00 eq.) was dissolved in dry methanol (300 mL). NCS (7.21 g, 54.0 mmol, 1.10 eq.) was added to the mixture and the reaction was stirred at 50 °C for 24 h. The mixture was cooled to room temperature and distilled water (200 mL) was added, the precipitate was filtered off and washed with distilled water (300 mL) and petrol ether (150 mL). The product was dried under vacuum. The product was obtained as an off-white solid (10.2 g, 41.8 mmol, 86 %).

¹**H-NMR** (300 MHz, CDCl₃): δ 5.12 (s, 2H).

The spectroscopic data correspond to those previously reported in the literature.^[5]

Tert-butyl (5-bromo-3,6-dichloropyrazin-2-yl)carbamate (3)

In a round-bottom flask, 1.00 equivalent of 5-bromo-3,6-dichloropyrazin-2-amine (8.00 g, 32.9 mmol) was dissolved in a mixture of THF/Et₃N (200 mL/40 mL). To this solution were added 3.5 equivalents of Boc₂O (25.2 g, 115 mmol) and 0.10 equivalents of 4-DMAP (402 mg, 3.29 mmol). The resulting reaction mixture was stirred at rt overnight. After completion of the reaction, the solvent was removed in vacuo. The crude product was washed with water and the aqueous layer was extracted with ethyl acetate and then purified *via* flash-column chromatography (PE:DCM 50:1) to yield 96% of *tert*-butyl (5-bromo-3,6-dichloropyrazin-2-yl)carbamate (10.85 g, 31.6 mmol)

 $R_{f}(DCM) = 0.78$

¹**H NMR** (500 MHz, CDCl₃) δ 1.43 (s, 9H).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ 148.89 (s, 2C), 146.33 (s, 1C), 144.32 (s, 1C), 143.99 (s, 1C), 136.50 (s, 1C), 85.15 (s, 1C), 27.93 (q, 3C).

IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 2987, 2937, 1777, 1720, 1505, 1458, 1384, 1370, 1307, 1270, 1240, 1149, 1111, 1044, 1032, 851, 812, 773, 640, 614.

HR/MS (EI⁺): *m*/*z* calcd. for C₉H₁₀N₃O₂Cl₂Br⁺: [M-Boc⁺] 340.9328, found: 340.9353.

m.p.[°C]: 109 – 114.

2,5-Dibromo-3,6-dichloropyrazine

5-Bromo-3,6-dichloropyrazine 2-amine (10.2 g, 41.8 mmol, 1.00 eq.) was dissolved in THF (100 mL). The mixture was cooled to 0 °C and HBr (48 % in water, 200 mL) was slowly added. Afterwards NaNO₂ (7.21 g, 104.5 mmol, 2.50 eq.) was added over 75 min and the mixture was stirred at 0 °C for another 1.5 h. Ice cold water (200 mL) and KOH (100 g) were added to quench the reaction and the mixture was extracted with ethyl acetate. The organic phases were collected, washed with distilled water, dried over MgSO₄ and the solvent was removed under reduced pressure. The product was purified by flash column chromatography (SiO₂, PE/EA 20:1). The solvent was removed under reduced pressure and the product was dried under vacuum. The product was obtained as a colorless solid (10.13 g, 33.0 mmol, 79 %).

 R_{f} (PE/EA 20:1) = 0.70

¹³C{¹H} NMR (101 MHz, CDCl₃): δ 146.84 (s, 2C), 136.49 (s, 2C).

The spectroscopic data correspond to those previously reported in the literature.^[5]

Di-tert-butyl (3,6-dichloropyrazine-2,5-diyl) dicarbamate (DBC)

Tert-butyl (5-bromo-3,6-dichloropyrazin-2-yl)carbamate (3.00 g, 8.75 mmol, 1.00 eq) was dissolved in dry, degassed toluene (36 mL) under nitrogen atmosphere. Then *tert*-butyl carbamate (1.74 g, 14.8 mmol, 1.70 eq.), KO^tBu (2.06 g, 18.4 mmol, 2.10 eq.), Pd(OAc)₂ (117 mg, 524 µmol, 6 mol-%) and Xantphos (404 mg, 699 µmol, 8 mol-%) were added and the mixture was stirred for 48 h at 60 °C under a N₂-atmosphere. The mixture was filtered over silica gel and the filter washed with EA and DCM. The solvent of the filtrate was removed under vacuum, the crude product was adsorbed onto silica gel and purified using flash column chromatography (SIO₂, PE/EA 10:1). The solvent was removed under reduced pressure and the *tert*-butyl carbamate remaining in the product was sublimated off (50 °C, 10⁻² mbar). The product was obtained as an off-white solid (1.86 g, 4.90 mmol, 56 %).

 $R_f(PE/EA 5:1) = 0.40$

¹**H-NMR** (600 MHz, CDCl₃): δ 7.11 (s, 2H), 1.53 (s, 18H).

¹³C{¹H} NMR (151 MHz, CDCl₃): δ [ppm] = 150.2 (s, 2C), 139.1 (s, 2C), 133.3 (s, 2C), 82.7 (s, 2C), 28.3 (q, 6C).

HR/MS (EI⁺): m/z calcd. For $C_{14}H_{20}Cl_2N_4O_4^+$: [M⁺] 378.0856, found: 378.0856, correct isotope distribution.

IR (ATR): \tilde{v} (cm⁻¹) = 3319, 2976, 2936, 1719, 1507, 1391, 1365, 1320, 1243, 1135, 1049, 1022, 942, 836, 763.

m.p. [°C]: 189 – 194.

di-tert-butyl (3,6-bis((4-methoxyphenyl)ethynyl)pyrazine-2,5-diyl)dicarbamate (BA1)

According to **GP1**: A mixture of 6 mL THF/Et₃N (1:1) was degassed in a baked out Schlenk flask for 20 min. **DBC** (100 mg, 264 μ mol, 1.00 eq.), Pd(PPh₃)₂Cl₂ (18.5 mg, 26.4 μ mol, 0.10 eq.) and 1-ethynyl-4-methoxybenzene (139 mg, 1.05 mmol, 4.00 eq.) were subsequently added. After stirring for 5 min Cul (2.51 mg, 13.8 μ mol, 0.04 eq.) was added last. After stirring for 24 h at 60 °C the reaction was treated according to **GP1**. After purification via flash-column chromatography (PE/EA 10:1 -> EA), the obtained orange solid was additionally centrifuged with 3 mL pentane (3x) and 3 mL MeOH (1x) to yield 114 mg (200 μ mol, **76%**) of an orange solid.

 $R_f(PE/EA 3:1) = 0.45$

¹**H NMR** (301 MHz, CDCl₃) δ 7.55 (d, *J* = 8.9 Hz, 2H), 7.38 (s, 2H), 6.92 (d, *J* = 8.9 Hz, 2H), 3.85 (s, 6H), 1.55 (s, 18H).

¹³C{¹H} NMR (151 MHz, CDCl₃) δ 160.98 (s, 2C), 150.80 (s, 2C), 143.96(s, 2C), 133.94 (d, 4C), 125.90 (s, 2C), 114.44 (d, 4C), 113.38 (s, 2C), 99.72 (s, 2C), 83.37 (s, 2C), 81.86 (s, 2C), 55.53 (q, 2C), 28.39 (q, 6C). HR/MS (MALDI⁺, DCTB): m/z calcd. for $C_{32}H_{34}N_4O_6^+$: [M⁺] 570.2473, found: 570.2477. IR(ATR)[cm^{-1}]: 3324, 2975, 2938, 2839, 2549, 2207, 1890, 1709, 1605, 1568, 1501, 1432, 1391, 1294, 1250, 1143, 1055, 1025, 908, 860, 830, 772, 729.

UV-Vis [nm]: 245, 290, 317, 408.

Fluorescence (DCM): λ_{Ex} = 315 nm, λ_{Max} = 454 nm; Φ = 90%

m.p. [°C]: 220 – 225.

Di-tert-butyl (3,6-bis((4-(trifluoromethyl)phenyl)ethynyl)pyrazine-2,5-diyl)dicarbamate (BA2)

According to **GP1**: A mixture of 12 mL THF/Et₃N (1:1) was degassed in a baked out Schlenk flask for 20 min. **DBC** (250 mg, 659 μ mol, 1.00 eq.), Pd(PPh₃)₂Cl₂ (46.3 mg, 65.9 μ mol, 0.10 eq.) and 1-ethynyl-4-(trifluoromethyl)benzene (449 mg, 2.64 mmol, 4.00 eq.) were subsequently added. After stirring for 5 min Cul (5.02 mg, 26.4 μ mol, 0.04 eq.) was added last. After stirring for 24 h at 60 °C the reaction was treated according to **GP1**. After purification via flash-column chromatography (PE/EA 10:1 -> EA), the obtained orange solid was additionally centrifuged with 3 mL pentane (3x) and 3 mL MeOH (1x) to yield 370 mg (573 μ mol, **87%**) of a bright yellow powder.

 $R_f(PE/EA 1:1) = 0.61$

¹H{¹⁹F} NMR (600 MHz, CDCl₃) δ 7.72 (d, *J* = 8.0 Hz, 2H), 7.67 (d, *J* = 8.2 Hz, 2H), 7.32 (s, 2H), 1.55 (s, 18H).

¹⁹**F NMR** (283 MHz, CDCl₃) δ -63.10.

¹³C{¹H} NMR (151 MHz, CDCl₃) δ 150.52 (s, 2C), 144.30 (s, 2C), 132.35 (d, 4C), 131.46 (s, q, J = 32.9 Hz, 2C), 126.09 (s, 2C), 125.53 (d, q, J = 3.8 Hz, 4C)), 124.83 (s, 2C), 123.57 (s, d, J = 272.4 Hz, 2C), 97.06 (s, 2C), 85.72 (s, 2C), 82.14 (s, 2C), 28.16 (q, 6C).

HR/MS (MALDI⁺, DCTB): *m*/*z* calcd. for C₃₂H₂₈N₄F₆O₄Na⁺: [M⁺] 669.1907, found: 669.1916.

IR(ATR)[*cm*⁻¹]: 3322, 3013, 2977, 2212, 1712, 1614, 1508, 1439, 1393, 1368, 1320, 1253.

UV-Vis [nm]: 251, 265, 300, 392.

Fluorescence (DCM): λ_{Ex} = 395 nm, λ_{Max} = 452 nm; Φ = 49%

m.p. [°C]: 222 – 227.

Di-tert-butyl (3,6-bis(p-tolylethynyl)pyrazine-2,5-diyl)dicarbamate (BA3)

According to **GP1**: A mixture of 10 mL THF/Et₃N (1:1) was degassed in a baked out Schlenk flask for 20 min. **DBC** (170 mg, 448 μ mol, 1.00 eq.), Pd(PPh₃)₂Cl₂ (31.5 mg, 44.8 μ mol, 0.10 eq.) and 1-ethynyl-4-methylbenzene (208 mg, 1.79 mmol, 4.00 eq.) were subsequently added. After stirring for 5 min Cul (4.27 mg, 22.41 μ mol, 0.04 eq.) was added last. After stirring for 24 h at 60 °C the reaction was treated according to **GP1**. After purification via flash-column chromatography (PE/EA 10:1 -> EA), the obtained orange solid was additionally centrifuged with 3 mL pentane (3x) and 3 mL MeOH (1x) to yield 159 mg (295 μ mol, **66%**) of a yellow powder.

 $R_f(PE/EA 4:1) = 0.23$

¹**H NMR** (600 MHz, CDCl₃) δ 7.50 (d, *J* = 8.1 Hz, 4H), 7.40 (s, 2H), 7.21 (d, *J* = 8.4 Hz, 4H), 2.40 (s, 6H), 1.55 (s, 18H).

¹³C{¹H} NMR (151 MHz, CDCl₃) δ 150.78 (s, 2C), 144.13 (s, 2C), 140.54 (s, 2C), 132.22 (d, 4C), 129.54 (d, 4C), 125.93 (s, 2C), 118.33 (s, 2C), 99.72 (s, 2C), 83.71 (s, 2C), 81.94 (s, 2C), 28.40 (q, 6C), 21.84 (q, 2C).

HR/MS (MALDI⁺, DCTB): *m/z* calcd. for C₃₂H₃₄N₄O₄⁺: [M⁺] 538.2575, found: 538.2576. **IR(ATR)**[*cm*⁻¹]: 3331, 2981, 2935, 2228, 1721, 1476, 1404, 1371, 1260, 1229, 1150, 1061, 1027, 908, 870, 823, 785, 762, 739, 691, 641.

UV-Vis [nm]: 235, 265, 302, 394.

Fluorescence (DCM): λ_{Ex} = 300/395 nm, λ_{Max} = 447 nm; Φ = 84%

m.p. [°C]: 226 – 231.

Di-tert-butyl (3,6-bis(phenylethynyl)pyrazine-2,5-diyl)dicarbamate (BA4)

According to **GP1**: A mixture of 3 mL THF/Et₃N (1:1) was degassed in a baked out Schlenk flask for 20 min. **DBC** (50.0 mg, 131 μ mol, 1.00 eq.), Pd(PPh₃)₂Cl₂ (9.25 mg, 13.1 μ mol, 0.10 eq.) and ethynylbenzene (53.9 mg, 527 μ mol, 4 eq.) were subsequently added. After stirring for 5 min Cul (1.00 mg, 5.27 μ mol, 0.04 eq.) was added last. After stirring for 24 h at 60 °C the reaction was treated according to **GP1**. After purification via flash-column chromatography (PE/EA 10:1 -> EA), the obtained orange solid was additionally centrifuged with 3 mL pentane (3x) and 3 mL MeOH (1x) to yield 61.0 mg (119 μ mol, **90%**) of a bright yellow powder.

 $R_f(PE/EA 1:1) = 0.40$

¹H NMR (600 MHz, CDCl₃) δ 7.63 – 7.60 (m, 4H), 7.47 – 7.38 (m, 8H), 1.55 (s, 18H).

¹³C{¹H} NMR (151 MHz, CDCl₃) δ 150.78 (s, 2C), 144.24 (s, 2C), 132.30 (d, 4C), 130.05 (d, 2C), 128.76 (d, 4C), 126.02 (s, 2C), 121.37 (s, 2C), 99.30 (s, 2C), 84.10 (s, 2C), 82.05 (s, 2C), 28.40 (q, 6C).

HR/MS (MALDI⁺, DCTB): *m/z* calcd. for C₃₀H₃₀N₄O₄Na⁺: [M⁺] 533.2159, found: 533.2170.
IR(ATR)[*cm*⁻¹]: 3331, 2981, 2935, 2228, 1721, 1476, 1404, 1371, 1260, 1229, 1150, 1061, 1027, 908, 870, 823, 785, 762, 739, 691, 641.

UV-Vis [nm]: 235, 265, 302, 394.

Fluorescence (DCM): λ_{Ex} = 300/395 nm, λ_{Max} = 447 nm; Φ = 84%

m.p. [°C]: 213 – 218.

Di-tert-butyl (3,6-bis(cyclopentylethynyl)pyrazine-2,5-diyl)dicarbamate (BA5)

According to **GP1**: A mixture of 6 mL THF/Et₃N (1:1) was degassed in a baked out Schlenk flask for 20 min. **DBC** (90.0 mg, 237 μ mol, 1.00 eq.), Pd(PPh₃)₂Cl₂ (16.7 mg, 23.7 μ mol, 0.10 eq.) and ethynylcyclopentane (89.4 mg, 949 μ mol, 4 eq.) were subsequently added. After stirring for 5 min Cul (1.81 mg, 9.49 μ mol, 0.04 eq.) was added last. After stirring for 24 h at 60 °C the reaction was treated according to **GP1**. After purification via flash-column chromatography (PE/EA 10:1 -> EA), the obtained orange solid was additionally centrifuged with 3 mL pentane (3x) and 3 mL MeOH (1x) to yield 93.9 mg (189 μ mol, **80%**) of an orange solid.

 $R_f(PE/EA 3:1) = 0.45$

¹**H NMR** (300 MHz, CDCl₃) δ 7.28 (s, 2H), 3.02 – 2.84 (m, 2H), 2.09 – 1.94 (m, 5H), 1.87 – 1.69 (m, 11H), 1.51 (s, 18H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 150.76 (s, 2C), 143.95 (s, 2C), 125.79 (s, 2C), 105.72 (s, 2C), 81.54 (s, 2C), 75.52 (s, 2C), 33.65 (t, 4C), 31.10 (d, 2C), 28.38 (q, 6C), 25.23 (t, 4C).

HR/MS (MALDI⁺, DCTB): *m*/*z* calcd. for C₂₈H₃₈N₄O₄Na⁺: [M⁺] 517.2785, found: 517.2795.

IR(ATR)[*cm*⁻¹]: 3410, 2962, 2933, 2869, 2224, 1722, 1505, 1481, 1452, 1392, 1367, 1325, 1238, 1140, 1074, 1053, 1019, 887, 847, 761, 695.

UV-Vis [nm]: 253, 282, 369.

Fluorescence (DCM): λ_{Ex} = 370 nm, λ_{Max} = 417 nm; Φ = 49%

m.p. [°C]: 142 – 147.

Di-tert-butyl (3,6-bis(thiophen-2-ylethynyl)pyrazine-2,5-diyl)dicarbamate (BA6)

According to **GP1**: A mixture of 3 mL THF/Et₃N (1:1) was degassed in a baked out Schlenk flask for 20 min. **DBC** (50.0 mg, 131 μ mol, 1.00 eq.), Pd(PPh₃)₂Cl₂ (9.25 mg, 13.1 μ mol, 0.10 eq.) and 2-ethynylthiophene (57.0 mg, 527 μ mol, 4.00 eq.) were subsequently added. After stirring for 5 min Cul (1.00 mg, 5.27 μ mol, 0.04 eq.) was added last. After stirring for 24 h at 60 °C the reaction was treated according to **GP1**. After purification via flash-column chromatography (PE/EA 10:1 -> EA), the obtained brown solid was additionally centrifuged with 3 mL pentane (3x) and 3 mL MeOH (1x) to yield 48.2 mg (92.3 μ mol, **70%**) of a yellow solid.

 $R_f(PE/EA 3:1) = 0.30$

¹**H NMR** (600 MHz, CDCl₃) δ 7.50 – 7.42 (m, 4H), 7.29 (s, 2H), 7.07 (dd, *J* = 5.1, 3.7 Hz, 18H), 1.55 (s, 18H).

¹³C{¹H} NMR (151 MHz, CDCl₃) δ 150.53 (s, 2C), 143.80 (2, 2C), 134.34 (d, 2C), 129.78 (s, 2C), 127.48 (s, 2C), 125.71 (s, 2C), 121.03 (s, 2C), 92.59 (s, 2C), 87.80 (s, 2C), 81.89 (s, 2C), 28.18 (q, 6C).

HR/MS (EI⁺): *m/z* calcd. for C₁₆H₁₀N₄S₂⁺: [M-2Boc⁺] 322.0341, found: 322.0327.
IR(ATR)[*cm*⁻¹]: 3331, 2978, 2932, 2209, 1717, 1479, 1436, 1390, 1370, 1340, 1252, 1233, 1152, 1062, 908, 856, 772, 722, 697.

UV-Vis [nm]: 233, 271, 316, 405.

Fluorescence (DCM): λ_{Ex} = 350/410 nm, λ_{Max} = 458 nm; Φ = 16%

m.p. [°C]: 199 – 204.

Di-tert-butyl (3,6-bis([1,1':3',1"-terphenyl]-5'-ylethynyl)pyrazine-2,5-diyl)dicarbamate (BA7)

According to **GP1**: A mixture of 6 mL THF/Et₃N (1:1) was degassed in a baked out Schlenk flask for 20 min. **DBC** (100 mg, 264 µmol, 1.00 eq.), Pd(PPh₃)₂Cl₂ (18.5 mg, 26.4 µmol, 0.10 eq.) and 5'-ethynyl-1,1':3',1''-terphenyl (158 mg, 580 µmol mmol, 2.20 eq.) were subsequently added. After stirring for 5 min Cul (2.51 mg, 13.8 µmol, 0.04 eq.) was added last. After stirring for 24 h at 60 °C the reaction was treated according to **GP1**. After purification via flash-column chromatography (PE/EA 10:1 -> EA), the obtained brown solid was additionally centrifuged with 3 mL pentane (3x) and 3 mL MeOH (1x) to yield 101 mg (121 µmol, **47%**) of a brown solid.

 $R_f(PE/EA 1:1) = 0.68$

¹**H NMR** (600 MHz, CDCl₃) δ 7.87 (t, *J* = 1.7 Hz, 2H), 7.83 (d, *J* = 1.7 Hz, 3H), 7.68 – 7.64 (m, 8H), 7.52 – 7.45 (m, 10H), 7.44 – 7.39 (m, 5H), 1.56 (s, 18H).

¹³C{¹H} NMR (151 MHz, CDCl₃) δ 150.75 (s, 2C), 144.41 (s, 2C), 142.47 (d, 4C), 140.02 (d, 4C), 129.73 (d, 4C), 129.14 (d, 8C), 128.16 (d, 4C), 127.87 (d, 2C), 127.33 (d, 8C), 126.06 (s, 2C), 122.30 (s, 2C), 99.42 (s, 2C), 84.34 (s, 2C), 82.12 (s, 2C), 28.41 (q, 6C).

IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 3057, 3035, 2976, 2931, 2213, 1718, 1591, 1514, 1497, 1436, 1414, 1392, 1366, 1331, 1241, 1148, 1096, 1074, 1051, 1028, 878, 845, 758, 696, 614.

HR/MS (MALDI⁺, DCTB): *m/z* calcd. for C₅₄H₄₆N₄O₄Na⁺: [M⁺] 837.3411, found: 837.3418.

UV-Vis [nm]: 249, 304, 398.

Fluorescence (DCM): λ_{Ex} = 400 nm, λ_{Max} = 451 nm; Φ = 65 %

m.p. [°C]: 215 – 220.

(3,6-bis((4,4"-di-tert-butyl-[1,1':3',1"-terphenyl]-5'-yl)ethynyl)pyrazine-2,5-

Di-*tert*-butyl diyl)dicarbamate (BA8)

According to **GP1**: A mixture of 6 mL THF/Et₃N (1:1) was degassed in a baked out Schlenk flask for 20 min. **DBC** (100 mg, 264 µmol, 1.00 eq.), Pd(PPh₃)₂Cl₂ (18.5 mg, 26.4 µmol, 0.10 eq.) and 4,4"-di-*tert*-butyl-5'-ethynyl-1,1':3',1"-terphenyl (213 mg, 580 µmol mmol, 2.20 eq.) were subsequently added. After stirring for 5 min Cul (2.51 mg, 13.8 µmol, 0.04 eq.) was added last. After stirring for 24 h at 60 °C the reaction was treated according to **GP1**. After purification via flash-column chromatography (PE/EA 10:1 -> EA), the obtained yellow solid was additionally centrifuged with 3 mL pentane (3x) and 3 mL MeOH (1x) to yield 159 mg (153 µmol, **58%**) of a bright yellow powder.

 $R_{f}(PE/EA 1:1) = 0.74$

¹**H NMR** (600 MHz, CDCl₃) δ 7.86 (t, *J* = 1.7 Hz, 2H), 7.80 (d, *J* = 1.8 Hz, 4H), 7.60 (d, *J* = 8.4 Hz, 8H), 7.51 (d, *J* = 8.5 Hz, 8H), 7.49 (s, 2H), 1.57 (s, 18H), 1.39 (s, 36H).

¹³C{¹H} NMR (151 MHz, CDCl₃) δ 151.22 (s, 4C), 150.76 (s, 2C), 144.40 (s, 2C), 142.18 (s, 4C), 137.15 (s, 4C), 129.32 (d, 4C), 127.57 (d, 2C), 126.95 (d, 4C), 126.09 (d, 4C), 125.99 (s, 2C), 122.13 (s, 2C), 99.71 (s, 2C), 84.14 (s, 2C), 82.09 (s, 2C), 34.77 (s, 4C), 31.49 (q, 12C), 28.42 (q, 6C).

IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 3420, 2963, 2902, 2867, 2208, 1752, 1591, 1510, 1456, 1393, 1364, 1232, 1138, 1052, 880, 828, 773, 691, 655.

HR/MS (MALDI⁺, DCTB): *m*/*z* calcd. for C₇₀H₇₈N₄O₄⁺: [M⁺] 1038.6018, found: 1038.6054.

UV-Vis [nm]: 259, 313, 402.

Fluorescence (DCM): λ_{Ex} = 400 nm, λ_{Max} = 451 nm; Φ = 93 %

m.p. [°C]: 287 – 292.

Di-tert-butyl (3,6-bis((triisopropylsilyl)ethynyl)pyrazine-2,5-diyl)dicarbamate (BA9)

According to **GP1**: A mixture of 3 mL THF/Et₃N (1:1) was degassed in a baked out Schlenk flask for 20 min. **DBC** (50.0 mg, 131 μ mol, 1.00 eq.), Pd(PPh₃)₂Cl₂ (9.25 mg, 13.1 μ mol, 0.10 eq.) and ethynyltriisopropylsilane (53.9 mg, 527 μ mol, 4.00 eq.) were subsequently added. After stirring for 5 min Cul (1.00 mg, 5.27 μ mol, 0.04 eq.) was added last. After stirring for 24 h at 60 °C the reaction was treated according to **GP1**. Purification via flash-column chromatography (PE/EA 10:1 -> EA) obtained 24.7 mg (36.9 μ mol, **28%**) of a green oil.

 $R_{f}(PE/EA 1:1) = 0.75$

¹H NMR (600 MHz, CDCl₃) δ 7.55 (s, 2H), 1.51 (s, 18H), 1.15 (s, 36H).

¹³C{¹H} NMR (151 MHz, CDCl₃) δ 150.64 (s, 2C), 144.73 (s, 2C), 125.12 (s, 2C), 104.47 (s, 2C), 100.57 (s, 2C), 81.77 (s, 2C), 28.34 (q, 6C), 18.83 (q, 6C), 11.26 (d, 2C).

HR/MS (MALDI⁺, DCTB): *m/z* calcd. for C₃₆H₆₂N₄O₄Si₂⁺: [M⁺] 670.4304, found: 670.4304. **IR(ATR)**[*cm*⁻¹]: 2944, 2866, 2152, 1742, 1510, 1462, 1419, 1370, 1236, 1145, 1072, 1017, 996, 920, 883, 819, 789, 762, 732, 679.

UV-Vis [nm]: 262, 281, 384.

Fluorescence (DCM): λ_{Ex} = 385 nm, λ_{Max} = 428 nm; Φ = 76%

Di-tert-butyl 2,6-bis(4-methoxyphenyl)dipyrrolo[2,3-b:2',3'-e]pyrazine-1,5-dicarboxylate (DPPB1)

According to **GP2**: A mixture of 3 mL THF/Et₃N (1:1) was degassed in a baked out Schlenk flask for 20 min. **DBC** (40.0 mg, 105 μ mol, 1.0 eq.), Pd(PPh₃)₂Cl₂ (7.40 mg, 10.5 μ mol, 0.1 eq.) and 1-ethynyl-4-methoxybenzene (55.7 mg, 422 μ mol, 4.00 eq.) were subsequently added. After stirring for 5 min Cul (2.01 mg, 10.6 μ mol, 0.04 eq.) was added last. After stirring for 48 h at 70 °C the reaction was treated according to **GP2**. After purification via flash-column chromatography (PE/EA 10:1 -> EA), 42.0 mg (73.8 μ mol, **70%**) of an orange solid was obtained.

 $R_{f}(PE/EA 3:1) = 0.55$

¹**H NMR** (600 MHz, CDCl₃) δ 7.42 (d, *J* = 8.8 Hz, 2H), 6.99 (d, *J* = 8.8 Hz, 2H), 6.82 (s, 2H), 3.88 (s, 6H), 1.35 (s, 18H).

¹³C{¹H} NMR (151 MHz, CDCl₃) δ 160.04 (s, 2C), 148.44 (s, 2C), 143.95 (s, 2C), 142.47 (s, 2C), 136.51 (s, 2C), 129.93 (d, 4C), 126.60 (s, 2C), 113.73 (d, 4C), 107.51 (d, 2C), 84.61 (s, 2C), 55.60 (q, 2C), 27.68 (q, 6C).

HR/MS (MALDI⁺, DCTB): *m/z* calcd. for C₃₂H₃₄N₄O₆⁺: [M⁺] 570.2473, found: 570.2466.
IR(ATR)[*cm*⁻¹]: 2975, 2929, 2849, 1747, 1609, 1579, 1516, 1496, 1462, 1367, 1340, 1320, 1280, 1249, 1175, 1148, 1121, 1055, 1025, 930, 843, 807, 791, 768, 744, 724, 695, 608.
UV-Vis [nm]: 230, 280, 379.

Fluorescence (DCM): λ_{Ex} = 380 nm, λ_{Max} = 442 nm; Φ = 74%

m.p.: > 300 °C

Di-*tert*-butyl 2,6-bis(4-(trifluoromethyl)phenyl)dipyrrolo[2,3-b:2',3'-e]pyrazine-1,5-dicarboxylate (DPPB2)

According to **GP2**: A mixture of 6 mL THF/Et₃N (1:1) was degassed in a baked out Schlenk flask for 20 min. **DBC** (75.0 mg, 197 μ mol, 1.00 eq.), Pd(PPh₃)₂Cl₂ (13.9 mg, 19.8 μ mol, 0.10 eq.) and 1-ethynyl-4-(trifluoromethyl)benzene (135 mg, 791 μ mol, 4.00 eq.) were subsequently added. After stirring for 5 min Cul (1.51 mg, 7.91 μ mol, 0.04 eq.) was added last. After stirring for 48 h at 70 °C the reaction was treated according to **GP2**. After purification via flash-column chromatography (PE/EA 10:1 -> EA), 116 mg (180 μ mol, **91%**) of an orange solid was obtained.

 $R_f(PE/EA 1:1) = 0.68$

¹H{¹⁹F} NMR (600 MHz, CDCl₃) δ 7.74 (d, *J* = 8.3 Hz, 2H), 7.63 (d, *J* = 8.1 Hz, 2H), 6.95 (s, 2H), 1.32 (s, 18H).

¹⁹**F NMR** (283 MHz, CDCl₃) δ -62.65 (s, 6F).

¹³C{¹H} NMR (151 MHz, CDCl₃) δ 147.85 (s, 2C), 142.82 (s, 2C), 142.63 (s, 2C), 136.72 (s, 2C), 130.72 (s, q: J_{C-F} = 32.8 Hz), 129.02 (d, 4C), 125.25 (d, q: J_{C-F} = 3.7 Hz, 4C), 124.09 (s, q: J_{C-F} = 816.3 Hz, 2C), 123.19 (s, 2C), 109.05 (d, 2C), 85.41 (s, 2), 27.55 (q, 6C).

HR/MS (MALDI⁺, DCTB): *m/z* calcd. for C₃₂H₂₈N₄F₆O₄Na⁺: [M+Na⁺] 669.1907, found: 669.1912. **IR(ATR)**[*cm*⁻¹]: 2981, 2936, 1757, 1619, 1411, 1369, 1320, 1274, 1149, 1107, 1067, 1050, 1017, 933, 841, 817, 767, 687, 635, 617.

UV-Vis [nm]: 241, 275, 367.

Fluorescence (DCM): λ_{Ex} = 370 nm, λ_{Max} = 427 nm; Φ = 46%

m.p.: > 300 °C.

Di-tert-butyl 2,6-di-p-tolyldipyrrolo[2,3-b:2',3'-e]pyrazine-1,5-dicarboxylate (DPPB3)

According to **GP2**: A mixture of 3 mL THF/Et₃N (1:1) was degassed in a baked out Schlenk flask for 20 min. **DBC** (40.0 mg, 105 μ mol, 1.00 eq.), Pd(PPh₃)₂Cl₂ (7.4 mg, 10.55 μ mol, 0.10 eq.) and 1-ethynyl-4-methybenzene (49.0 mg, 422 μ mol, 4.00 eq.) were subsequently added. After stirring for 5 min Cul (2.01 mg, 10.6 μ mol, 0.04 eq.) was added last. After stirring for 48 h at 70 °C the reaction was treated according to **GP2**. After purification via flash-column chromatography (PE/EA 10:1 -> EA), 34.1 mg (63.3 μ mol, **60%**) of an orange powder was obtained.

 $R_{f}(DCM) = 0.38$

¹**H NMR** (301 MHz, CDCl₃) δ 7.74 (d, *J* = 8.7 Hz, 2H), 7.63 (d, *J* = 8.5 Hz, 2H), 6.95 (s, 2H), 2.43 (s, 6H), 1.33 (s, 18H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 148.40 (s, 2C), 144.30 (s, 2C), 142.51 (s, 2C), 138.56 (s, 2C), 136.59 (s, 2C), 131.27 (s, 2C), 128.93 (d, 4C), 128.58 (d, 4C), 107.74 (d, 2C), 84.64 (s, 2C), 29.85 (q, 2C), 27.63 (q, 6C).

HR/MS (EI⁺): m/z calcd. for C₃₂H₃₄N₄O₄⁺: [M⁺] 538.2575, found: 538.2645.
IR(ATR)[cm⁻¹]: 3006, 2977, 2922, 2852, 1749, 1575, 1496, 1458, 1368, 1342, 1319, 1278.
UV-Vis [nm]: 239, 277, 373.

Fluorescence (DCM): λ_{Ex} = 375 nm, λ_{Max} = 430 nm; Φ = 72 %

m.p.: > 300 °C

Di-tert-butyl 2,6-diphenyldipyrrolo[2,3-b:2',3'-e]pyrazine-1,5-dicarboxylate (DPPB4)

According to **GP3** 10.0 mg (19.6 μ mol, 1.00 eq.) of **BA4** was cyclised with 0.20 eq. Cul (0.75 mg, 3.92 μ mol) in 1 mL of a 1:1 THF/Et₃N mixture at 70 °C overnight. After removing the solvent in vacuo, the crude product was purified with flash-column chromatography on silica gel eluting with DCM affording 9.20 mg (18.0 μ mol, 92%) as a yellow solid.

 $R_f(PE/EA 5:1) = 0.43$

¹**H NMR** (300 MHz, CDCl₃) δ 7.47 (m, 10H), 6.89 (s, 2H), 1.31 (s, 18H).

¹³C{¹H} NMR (151 MHz, CDCl₃) δ 148.23 (s, 2C), 144.21 (s, 2C), 142.52 (s, 2C), 136.63 (s, 2C), 134.17 (d, 2C), 128.70 (d, 4C), 128.28 (d, 4C), 108.07 (d, 2C), 84.74 (s, 2C), 27.55 (q, 6C).

HR/MS (MALDI⁺, DCTB): *m/z* calcd. for C₃₀H₃₀N₄O₄Na⁺: [M+Na⁺] 533.2159, found: 533.2271.
IR(ATR)[*cm*⁻¹]: 2978, 2926, 2854, 1756, 1561, 1486, 1446, 1369, 1345, 1278, 1230, 1154, 1121, 1057, 932, 844, 809, 770, 722, 702.

UV-Vis [nm]: 239, 272, 366.

Fluorescence (DCM): λ_{Ex} = 370 nm, λ_{Max} = 426 nm; Φ = 78%

m.p.: > 300 °C

Di-tert-butyl 2,6-dicyclopentyldipyrrolo[2,3-b:2',3'-e]pyrazine-1,5-dicarboxylate (DPPB5)

According to **GP3** 10.0 mg (20.2 μ mol, 1.00 eq.) of **BA5** was cyclised with 0.20 eq. CuI (0.77 mg, 4.04 μ mol) in 1 mL of a 1:1 THF/Et₃N mixture at 70 °C overnight. After removing the solvent under vacuo, the crude product was purified with flash-column chromatography on silica gel eluting with DCM affording 9.60 mg (19.4 μ mol, 96%) as a yellow solid.

 $R_{f}(PE/EA 2:1) = 0.35$

¹**H NMR** (600 MHz, CDCl₃) δ 6.63 (s, 2H), 3.75 (p, *J* = 7.5 Hz, 2H), 2.15 (m, 4), 1.80 (m, 4H), 1.74 (m, 4H), 1.70 (s, 18H), 1.57 (m, 4H).

¹³C{¹H} NMR (151 MHz, CDCl₃) δ 149.68 (s, 2C), 149.08 (s, 2C), 141.93 (s, 2C), 136.01 (s, 2C), 103.56 (d, 2C), 84.59 (s, 2C), 39.82 (q, 6C), 33.03 (t, 4C), 28.27 (d, 2C), 24.80 (t, 4C).

HR/MS (MALDI⁺, DCTB): *m/z* calcd. for C₂₈H₃₈N₄O₄K⁺: [M+K⁺]: 533.2525, found: 533.2535.
IR(ATR)[*cm*⁻¹]: 2956, 2870, 1737, 1567, 1453, 1368, 1345, 1277, 1255, 1216, 1155, 1095, 861, 769.
UV-Vis [*nm*]: 239, 265, 346.

Fluorescence (DCM): λ_{Ex} = 350 nm, λ_{Max} = 460 nm; Φ = 34%

m.p. [°C]: 194 – 199.

Di-*tert*-butyl 2,6-di([1,1':3',1''-terphenyl]-5'-yl)dipyrrolo[2,3-b:2',3'-e]pyrazine-1,5-dicarboxylate (DPPB7)

According to **GP3** 10.0 mg (12.3 μ mol, 1.00 eq.) of **BA7** was cyclised with 0.20 eq. Cul (0.47 mg, 2.45 μ mol) in 1 mL of a 1:1 THF/Et₃N mixture at 70 °C overnight. After removing the solvent in vacuo, the crude product was purified with flash-column chromatography on silica gel eluting with DCM affording 9.80 mg (12.0 μ mol, 97%) as a yellow solid.

 $R_{f}(PE/EA 1:1) = 0.72$

¹**H NMR** (300 MHz, CDCl₃) δ 7.89 (s, 2H), 7.70 (d, *J* = 6.3 Hz, 12H), 7.49 (t, *J* = 6.0 Hz, 8H), 7.43 (t, *J* = 4.9 Hz, 4H), 7.02 (s, 2H), 1.28 (s, 18H).

¹³C{¹H} NMR (151 MHz, CDCl₃) δ 148.01 (s, 2C), 143.83 (s, 2C), 142.32 (s, 2C), 141.76 (s, 4C), 140.36 (s, 4C), 136.53 (s, 2C), 135.08 (s, 2C), 128.95 (d, 8C), 127.77 (d, 4C), 127.13 (d, 8C), 126.19 (d, 4C), 125.99 (d, 2C), 108.06 (d, 2C), 84.61, 27.39.

HR/MS (MALDI⁺, DCTB): *m/z* calcd. for C₅₄H₄₆N₄O₄⁺: [M⁺] 814.3514, found: 814.3519. **IR(ATR)**[*cm*⁻¹]: 3060, 3036, 2977, 2931, 1746, 1596, 1558, 1498, 1457, 1426, 1369, 1337, 1293, 1271,

1258, 1217, 1148, 1124, 1073, 1051, 1032, 961, 882, 845, 760, 699, 643, 614.

UV-Vis [nm]: 247, 371.

Fluorescence (DCM): λ_{Ex} = 370 nm, λ_{Max} = 430 nm; Φ = = 67%

m.p. [°C]: > 300 °C

Di-*tert*-butyl 2,6-bis(4,4"-di-*tert*-butyl-[1,1':3',1"-terphenyl]-5'-yl)dipyrrolo[2,3-b:2',3'-e]pyrazine-1,5-dicarboxylate (DPPB8)

According to **GP3** 10.0 mg (12.3 μ mol, 1.00 eq.) of **BA8** was cyclised with 0.20 eq. Cul (0.37 mg, 1.92 μ mol) in 1 mL of a 1:1 THF/Et₃N mixture at 70 °C overnight. After removing the solvent in vacuo, the crude product was purified with flash-column chromatography on silica gel eluting with DCM affording 9.60 mg (12.0 μ mol, 96%) as a yellow solid.

R_f(PE/EA 1:1) = 0.72

¹**H NMR** (300 MHz, CDCl₃) δ 7.88 (s, 2H), 7.70 – 7.59 (m, 11H), 7.52 (d, *J* = 8.4 Hz, 7H), 6.99 (s, 2H), 1.39 (s, 36H), 1.26 (s, 18H).

¹³C{¹H} NMR (176 MHz, CDCl₃) δ 150.89 (s, 4C), 148.11 (s, 2C), 144.13 (s, 2C), 142.40 (s, 2C), 141.56 (s, 4C), 137.59 (s, 4C), 136.63 (s, 2C), 135.12 (s, 2C), 126.83 (d, 8C), 125.97 (d, 8C), 125.87 (d, 4C), 125.78 (d, 2C), 108.06 (d, 2C), 84.61 (s, 2C), 34.63 (s, 4C), 31.37 (q, 6C), 27.50 (q, 12C).

HR/MS (MALDI⁺, DCTB): *m/z* calcd. for C₇₀H₇₈N₄O₄⁺ [M⁺] 1038.6018, found: 1038.6027.

IR(ATR)[*cm*⁻¹]: 2963, 2868, 1750, 1596, 1556, 1513, 1460, 1393, 1367, 1338, 1293, 1271, 1227, 1151, 1122, 1072, 1018, 963, 886, 831, 765, 707, 613.

UV-Vis [nm]: 252, 365.

Fluorescence (DCM): λ_{Ex} = 365 nm, λ_{Max} = 432 nm; Φ = 74%

m.p. [°C]: > 300 °C

Di-*tert*-butyl 2,6-bis(4-(diphenylamino)phenyl)dipyrrolo[2,3-b:2',3'-e]pyrazine-1,5-dicarboxylate (DPPB10)

According to **GP1**: A mixture of 3 mL THF/Et₃N (1:1) was degassed in a baked out Schlenk flask for 20 min. **DBC** (51.0 mg, 135 μ mol, 1.00 eq.), Pd(PPh₃)₂Cl₂ (9.44 mg, 13.5 μ mol, 0.10 eq.) and 4-ethynyl-N,N-diphenylaniline (145 mg, 537 mmol, 4.00 eq.) were subsequently added. After stirring for 5 min Cul (1.02 mg, 5.38 μ mol, 0.04 eq.) was added last. After stirring for 24 h at 60 °C the reaction was treated according to **GP1**. After purification via flash-column chromatography (PE/EA 10:1 -> EA), 57.9 mg (68.6 μ mol, **51%**) of a green solid was obtained.

 $R_{f}(PE/EA 5:1) = 0.43$

¹**H NMR** (600 MHz, CDCl₃) δ 7.34 (d, *J* = 8.8 Hz, 4H), 7.31 – 7.26 (m, 8H), 7.20 – 7.10 (m, 12H), 7.07 (t, *J* = 6.7 Hz, 4H), 6.85 (s, 2H), 1.42 (s, 18H).

¹³C{¹H} NMR (151 MHz, CDCl₃) δ 148.41 (s, 2C), 148.32 (s, 2C), 147.53 (s, 4C), 143.99 (s, 2C), 142.67 (s, 2C), 136.57 (s, 2C), 129.55 (d, 8C), 129.50 (d, 4C), 127.45 (s, 2C), 124.97 (d, 8C), 123.60 (d, 4C), 122.51 (d, 4C), 107.52 (d, 2C), 84.70 (s, 2C), 27.74 (q, 6C).

HR/MS (MALDI⁺, DCTB): *m*/*z* calcd. for C₅₄H₄₈N₆O₄⁺: [M⁺] 844.3732, found: 844.3741.

IR(ATR)[*cm*⁻¹]: 3044, 2980, 2928, 2850, 1749, 1589, 1490, 1366, 1348, 1321, 1280, 1222, 1150, 1120, 1078, 1053, 1031, 932, 847, 792, 751, 696, 677, 649, 623.

UV-Vis [nm]: 240, 302, 414.

Fluorescence (DCM): λ_{Ex} = 415 nm, λ_{Max} = 514 nm; Φ = 85%

m.p. [°C]: 253 – 258.

2,6-bis(4-methoxyphenyl)-1,5-dihydrodipyrrolo[2,3-b:2',3'-e]pyrazine (DPP1)

According to **GP4** 50.0 mg (74.5 μ mol, 1.00 eq.) of **BA1** was cyclised with 0.10 eq. IPrAuNTf₂ (6.56 mg, 7.45 μ mol) in 5 mL DCE at 60 °C overnight. After removing the solvent in vacuo, the crude product was centrifuged with 3 mL pentane 4x and 3 mL MeOH 2x affording 31.0 mg (65.9 μ mol, 88%) of a bright yellow solid.

 $R_f(PE/EA 3:2) = 0.44$

¹**H NMR** (600 MHz, DMSO) δ 11.87 (s, 2H), 7.95 (d, *J* = 5.2 Hz, 4H), 7.05 (d, *J* = 8.9 Hz, 4H), 6.91 (s, 2H), 3.83 (s, 6H).

¹³**C NMR** (151 MHz, DMSO) δ 159.42 (s, 2C), 141.55 (s, 2C), 140.38 (s, 2C), 135.31 (s, 2C), 126.79 (d, 4C), 124.35 (s, 2C), 114.42 (d, 4C), 95.33 (d, 2C), 55.29 (q, 2C).

HR/MS (MALDI⁺, DCTB): *m/z* calcd. for C₂₂H₁₈N₄O₂⁺: [M⁺] 370.1424, found: 370.1422.

IR(ATR)[*cm*⁻¹]: 3113, 2918, 2849, 1733, 1542, 1496, 1439, 1320, 1299, 1222, 1109, 1021, 906, 838, 805, 779, 719, 687, 664, 648.

UV-Vis [nm]: 366, 417, 436.

Fluorescence (DMSO): λ_{Ex} = 380 nm, λ_{Max} = 462 nm; Φ = 85%

m.p. [°C]: > 300.

2,6-Bis(4-(trifluoromethyl)phenyl)-1,5-dihydrodipyrrolo[2,3-b:2',3'-e]pyrazine (DPP2)

According to **GP4** 50.0 mg (77.3 μ mol, 1.00 eq.) of **BA2** was cyclised with 0.10 eq. IPrAuNTf₂ (5.97 mg, 7.73 μ mol) in 5 mL DCE at 60 °C overnight. After removing the solvent in vacuo, the crude product was centrifuged with 3 mL pentane 4x and 3 mL MeOH 2x affording 34.5 mg (77.3 μ mol, 100%) of a bright yellow solid.

 $R_f(PE/EA 1:1) = 0.54$

¹H{¹⁹F} NMR (700 MHz, DMSO) δ 12.29 (d, *J* = 2.2 Hz, 2H), 8.24 (d, *J* = 8.2 Hz, 4H), 7.86 (d, *J* = 8.2 Hz, 4H), 7.28 (d, *J* = 2.1 Hz, 2H).

¹⁹F {¹H} NMR (283 MHz, DMSO) δ -60.97.

¹³C NMR {¹H,¹⁹F} (126 MHz, DMSO) δ 142.21 (s, 2C), 139.44 (s, 2C), 135.86 (s, 2C), 135.41 (s, 2C), 128.18 (s, 2C), 126.01 (d, 4C), 125.92 (d, 4C), 124.25 (s, 2C), 98.74 (d, 2C).

HR/MS (MALDI⁺, DCTB): *m/z* calcd. for C₂₂H₁₂N₄F₆⁺: [M⁺] 446.0961, found: 446.0957.

IR(ATR)[*cm*⁻¹]: 3216, 2926, 1932, 1617, 1549, 1446, 1318, 1277, 1252, 1171, 1111, 1068, 1016, 907, 840, 789, 746, 719, 685.

UV-Vis [nm]: 291, 417, 440.

Fluorescence (DMSO): λ_{Ex} = 440 nm, λ_{Max} = 478 nm; Φ = 67%

m.p. [°C]: > 300 °C / 400 °C (TGA measurement)
2,6-Di-p-tolyl-1,5-dihydrodipyrrolo[2,3-b:2',3'-e]pyrazine (DPP3)

According to **GP4** 50.0 mg (92.8 μ mol, 1 eq.) of **BA3** was cyclised with 0.1 eq. IPrAuNTf₂ (8.03 mg, 9.82 μ mol) in 5 mL DCE at 60 °C overnight. After removing the solvent in vacuo, the crude product was centrifuged with 3 mL pentane 4x and 3 mL MeOH 2x affording 30.2 mg (89.1 μ mol, 96%) of a bright yellow solid.

 $R_f(PE/EA 5:1) = 0.22$

¹**H NMR** (600 MHz, DMSO) δ 11.93 (s, 2H), 7.90 (d, *J* = 8.3 Hz, 4H), 7.30 (d, *J* = 7.8 Hz, 4H), 6.98 (s, 2H), 2.36 (s, 6H).

¹³C{¹H} NMR (151 MHz, DMSO) δ 141.25 (s, 2C), 140.63 (s, 2C), 137.84 (s, 2C), 135.41, 129.54 (d, 4C), 129.12 (s, 1C), 125.31 (d, 4C), 96.07 (d, 2C), 20.91 (q, 2C).

HR/MS (MALDI⁺, DCTB): *m/z* calcd. for C₂₂H₁₈N₄⁺: [M⁺] 338.1526, found: 338.1453.

IR(ATR)[*cm*⁻¹]: 3167, 3137, 3021, 2913, 2857, 2721, 1913, 1743, 1612, 1552, 1499, 1451, 1367, 1323, 1297, 1276, 1248, 1217, 1199, 1118, 1021, 908, 825, 806, 786, 725, 694, 649, 632. **UV-Vis** [nm]: 247, 253, 286, 414, 432.

Fluorescence (DMSO): λ_{Ex} = 415 nm, λ_{Max} = 453 nm; Φ = 81%

m.p. [°C]: > 300.

2,6-Diphenyl-1,5-dihydrodipyrrolo[2,3-b:2',3'-e]pyrazine (DPP4)

According to **GP4** 15.0 mg (29.4 μ mol, 1.00 eq.) of **BA4** was cyclised with 0.10 eq. IPrAuNTf₂ (2.54 mg, 2.94 μ mol) in 1.5 mL DCE at 60 °C overnight. After removing the solvent in vacuo, the crude product was centrifuged with 3 mL pentane 4x and 3 mL MeOH 2x affording 9.12 mg (29.4 μ mol, 100%) of a bright yellow solid.

 $R_{f}(PE/EA 1:1) = 0.56$

¹**H NMR (**600 MHz, DMSO) δ 12.04 (s, 1H), 8.02 (d, *J* = 8.1 Hz, 3H), 7.49 (t, *J* = 7.8 Hz, 3H), 7.38 (t, *J* = 6.7 Hz, 2H), 7.07 (s, 1H).

¹³C{¹H} NMR (151 MHz, DMSO) δ 141.76 (s, 2C), 140.65 (s, 2C), 135.52 (s, 2C), 131.63 (s, 2C), 128.98 (d, 4C), 128.34 (d, 2C), 125.40 (d, 4C), 96.70 (d, 2C).

HR/MS (MALDI⁺, DCTB): *m/z* calcd. for C₂₀H₁₄N₄⁺: [M⁺] 310.1213, found: 310.1213.

IR(ATR)[*cm*⁻¹]: 3172, 3139, 3050, 2869, 1955, 1898, 1829, 1602, 1556, 1482, 1458, 1423, 1365, 1323, 1298, 1277, 1246, 1201, 1158, 1075, 1030, 970, 907, 850, 811, 792, 758, 722, 695, 669, 643. UV-Vis [nm]: 247, 284, 411, 430.

Fluorescence (DMSO): λ_{Ex} = 415 nm, λ_{Max} = 449 nm; Φ = 74%

m.p. [°C]: > 300.

2,6-Di([1,1':3',1"-terphenyl]-5'-yl)-1,5-dihydrodipyrrolo[2,3-b:2',3'-e]pyrazine (DPP7)

According to **GP4** 10.0 mg (12.3 μ mol, 1.00 eq.) of **BA7** was cyclised with 0.10 eq. IPrAuNTf₂ (1.05 mg, 1.21 μ mol) in 1 mL DCE at 60 °C overnight. After removing the solvent in vacuo, the crude product was centrifuged with 3 mL pentane 4x and 3 mL MeOH 2x affording 7.47 mg (12.2 μ mol, 99%) of a bright orange solid.

 $R_f(PE/EA 1:1) = 0.62$

¹**H NMR** (600 MHz, DMSO) δ 12.28 (s, 2H), 8.35 (d, *J* = 1.7 Hz, 3H), 7.98 – 7.90 (m, 8H), 7.56 (d, *J* = 7.8 Hz, 6H), 7.45 (d, *J* = 7.3 Hz, 4H), 7.38 (d, *J* = 2.1 Hz, 2H).

¹³C{¹H} NMR (101 MHz, DMSO) δ 141.91 (s, 2C), 141.55 (s, 4C), 140.55 (s, 2C), 139.73 (s, 4C), 135.69 (s, 2C), 132.87 (s, 2C), 128.90 (d, 8C), 127.84 (d, 4C), 127.12 (d, 8C), 124.79 (d, 2C), 122.77 (d, 4C), 97.53 (d, 2C).

HR/MS (MALDI⁺, DCTB): m/z calcd. for $C_{46}H_{30}N_4^+$: [M⁺] 614.2465, found: 614.2467.

IR(ATR)[*cm*⁻¹]: 3057, 3035, 1765, 1737, 1593, 1575, 1546, 1497, 1460, 1407, 1293, 1246, 1193, 1078, 1030, 940, 921, 876, 809, 793, 757, 726, 696, 655, 613.

UV-Vis [nm]: 255, 333, 417, 435.

Fluorescence (DCM): λ_{Ex} = 415 nm, λ_{Max} = 457 nm; Φ = 69%

m.p. [°C]: > 300 °C

2,6-Bis(4,4"-di-*tert*-butyl-[1,1':3',1"-terphenyl]-5'-yl)-1,5-dihydrodipyrrolo[2,3-b:2',3'-e]pyrazine (DPP8)

According to **GP4** 10.0 mg (9.62 μ mol, 1.00 eq.) of **BA8** was cyclised with 0.20 eq. IPrAuNTf₂ (3.33 mg, 3.85 μ mol) in 1 mL DCE at 60 °C overnight. After removing the solvent in vacuo, the crude product was centrifuged with 3 mL pentane 4x and 3 mL MeOH 2x affording 1.94 mg (2.31 μ mol, 24%) of a bright yellow solid.

 $R_{f}(PE/EA 2:1) = 0.66$

¹**H NMR** (600 MHz, DMSO) δ 12.24 (s, 2H), 8.29 (s, 4H), 7.85 (d, *J* = 7.5 Hz, 8H), 7.56 (d, *J* = 8.4 Hz, 8H), 7.33 (s, 2H), 1.36 (s, 36H).

¹³C{¹H} NMR (151 MHz, DMSO) δ 150.35 (s, 4C), 141.91 (s, 2C), 141.48 (s, 4C), 137.05 (s, 2C), 135.68 (s, 4C), 132.80 (s, 2C), 128.72 (s, 2C), 126.85 (d, 8C), 125.90 (d, 2C), 125.74 (d, 8C), 122.46 (d, 4C), 97.44 (d, 2C), 34.37 (s, 4C), 31.18 (q, 12C).

HR/MS (MALDI⁺, DCTB): *m/z* calcd. for C₆₀H₆₂N₄⁺: [M⁺] 838.4969, found: 838.4958.
IR(ATR)[*cm*⁻¹]: 2960, 2903, 2866, 1907, 1730, 1597, 1543, 1513, 1460, 1391, 1362, 1297, 1270.
UV-Vis [nm]: 253, 412, 441.

Fluorescence (DCM): λ_{Ex} = 415 nm, λ_{Max} = 457 nm; Φ = 50%

m.p. [°C]: > 300 °C

4,4'-(1,5-Dihydrodipyrrolo[2,3-b:2',3'-e]pyrazine-2,6-diyl)bis(N,N-diphenylaniline) (DPP10)

According to Burgess et al.⁶ 1.00 eq. of **DPPB10** (60.0 mg, 71.0 μ mol) were dissolved in 20 mL DCM at 0 °C. After the addition of 4 mL 2,6-lutidine the mixture was stirred for 15 min. Then 20 eq. (315 mg, 1.42 mmol) of TMSOTf were added dropwise and the reaction was stirred for an additional 5 h and allowed to warm up to rt. The solution was cooled to 0 °C and quenched with concentrated CuSO_{4(aq)}. The product was extracted with EA and purified through precipitation with pentane and washed with pentane/MeOH (3x) to yield 71% of product (32.5 mg, 50.4 μ mol).

 $R_f(PE/EA 1:1) = 0.21$

¹**H NMR** (600 MHz, DMSO) δ 11.89 (s, 2H), 7.90 (d, *J* = 9.5 Hz, 2H), 7.37 (d, *J* = 9.1 Hz, 8H), 7.12 (m, 12H), 7.00 (m, 4H), 6.90 (d, *J* = 2.2 Hz, 2H).

¹³C{¹H} NMR (101 MHz, DMSO) δ 146.75 (s, 4C), 146.65 (s, 2C), 140.27 (s, 2C), 129.68 (d, 8C), 129.64 (d, 8C), 126.47 (s, 2c), 124.60 (d, 4C), 124.46 (d, 4C), 123.57 (d, 4C), 122.47 (s, 2C), 122.20 (s, 2C), 95.66 (d, 2C).

HR/MS (MALDI⁺, DCTB): *m/z* calcd. for C₄₄H₃₂N₆⁺: [M⁺] 644.2683, found: 644.2696.

IR(ATR)[*cm*⁻¹]: 3430, 2956, 2932, 2870, 1650, 1595, 1580, 1530, 1489, 1451, 1407, 1372, 1324, 1270, 1233, 1169, 1129, 1110, 1067, 1016, 981, 917, 895, 857, 809, 765, 749, 670.

UV-Vis [nm]: 254, 281, 456.

Fluorescence (DCM): λ_{Ex} = 254 nm, λ_{Max} = 281 nm; Φ = 7%

m.p. [°C]: 274 – 279.

1,5-Dihexyl-2,6-bis(4-(trifluoromethyl)phenyl)-1,5-dihydrodipyrrolo[2,3-b:2',3'-e]pyrazine (ADPP1)

6.00 eq. Cs_2CO_3 (87.6 mg, 268 µmol) were added to a solution of 1.00 eq of **DPP2** (20.0 mg, 44.8 µmol) in 2.4 mL DMF. After stirring for 30 min at rt, 2.2 eq he (16.3 mg, 13.8 µL, 98.6 µmol) were added and the mixture was stirred overnight. The mixture was washed with brine and purified via flash-column chromatography and centrifugation with pentane (3 x 4 mL) to obtain an orange solid in a 79% yield (21.8 mg, 35.4 µmol).

 $R_{f}(PE/EA 4:1) = 0.54$

¹H{¹⁹F} (500 MHz, CDCl₃) δ 7.79 (d, *J* = 8.1 Hz, 4H), 7.72 (d, *J* = 8.2 Hz, 4H), 6.78 (s, 2H), 4.44 (t, *J* = 7.5 Hz, 4H), 1.68 (m, 4H), 1.20 – 1.12 (m, 12H), 0.81 – 0.75 (m, 6H).

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 143.18 (s ,2C), 142.06 (s, 2C), 136.46 (s, 2C), 135.17 (s, 2C), 130.65 (s, q, *J* = 32.8 Hz, 2C), 129.40 (d, 4C), 125.88 (d, q, *J* = 4.0 Hz, 4C), 124.20 (s, q, *J* = 272.2Hz, 2C), 101.18 (2C, d), 43.09 (2C, t), 31.35 (2C, t), 26.39 (2C, t), 22.56 (2C, t), 14.04 (2C, q).

¹⁹**F NMR** (471 MHz, CDCl₃) δ -62.59 (s, 6F).

HR/MS (MALDI⁺, DCTB): *m*/*z* calcd. for C₃₄H₃₆F₆N₄⁺: [M⁺] 614.2839, found: 614.2845.

IR(ATR)[*cm*⁻¹]: 2959, 2927, 2855, 1734, 1618, 1457, 1414, 1322, 1260, 1167, 1129, 1109, 1068, 1017, 850, 797, 685.

UV-Vis [nm]: 237, 276, 369, 412.

Fluorescence (DMSO): λ_{Ex} = 410 nm, λ_{Max} = 456 nm; Φ = 43%

m.p. [°C]: 210 – 215 °C

1,5-Dibenzyl-2,6-bis(4-(trifluoromethyl)phenyl)-1,5-dihydrodipyrrolo[2,3-b:2',3'-e]pyrazine (ADPP2)

6.00 eq. Cs_2CO_3 (87.6 mg, 268 µmol) were added to a solution of 1.00 eq of **DPP2** (20.0 mg, 44.8 µmol) in 2.4 mL DMF. After stirring for 30 min at rt, 2.2 eq benzylbromide (16.9 mg, 11.7 µL, 98.6 µmol) were added and the mixture was stirred overnight. The mixture was washed with brine and purified via flash-column chromatography and centrifugation with pentane (3 x 4 mL) to obtain an orange solid in a 90% yield (25.3 mg, 40.3 µmol).

 $R_{f}(PE/EA 4:1) = 0.30$

¹**H NMR** (600 MHz, CDCl₃) δ 7.67 (d, *J* = 8.1 Hz, 4H), 7.57 (d, *J* = 8.1 Hz, 4H), 7.28 – 7.18 (m, 6H), 7.04 – 6.99 (m, 4H), 6.86 (s, 2H), 5.65 (s, 4H).

¹³C NMR (151 MHz, CDCl₃) δ 143.60 (s, 2C), 142.43 (s, 2C), 138.13 (s, 2C), 135.84 (s, 2C), 135.34 (s, 2C), 130.70 (s, q, J = 32.7 Hz, 2C), 129.49 (d, 4C), 128.83 (d, 4C), 127.51 (d, 2C), 126.62, (d, 4C) 125.79 (d, q, J = 7.3 Hz, 4C) , 124.10 (s, q, J = 272.2 Hz, 2C), 101.73 (d, 2C), 46.48 (t, 2C).

¹⁹**F NMR** (283 MHz, CDCl₃) δ -62.64 (s, 6F).

HR/MS (MALDI⁺, DCTB): *m*/*z* calcd. for C₃₆H₂₄F₆N₄: [M⁺] 626.1900, found: 626.1891.

IR(ATR)[*cm*⁻¹]: 1985, 1737, 1618, 1497, 1432, 1381, 1357, 1321, 1211, 1194, 1165, 1105, 1067, 1029, 1015, 935, 879, 843, 787, 756, 743, 718, 683, 657, 631.

UV-Vis [nm]: 275, 375.

Fluorescence (DMSO): λ_{Ex} = 380 nm, λ_{Max} = 456 nm; Φ = 67%

m.p. [°C]: 249 – 254 °C

Diethyl 2,2'-(2,6-bis(4-(trifluoromethyl)phenyl)dipyrrolo[2,3-b:2',3'-e]pyrazine-1,5-diyl)diacetate (ADPP3)

6.00 eq. Cs_2CO_3 (87.6 mg, 268 µmol) were added to a solution of 1.00 eq of **DPP2** (20.0 mg, 44.8 µmol) in 2.4 mL DMF. After stirring for 30 min at rt, 2.2 eq ethyl 2-bromoacetate (16.5 mg, 10.9 µL, 98,5 µmol) were added and the mixture was stirred overnight. The mixture was washed with brine and purified via flash-column chromatography and centrifugation with pentane (3 x 4 mL) to obtain an orange solid in a 99% yield (27.4 mg, 44.4 µmol).

 $R_f(PE/EA 1:1) = 0.56$

¹**H NMR** (301 MHz, CDCl₃) δ 7.77 (d, *J* = 8.2 Hz, 4H), 7.68 (d, *J* = 8.1 Hz, 4H), 6.85 (s, 2H), 5.11 (s, 4H), 4.18 (q, *J* = 7.1 Hz, 4H), 1.22 (t, *J* = 7.1 Hz, 6H).

¹⁹**F NMR** (283 MHz, CDCl₃) δ -62.70 (s, 6F).

¹³C NMR (151 MHz, CDCl₃) δ 168.90 (s, 2), 143.42 (s, 2C), 142.38 (s, 2C), 135.46, 135.31 (s, 2C), 130.97 (s, q, J = 32.7 Hz, 2C), 129.47 (d, 4C), 126.03 (d, q, J = 3.8 Hz, 4C), 124.08 (s, q, J = 272.2 Hz, 2C), 102.09 (d, 2C), 61.93 (t, 2C), 44.50 (t, 2C), 14.22 (q, 2C).

HR/MS (MALDI⁺, DCTB): *m*/*z* calcd. for C₃₀H₂₄F₆N₄O₄ [M⁺] 618.1696, found: 618.1710.

IR(ATR)[*cm*⁻¹]: 2985, 1737, 1618, 1552, 1498, 1432, 1380, 1321, 1211, 1194, 1164, 1105, 1067, 1015, 976, 935, 908, 878, 842, 787, 756, 743, 718, 683, 657, 632. **UV-Vis** [nm]: 275, 377.

Fluorescence (DMSO): λ_{Ex} = 380 nm, λ_{Max} = 448 nm; Φ = 67%

m.p. [°C]: 200 – 205 °C

1,5-Di(prop-2-yn-1-yl)-2,6-bis(4-(trifluoromethyl)phenyl)-1,5-dihydrodipyrrolo[2,3-b:2',3'-e]pyrazine (ADPP4)

6.00 eq. Cs_2CO_3 (87.6 mg, 268 µmol) were added to a solution of 1.00 eq of **DPP2** (20.0 mg, 44.8 µmol) in 2.4 mL DMF. After stirring for 30 min at rt, 2.2 eq propagylbromide (11.7 mg, 9.97 µL, 98.5 µmol) were added and the mixture was stirred overnight. The mixture was washed with brine and purified via flash-column chromatography and centrifugation with pentane (3 x 4 mL) to obtain an orange solid in a 77% yield (18.0 mg, 34.5 µmol).

 $R_f(PE/EA 4:1) = 0.31$

¹**H NMR** (301 MHz, CDCl₃) δ 7.92 (d, *J* = 8.1 Hz, 4H), 7.84 (d, *J* = 8.2 Hz, 4H), 6.94 (s, 2H), 5.16 (d, *J* = 2.5 Hz, 4H), 2.40 – 2.32 (m, 2H).

¹⁹**F NMR** (283 MHz, CDCl₃) δ -62.68 (s, 6F).

¹³C NMR (151 MHz, CDCl₃) δ 143.04 (s, 2C), 141.89 (s, 2C), 135.48 (s, 2C), 135.32 (s, 2C), 130.96 (s, q, J = 32.8 Hz, 2C), 129.46 (d, 4C), 126.10 (d, q, J = 3.8 Hz, 4C), 124.13 (s, q, J = 272.2 Hz, 2C), 102.18 (d, 2C), 79.08 (s, 2C), 73.01 (d, 2C), 32.83 (t, 2C).

HR/MS (MALDI⁺, DCTB): *m*/*z* calcd. for C₂₈H₁₆F₆N₄ [M⁺] 522.1274, found: 522.1274.

IR(ATR)[*cm*⁻¹]: 3309, 2129, 1619, 1550, 1498, 1425, 1386, 1348, 1317, 1227, 1196, 1169, 1154, 1121, 1109, 1067, 1017, 964, 950, 934, 844, 790, 733, 713, 683, 641. **UV-Vis** [nm]: 274, 381.

Fluorescence (DMSO): $λ_{Ex}$ = 380 nm, $λ_{Max}$ = 452 nm; Φ = 65%

m.p. [°C]: 266 – 271 °C

1,5-Diallyl-2,6-bis(4-(trifluoromethyl)phenyl)-1,5-dihydrodipyrrolo[2,3-b:2',3'-e]pyrazine (ADPP5)

6.00 eq. Cs_2CO_3 (87.6 mg, 268 µmol) were added to a solution of 1.00 eq of **DPP2** (20.0 mg, 44.8 µmol) in 2.4 mL DMF. After stirring for 30 min at rt, 2.2 eq allylbromide (11.9 mg, 10.1 µL, 98.5 µmol) were added and the mixture was stirred overnight. The mixture was washed with brine and purified via flash-column chromatography and centrifugation with pentane (3 x 4 mL) to obtain an orange solid in a 68% yield (16.0 mg, 30.5 µmol).

 $R_{f}(PE/EA 4:1) = 0.35$

¹**H NMR** (600 MHz, C_6D_6) δ 7.29 (d, *J* = 8.1 Hz, 4H), 7.24 (d, *J* = 8.1 Hz, 4H), 6.93 (s, 2H), 5.78 (ddt, *J* = 17.7, 10.4, 4.5 Hz, 2H), 4.89 (dd, *J* = 10.5, 1.5 Hz, 2H), 4.72 (tdd, *J* = 7.2, 3.2, 1.7 Hz, 6H).

¹⁹**F NMR** (283 MHz, CDCl₃) δ -62.65 (s, 6F).

¹³C NMR (151 MHz, C₆D₆) δ 143.42 (s, 2C), 142.68 (s, 2C), 136.07 (s, 2C), 135.87 (s, 2C), 134.41 (s, 2C), 130.31 (s, q, J = 32.4 Hz, 2C), 129.36 (d, 4C), 125.76 (d, q, J = 3.8 Hz, 4C), 124.30 (s, q, J = 272.2 Hz, 2C), 116.35 (t, 2C), 45.22 (t, 2C).

HR/MS (MALDI⁺, DCTB): m/z calcd. for $C_{28}H_{20}F_6N_4$ [M⁺] 526.1587, found: 526.1585.

IR(ATR)[*cm*⁻¹]: 2925, 1617, 1549, 1497, 1416, 1383, 1360, 1316, 1224, 1193, 1162, 1124, 1107, 1069, 1018, 997, 926, 849, 788, 734, 716, 685, 657, 633, 608.

UV-Vis [nm]: 285, 374.

Fluorescence (DMSO): λ_{Ex} = 380 nm, λ_{Max} = 454 nm; Φ = 63%

m.p. [°C]: 225 – 230 °C

2,2'-(2,6-bis(4-(trifluoromethyl)phenyl)dipyrrolo[2,3-b:2',3'-e]pyrazine-1,5-diyl)diacetonitrile (ADPP6)

6.00 eq. Cs_2CO_3 (87.6 mg, 268 µmol) were added to a solution of 1.00 eq of **DPP2** (20.0 mg, 44.8 µmol) in 2.4 mL DMF. After stirring for 30 min at rt, 2.2 eq 2-bromoacetonitrile (11.8 mg, 6.87 µL, 98.5 µmol) were added and the mixture was stirred overnight. The mixture was washed with brine (50 mL) and purified via flash-column chromatography and centrifugation with pentane (3 x 4 mL) to obtain an orange solid in a 90% yield (21.2 mg, 40.3 µmol).

 $R_{f}(PE/EA 4:1) = 0.44$

¹**H NMR** (301 MHz, CDCl₃) δ 7.88 (d, *J* = 8.2 Hz, 4H), 7.79 (d, *J* = 8.2 Hz, 4H), 6.96 (s, 2H), 5.26 (s, 4H).

¹⁹**F NMR** (283 MHz, CDCl₃) δ -62.82 (s, 6F).

¹³C NMR (151 MHz, C₆D₆) δ 143.09 (s, 2C), 142.04 (s, 2C), 135.58 (S, 2C), 133.99 (s, 2C), 131.88 (s, q, J = 33.0 Hz, 2C), 129.56 (d, 4C), 126.59 (d, q, J = 3.7 Hz 4C), 123.88 (s, q, J = 272.4 Hz, 2C), 114.91 (s, 2C), 103.73 (d, 2C), 31.23 (t, 2C).

HR/MS (MALDI⁺, DCTB): *m/z* calcd. for C₂₆H₁₄F₆N₄ [M⁺] 524.1179, found: 524.1173.

IR(ATR)[*cm*⁻¹]: 2990, 2942, 1616, 1494, 1426, 1383, 1347, 1316, 1225, 1192, 1159, 1126, 1109, 1067, 1014, 961, 911, 849, 836, 790, 743, 730, 710, 685, 655.

UV-Vis [nm]: 276, 376.

Fluorescence (DMSO): λ_{Ex} = 380 nm, λ_{Max} = 440 nm; Φ = 65%

m.p. [°C]: 272 – 277 °C

(2,6-bis(4-(trifluoromethyl)phenyl)dipyrrolo[2,3-b:2',3'-e]pyrazine-1,5-diyl)bis(phenylmethanone) (ACDPP)

Benzoyl chloride (18.9 mg, 15.6 μ L, 134 μ mol) was added to a mixture containing **DPP2** (20.0 mg, 44.8 μ mol), DMAP (0.9 mg, 6.7 mmol) and Et₃N (5.4 mg, 7.5 μ L, 53.8 μ mol) and) in 1 mL DCM at rt. overnight.^[12] After washing with brine (30 mL) and extracting with ethylacetate, the resulting organic phase was then dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was centrifuged with CHCl₃ (2x 4 mL) and pentane (2x 4 mL) to yield 46% of a colourless solid (13.5 mg, 20.6 μ mol).

 $R_f(PE/EA 1:1) = 0.52$

¹**H NMR** (600 MHz, THF) δ 8.05 (dd, *J* = 8.3, 1.3 Hz, 4H), 7.75 – 7.71 (m, 2H), 7.69 (d, *J* = 2.1 Hz, 8H), 7.56 (t, *J* = 7.8 Hz, 4H), 7.09 (s, 2H).

¹³C NMR (151 MHz, THF) δ 169.38 (s, 2C), 145.22 (s, 2C), 144.57 (s, 2C), 136.98 (s, 2C), 136.70 (s, 2C), 135.45 (s, 2C), 135.11 (d, 2C), 132.41 (d, 4C), 130.87 (s, q, J = 32.3 Hz, 2C), 129.54 (d, 4C), 129.40 (d, 4C), 126.47 (d, q, J = 3.8 Hz, 4C), 125.42 (s, q, J = 271.9 Hz, 2C), 109.41 (d, 2C).

¹⁹**F NMR** (283 MHz, THF) δ -65.31 (s, 6F).

HR/MS (MALDI⁺, DCTB): *m/z* calcd. for C₃₆H₂₀F₆N₄O₂ [M⁺] 654.1485, found: 654.1487.

IR(ATR)[*cm*⁻¹]: 3341, 2909, 1786, 1725, 1599, 1451, 1321, 1274, 1212, 1172, 1035, 1016, 996, 897, 778, 703, 617.

UV-Vis [nm]: 383.

Fluorescence (DMSO): λ_{Ex} = 380 nm, λ_{Max} = 450 nm; Φ = 37%

m.p. [°C]: > 300 °C

Di-*tert*-butyl 3,7-dibromo-2,6-bis(4-(trifluoromethyl)phenyl)dipyrrolo[2,3-b:2',3'-e]pyrazine-1,5-dicarboxylate (BrDPPB)

To a solution of **DPPB2** (10.0 mg, 15.5 μ mol, 1.00 eq.) in MeCN (0.5 mL) *N*-bromosuccinimide (2.20 mg, 38.7 μ mol, 2.5 eq.) was added and the reaction stirred at 75 °C overnight. The crude mixture was washed with water (2x 10 mL) and extracted with DCM. The combined organic layers were washed, dried over Na₂SO₄ and the solvent was removed in vacuo. The off-white solid was further centrifuged with pentane (3x 4 mL) and MeOH (1x 4 mL) to obtain the product in a quantitative yield. (12.4 mg, 15.5 μ mol, quant.).

 $R_{f}(PE/EA 1:1) = 0.80$

¹H{¹⁹F} NMR (600 MHz, CDCl₃) δ 7.79 (d, J = 8.3 Hz, 4H), 7.67 (d, J = 8.1 Hz, 4H), 1.47 (s, 18H).

¹³C{¹H} NMR (151 MHz, CDCl₃) δ 147.36 (s, 2C), 140.98 (s, 2C), 140.27 (s, 2C), 135.53 (s, 2C), 135.06 (s, 2C), 131.22 (s, q: *J*_{C-F} = 32.7 Hz, 2C), 130.18 (d, 4C) 125.38 (d, q: *J*_{C-F} = 7.6 Hz, 4C), 124.05 (d, q: *J*_{C-F} = 272.4 Hz), 99.29 (s, 2C), 86.10 (s, 2C), 27.83 (q, 6C).

¹⁹**F NMR** (283 MHz, CDCl₃) δ -62.12 (s, 6F).

HR/MS (MALDI⁺, DCTB): m/z calcd. for $C_{32}H_{26}Br_2F_6N_4O_4Na^+$: [M⁺] 825.0117, found: 825.0130, correct isotope distribution.

IR(ATR)[*cm*⁻¹]: 2986, 2927, 2853, 1757, 1620, 1561, 1458, 1407, 1370, 1348, 1320, 1270, 1218, 1146, 1107, 1092, 1065, 1018, 949, 930, 861, 756, 686.

UV-Vis [nm]: 246, 273, 368.

Fluorescence (DCM): λ_{Ex} = 368 nm, λ_{Max} = 430 nm; Φ = 2%

m.p. [°C]: > 300 °C

Figure 2: ¹H NMR (301 MHz, CDCl₃) of IPrAuNTf₂.

Figure 4: ¹H NMR (300 MHz, CDCl₃) of 4,4"-di-tert-butyl-[1,1':3',1"-terphenyl]-5'-carbaldehyde.

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

 $\label{eq:Figure 5: $^{13}C{^1H} NMR (126 \ MHz, \ CDCl_3) \ of \ 4,4"-di-tert-butyl-[1,1':3',1"-terphenyl]-5'-carbaldehyde.}$

Figure 6: ¹H NMR (300 MHz, CDCl₃)of [1,1':3',1''-terphenyl]-5'-carbaldehyde.

Figure 7: ${}^{13}C{}^{1}H$ NMR (126 MHz, CDCl₃) of [1,1':3',1''-terphenyl]-5'-carbaldehyde.

Figure 8:¹H NMR (400 MHz, CDCl₃) of 4,4"-di-tert-butyl-5'-(2,2-dibromovinyl)-1,1':3',1"-terphenyl.

Figure 9: ¹³C{¹H} NMR (101 MHz, CDCl₃) of 4,4"-di-tert-butyl-5'-(2,2-dibromovinyl)-1,1':3',1"-terphenyl.

Figure 10: ¹H NMR (400 MHz, CDCl₃) of 5'-(2,2-dibromovinyl)-1,1':3',1"-terphenyl.

70 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 f1 (ppm)

Figure 11: ¹³C{¹H} NMR (101 MHz, CDCl₃) of 5'-(2,2-dibromovinyl)-1,1':3',1''-terphenyl.

Figure 12: ¹H NMR (400 MHz, CDCl₃) of 5'-ethynyl-1,1':3',1"-terphenyl.

170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 f1 (ppm)

Figure 123: ¹³C{¹H} NMR (101 MHz, CDCl₃) of 5'-ethynyl-1,1':3',1''-terphenyl.

Figure 134: ¹H NMR (400 MHz, CDCl₃) of 4,4"-di-tert-butyl-5'-ethynyl-1,1':3',1"-terphenyl.

Figure 145: ¹³C{¹H} NMR (101 MHz, CDCl₃) of 4,4"-di-tert-butyl-5'-ethynyl-1,1':3',1"-terphenyl.

Figure 15: ¹H-NMR (300 MHz, CDCl₃): of 5-bromo-3,6-dichloropyrazin-2-amine (2).

Figure 16: ¹³C{¹H} NMR (101 MHz, CDCl₃): of 2,5-dibromo-3,6-dichloropyrazine.

Figure 17: ¹H NMR (500 MHz, CDCl₃) of tert-butyl (5-bromo-3,6-dichloropyrazin-2-yl)carbamate (3).

Figure 18: ¹³C{¹H} NMR (126 MHz, CDCl₃) of tert-butyl (5-bromo-3,6-dichloropyrazin-2-yl)carbamate (3).

Figure 19: ¹H-NMR (600 MHz, CDCl₃): of Di-tert-butyl (3,6-dichloropyrazine-2,5-diyl) dicarbamate (DBC).

Figure 20: ¹³C{¹H} NMR (151 MHz, CDCl₃): of Di-tert-butyl (3,6-dichloropyrazine-2,5-diyl) dicarbamate.

Figure 21: ¹H NMR (301 MHz, CDCl₃) of BA1.

Figure 23: ¹*H*{¹⁹*F*} *NMR* (600 *MHz*, *CDCl*₃) of *BA2*.

Figure 25: ¹⁹F NMR {¹H} (283 MHz, CDCl₃) of BA2.

Figure 26: ¹H NMR (600 MHz, CDCl₃) of BA3.

Figure 27: ¹³C{¹H} NMR (151 MHz, CDCl₃) of **BA3**.

Figure 28: ¹H NMR (600 MHz, CDCl₃) of BA4.

Figure 29: ¹³C{¹H} NMR (151 MHz, CDCl₃) of BA4.

Figure 30^{1} H NMR (300 MHz, CDCl₃) of BA5.

Figure 31: ¹³C{¹H} NMR (101 MHz, CDCl₃) of BA5.

Figure 33: ¹³C{¹H} NMR (151 MHz, CDCl₃)of BA6.

Figure 35: ¹³C{¹H} NMR (151 MHz, CDCl₃) of BA7.

Figure 36: ¹H NMR (600 MHz, CDCl₃)of BA8.

Figure 37: ¹³C{¹H} NMR (151 MHz, CDCl₃) of **BA8**.

Figure 39: ¹³C{¹H} NMR (151 MHz, CDCl₃) of BA9.

Figure 41: ¹³C{¹H} NMR (151 MHz, CDCl₃) of **DPPB1**.

— 1.32

Figure 43: ¹³C{¹H} NMR (151 MHz, CDCl₃) of DPPB2.

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 f1 (ppm)

Figure 44: ¹*H*{¹⁹*F*} *NMR* (600 *MHz*, *CDCl*₃)of *DPPB2*.

Figure 45: ¹H NMR (301 MHz, CDCl₃) of DPPB3.

Figure 47: ¹H NMR (300 MHz, CDCl₃) of **DPPB4**.

Figure 49: ¹H NMR (600 MHz, CDCl₃) of DPPB5.

Figure 50: ¹³C{¹H} NMR (151 MHz, CDCl₃) of **DPPB5**.

Figure 51: ¹H NMR (300 MHz, CDCl₃) of **DPPB7**.

Figure 52: ¹³C{¹H} NMR (151 MHz, CDCl₃) of DPPB7.

Figure 53: ¹H NMR (300 MHz, CDCl₃) of **DPPB8**.

Figure 54: ¹³C{¹H} NMR (176 MHz, CDCl₃) of **DPPB8**.

Figure 55: ¹H NMR (600 MHz, CDCl₃) of DPPB10.

Figure 56: ¹³C{¹H} NMR (151 MHz, CDCl₃) of **DPPB10**.

Picture 1: Example of **DPP2** in DMSO depicting low solubility.

Figure 57: ¹H NMR (600 MHz, DMSO) of DPP1.

Figure 58: ¹³C NMR {¹H} (151 MHz, DMSO) of DPP1.

Figure 60: ¹³C NMR {¹H, ¹⁹F} (126 MHz, DMSO) of DPP2.

Figure 62: ¹H NMR (600 MHz, DMSO) of DPP3.

Figure 63: ¹³C{¹H} NMR (151 MHz, DMSO) of DPP3.

Figure 64: ¹H NMR (600 MHz, DMSO) of DPP4.

Figure 66: ¹H NMR (600 MHz, DMSO) of DPP7.

Figure 68: ¹H NMR (600 MHz, DMSO) of DPP8.

Figure 69: ¹³C{¹H} NMR (151 MHz, DMSO) of DPP8.

Figure 70: ¹H NMR (600 MHz, DMSO) of DPP10.

Figure 71: ¹³C{¹H} NMR (101 MHz, DMSO) of DPP10.

Figure 72: ¹*H*{¹⁹*F*} (500 MHz, CDCl₃) of *ADPP1*.

Figure 73: ¹³C NMR {¹H, ¹⁹F} (126 MHz, CDCl₃) of ADPP1.

Figure 74: ¹³C{¹H} NMR (101 MHz, CDCl₃) of ADPP1.

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 f1 (ppm)

Figure 75: ¹⁹F{¹H} (283 MHz, CDCl₃) of ADPP1.

Figure 76: ¹H NMR (600 MHz, CDCl₃) of ADPP2.

Figure 78: ¹⁹F NMR (283 MHz, CDCl₃) of ADPP2.

Figure 80: ¹³C{¹H} NMR (151 MHz, CDCl₃) of ADPP3.

Figure 81: ¹⁹F NMR (283 MHz, CDCl₃) of ADPP3.

Figure 82: ¹H NMR (301 MHz, CDCl₃) of ADPP4.

Figure 84: ¹⁹F NMR (283 MHz, CDCl₃) of ADPP4.

Figure 85: ¹H NMR (600 MHz, C₆D₆) of ADPP5.

Figure 86: ¹³C NMR (151 MHz, C₆D₆) of ADPP5.

Figure 88: ¹³C NMR (151 MHz, C₆D₆) DEPT 135 of **ADPP5.**

Figure 90: ¹³C NMR (151 MHz, C₆D₆) of **ADPP6.**

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 f1 (ppm)

Figure 92: ¹H NMR (600 MHz, THF) of ACDPP.

Figure 94: ¹⁹F NMR (283 MHz, THF) of ACDPP.

Figure 96: ¹³C{¹H} NMR (151 MHz, CDCl₃) of BrDPPB.

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 f1 (ppm)

Figure 97: ¹H{¹⁹F} NMR (600 MHz, CDCl₃) of BrDPPB.

X-Ray Structures

Unit cell dimensions $a = 5.1032(2)$ Å $\alpha = 90$ deg. $b =$ 16.1333(4) Å $\beta = 92.657(3)$ deg. $c =$ 21.3655(8) Å $\gamma = 90$ deg.Volume1757.16(10) Å ³ Density (calculated)1.43 g/cm ³ Absorption coefficient3.57 mm ⁻¹ Crystal shapepoleCrystal size0.238 x 0.024 x 0.021 mm ³ Crystal colourcolourlessTheta range for data collection5.0 to 64.3 deg.Index ranges $-3 \le h \le 5, -18 \le k \le 18, -24 \le l \le 23$ Reflections collected10481Independent reflections2820 (R(int) = 0.0285)Observed reflections2132 (I > 2 σ (I))Absorption correctionSemi-empirical from equivalentsMax. and min. transmission0.95 and 0.66Refinement methodFull-matrix least-squares on F ² Data/restraints/parameters2820 / 0 / 231Goodness-of-fit on F ² 0.99Final R indices (I>2sigma(I))R1 = 0.033, wR2 = 0.076Largest diff neak and hole0.25 and -0.24 e Å ⁻³	Manuscript number CCDC Empirical formula Formula weight Temperature Wavelength Crystal system Space group Z	DBC 2295562 C ₁₄ H ₂₀ Cl ₂ N ₄ O ₄ 379.24 200(2) K 1.54178 Å monoclinic P2 ₁ /c 4	
b = 16.1333(4) Å β = 92.657(3) deg. c = 21.3655(8) Å γ = 90 deg. Volume 1757.16(10) Å ³ Density (calculated) 1.43 g/cm ³ Absorption coefficient 3.57 mm ⁻¹ Crystal shape pole Crystal size 0.238 x 0.024 x 0.021 mm ³ Crystal colour colourless Theta range for data collection 5.0 to 64.3 deg. Index ranges -3≤h≤5, -18≤k≤18, -24≤l≤23 Reflections collected 10481 Independent reflections 2820 (R(int) = 0.0285) Observed reflections 2132 (I > 2 σ (I)) Absorption correction Semi-empirical from equivalents Max. and min. transmission 0.95 and 0.66 Refinement method Full-matrix least-squares on F ² Data/restraints/parameters 2820 / 0 / 231 Goodness-of-fit on F ² 0.99 Final R indices (I>2sigma(I)) R1 = 0.033, wR2 = 0.076 Largest diff, peak and hole 0.25 and -0.24 eÅ ⁻³	Unit cell dimensions	a = 5.1032(2) Å	α =90 deg.
c =21.3655(8) Å $\gamma = 90 \text{ deg.}$ Volume1757.16(10) Å3Density (calculated)1.43 g/cm3Absorption coefficient3.57 mm ⁻¹ Crystal shapepoleCrystal size0.238 x 0.024 x 0.021 mm3Crystal colourcolourlessTheta range for data collection5.0 to 64.3 deg.Index ranges $-3 \le h \le 5, -18 \le k \le 18, -24 \le l \le 23$ Reflections collected10481Independent reflections2820 (R(int) = 0.0285)Observed reflections2132 (I > 2 σ (I))Absorption correctionSemi-empirical from equivalentsMax. and min. transmission0.95 and 0.66Refinement methodFull-matrix least-squares on F ² Data/restraints/parameters2820 / 0 / 231Goodness-of-fit on F ² 0.99Final R indices (I>2sigma(I))R1 = 0.033, wR2 = 0.076L arcest diff neak and hole0.25 and -0.24 eÅ-3	b =	16.1333(4) Å	$\beta = 92.657(3) \text{ deg.}$
Volume1757.16(10) Å3Density (calculated)1.43 g/cm3Absorption coefficient 3.57 mm^{-1} Crystal shapepoleCrystal size $0.238 \times 0.024 \times 0.021 \text{ mm}^{3}$ Crystal colourcolourlessTheta range for data collection $5.0 \text{ to } 64.3 \text{ deg.}$ Index ranges $-3 \le h \le 5, -18 \le k \le 18, -24 \le l \le 23$ Reflections collected 10481 Independent reflections $2820 (R(int) = 0.0285)$ Observed reflections $2132 (I > 2\sigma(I))$ Absorption correctionSemi-empirical from equivalentsMax. and min. transmission $0.95 \text{ and } 0.66$ Refinement methodFull-matrix least-squares on F2Data/restraints/parameters $2820 / 0 / 231$ Goodness-of-fit on F2 0.99 Final R indices (I>2sigma(I))R1 = 0.033, wR2 = 0.076L arrest diff peak and hole $0.25 \text{ and } -0.24 \text{ e}^{\frac{1}{2}-3}$	c =	21.3655(8) Å	$\gamma = 90 \text{ deg.}$
Density (calculated) 1.43 g/cm^3 Absorption coefficient 3.57 mm^{-1} Crystal shapepoleCrystal size $0.238 \times 0.024 \times 0.021 \text{ mm}^3$ Crystal colourcolourlessTheta range for data collection $5.0 \text{ to } 64.3 \text{ deg.}$ Index ranges $-3 \le h \le 5, -18 \le k \le 18, -24 \le l \le 23$ Reflections collected 10481 Independent reflections $2820 (R(int) = 0.0285)$ Observed reflections $2132 (I > 2\sigma(I))$ Absorption correctionSemi-empirical from equivalentsMax. and min. transmission $0.95 \text{ and } 0.66$ Refinement methodFull-matrix least-squares on F ² Data/restraints/parameters $2820 / 0 / 231$ Goodness-of-fit on F ² 0.99 Final R indices (I>2sigma(I))R1 = $0.033, wR2 = 0.076$ L argest diff, peak and hole $0.25 \text{ and } -0.24 \text{ e}^{A-3}$	Volume	1757.16(10) Å ³	
Absorption coefficient 3.57 mm^{-1} Crystal shapepoleCrystal size $0.238 \times 0.024 \times 0.021 \text{ mm}^3$ Crystal colourcolourlessTheta range for data collection $5.0 \text{ to } 64.3 \text{ deg.}$ Index ranges $-3 \le h \le 5, -18 \le k \le 18, -24 \le l \le 23$ Reflections collected 10481 Independent reflections $2820 (R(int) = 0.0285)$ Observed reflections $2132 (I > 2\sigma(I))$ Absorption correctionSemi-empirical from equivalentsMax. and min. transmission $0.95 \text{ and } 0.66$ Refinement methodFull-matrix least-squares on F ² Data/restraints/parameters $2820 / 0 / 231$ Goodness-of-fit on F ² 0.99 Final R indices (I>2sigma(I))R1 = 0.033 , wR2 = 0.076 L argest diff, peak and hole $0.25 \text{ and } -0.24 \text{ e}^{A-3}$	Density (calculated)	1.43 g/cm ³	
Crystal shapepoleCrystal size $0.238 \times 0.024 \times 0.021 \text{ mm}^3$ Crystal colourcolourlessTheta range for data collection $5.0 \text{ to } 64.3 \text{ deg.}$ Index ranges $-3 \le h \le 5, -18 \le k \le 18, -24 \le l \le 23$ Reflections collected 10481 Independent reflections $2820 (R(int) = 0.0285)$ Observed reflections $2132 (I > 2\sigma(I))$ Absorption correctionSemi-empirical from equivalentsMax. and min. transmission $0.95 \text{ and } 0.66$ Refinement methodFull-matrix least-squares on F ² Data/restraints/parameters $2820 / 0 / 231$ Goodness-of-fit on F ² 0.99 Final R indices (I>2sigma(I))R1 = 0.033 , wR2 = 0.076 L argest diff, peak and hole $0.25 \text{ and } -0.24 \text{ e}^{A-3}$	Absorption coefficient	3.57 mm ⁻¹	
Crystal size $0.238 \times 0.024 \times 0.021 \text{ mm}^3$ Crystal colourcolourlessTheta range for data collection $5.0 \text{ to } 64.3 \text{ deg.}$ Index ranges $-3 \le h \le 5, -18 \le k \le 18, -24 \le l \le 23$ Reflections collected 10481 Independent reflections $2820 (R(int) = 0.0285)$ Observed reflections $2132 (I > 2\sigma(I))$ Absorption correctionSemi-empirical from equivalentsMax. and min. transmission $0.95 \text{ and } 0.66$ Refinement methodFull-matrix least-squares on F2Data/restraints/parameters $2820 / 0 / 231$ Goodness-of-fit on F2 0.99 Final R indices (I>2sigma(I))R1 = 0.033 , wR2 = 0.076 L argest diff, peak and hole $0.25 \text{ and } -0.24 \text{ e}^{A-3}$	Crystal shape	pole	
Crystal colourcolourlessTheta range for data collection $5.0 \text{ to } 64.3 \text{ deg.}$ Index ranges $-3 \le h \le 5, -18 \le k \le 18, -24 \le l \le 23$ Reflections collected 10481 Independent reflections $2820 (R(int) = 0.0285)$ Observed reflections $2132 (I > 2\sigma(I))$ Absorption correctionSemi-empirical from equivalentsMax. and min. transmission $0.95 \text{ and } 0.66$ Refinement methodFull-matrix least-squares on F2Data/restraints/parameters $2820 / 0 / 231$ Goodness-of-fit on F2 0.99 Final R indices (I>2sigma(I))R1 = 0.033 , wR2 = 0.076 L argest diff, peak and hole $0.25 \text{ and } -0.24 \text{ e}^{A-3}$	Crystal size	0.238 x 0.024 x 0.02	1 mm³
Theta range for data collection5.0 to 64.3 deg. Index ranges $-3 \le h \le 5, -18 \le k \le 18, -24 \le l \le 23$ Reflections collected10481Independent reflections $2820 (R(int) = 0.0285)$ Observed reflections $2132 (I > 2\sigma(I))$ Absorption correctionSemi-empirical from equivalentsMax. and min. transmission 0.95 and 0.66 Refinement methodFull-matrix least-squares on F ² Data/restraints/parameters $2820 / 0 / 231$ Goodness-of-fit on F ² 0.99 Final R indices (I>2sigma(I))R1 = 0.033 , wR2 = 0.076 L argest diff, peak and hole 0.25 and -0.24 eÅ-3	Crystal colour	colourless	
Index ranges $-3 \le h \le 5, -18 \le k \le 18, -24 \le l \le 23$ Reflections collected10481Independent reflections2820 (R(int) = 0.0285)Observed reflections2132 (I > $2\sigma(I)$)Absorption correctionSemi-empirical from equivalentsMax. and min. transmission0.95 and 0.66Refinement methodFull-matrix least-squares on F ² Data/restraints/parameters2820 / 0 / 231Goodness-of-fit on F ² 0.99Final R indices (I>2sigma(I))R1 = 0.033, wR2 = 0.076L argest diff, peak and hole0.25 and -0.24 eÅ-3	Theta range for data collection	5.0 to 64.3 deg.	
Reflections collected10481Independent reflections $2820 (R(int) = 0.0285)$ Observed reflections $2132 (I > 2\sigma(I))$ Absorption correctionSemi-empirical from equivalentsMax. and min. transmission 0.95 and 0.66 Refinement methodFull-matrix least-squares on F ² Data/restraints/parameters $2820 / 0 / 231$ Goodness-of-fit on F ² 0.99 Final R indices (I>2sigma(I))R1 = 0.033 , wR2 = 0.076 L argest diff, peak and hole 0.25 and -0.24 eÅ-3	Index ranges	-3≤h≤5, -18≤k≤18, -2	!4≤l≤23
Independent reflections $2820 (R(int) = 0.0285)$ Observed reflections $2132 (I > 2\sigma(I))$ Absorption correctionSemi-empirical from equivalentsMax. and min. transmission $0.95 \text{ and } 0.66$ Refinement methodFull-matrix least-squares on F ² Data/restraints/parameters $2820 / 0 / 231$ Goodness-of-fit on F ² 0.99 Final R indices (I>2sigma(I))R1 = 0.033, wR2 = 0.076L argest diff, peak and hole $0.25 \text{ and } -0.24 \text{ e}^{A-3}$	Reflections collected	10481	
Observed reflections $2132 (I > 2\sigma(I))$ Absorption correctionSemi-empirical from equivalentsMax. and min. transmission 0.95 and 0.66 Refinement methodFull-matrix least-squares on F ² Data/restraints/parameters $2820 / 0 / 231$ Goodness-of-fit on F ² 0.99 Final R indices (I>2sigma(I))R1 = 0.033 , wR2 = 0.076 L argest diff, peak and hole 0.25 and -0.24 eÅ-3	Independent reflections	2820 (R(int) = 0.0285	5)
Absorption correctionSemi-empirical from equivalentsMax. and min. transmission 0.95 and 0.66 Refinement methodFull-matrix least-squares on F2Data/restraints/parameters $2820 / 0 / 231$ Goodness-of-fit on F2 0.99 Final R indices (I>2sigma(I))R1 = 0.033 , wR2 = 0.076 L argest diff, peak and hole 0.25 and -0.24 eÅ-3	Observed reflections	2132 (I > 2σ(I))	
Max. and min. transmission 0.95 and 0.66 Refinement methodFull-matrix least-squares on F2Data/restraints/parameters $2820 / 0 / 231$ Goodness-of-fit on F2 0.99 Final R indices (I>2sigma(I))R1 = 0.033 , wR2 = 0.076 L argest diff, peak and hole 0.25 and -0.24 eÅ-3	Absorption correction	Semi-empirical from	equivalents
Refinement methodFull-matrix least-squares on F^2 Data/restraints/parameters $2820 / 0 / 231$ Goodness-of-fit on F^2 0.99 Final R indices (I>2sigma(I))R1 = 0.033 , wR2 = 0.076 L argest diff, peak and hole 0.25 and -0.24 eÅ-3	Max. and min. transmission	0.95 and 0.66	
Data/restraints/parameters $2820 / 0 / 231$ Goodness-of-fit on F2 0.99 Final R indices (I>2sigma(I))R1 = 0.033 , wR2 = 0.076 L argest diff, peak and hole 0.25 and -0.24 eÅ-3	Refinement method	Full-matrix least-squa	ares on F ²
Goodness-of-fit on F^2 0.99Final R indices (I>2sigma(I))R1 = 0.033, wR2 = 0.076Largest diff, peak and hole0.25 and -0.24 eÅ-3	Data/restraints/parameters	2820 / 0 / 231	
Final R indices (I>2sigma(I)) R1 = 0.033 , wR2 = 0.076	Goodness-of-fit on F ²	0.99	
Largest diff neak and hole 0.25 and -0.24 eÅ ⁻³	Final R indices (I>2sigma(I))	R1 = 0.033, wR2 = 0	.076
	Largest diff. peak and hole	0.25 and -0.24 eÅ ⁻³	

Manuscript number CCDC Empirical formula Formula weight Temperature Wavelength	BA1 2295563 C ₃₂ H ₃₄ N ₄ O ₆ 570.63 200(2) K 0.71073 Å	
Crystal system	monoclinic	
Space group	P2 ₁ /n	
L Unit cell dimensions	a = 13.620(2) Å b = 5.1428(8) Å c = 22.255(4) Å	α = 90 deg. β = 107.679(4) deg. γ = 90 deg.
Volume	1485.2(4) Å ^{3′}	, 0
Density (calculated)	1.28 g/cm ³	
Absorption coefficient	0.09 mm ⁻¹	
Crystal shape	plank	
Crystal size	0.200 x 0.037 x 0.0	12 mm ³
Crystal colour	yellow	
Theta range for data collection	1.6 to 23.0 deg.	
Index ranges	-14≤h≤14, -5≤k≤5, -	·24≤l≤24
Reflections collected	15099	
Independent reflections	2063 (R(int) = 0.118	31)
Observed reflections	1272 (I > 2σ(I))	
Absorption correction	Semi-empirical from	n equivalents
Max. and min. transmission	0.96 and 0.90	
Refinement method	Full-matrix least-squ	uares on F ²
Data/restraints/parameters	2063 / 0 / 197	
Goodness-of-fit on F ²	1.05	
Final R indices (I>2sigma(I))	R1 = 0.056, wR2 =	0.100
Largest diff. peak and hole	0.20 and -0.24 eA ⁻³	

Manuscript number DPPB2 CCDC 2295564 Empirical formula $C_{33}H_{29}CI_3F_6N_4O_4$ Formula weight 765.95 Temperature 200(2) K Wavelength 0.71073 Å Crystal system Triclinic Space group P-1 2 Ζ Unit cell dimensions a = 10.1680(7) Å α = 89.649(1) deg. b = 10.8563(7) Å β = 77.669(1) deg. c = 18.1982(13) Å $\gamma = 65.299(1) \text{ deg.}$ 1775.1(2) Å³ Volume Density (calculated) 1.43 g/cm³ Absorption coefficient 0.33 mm⁻¹ Crystal shape prism Crystal size 0.126 x 0.077 x 0.055 mm³ Crystal colour colourless Theta range for data collection 2.1 to 25.5 deg. -12≤h≤12, -13≤k≤13, -21≤l≤22 Index ranges **Reflections collected** 28765 Independent reflections 6566 (R(int) = 0.0525) Observed reflections 4404 (I > 2\s(I)) Semi-empirical from equivalents Absorption correction Max. and min. transmission 0.75 and 0.71 Refinement method Full-matrix least-squares on F² Data/restraints/parameters 6566 / 0 / 541 Goodness-of-fit on F² 1.03 Final R indices $(I>2\sigma(I))$ R1 = 0.059, wR2 = 0.129 Largest diff. peak and hole 0.82 and -0.69 eÅ⁻³

Manuscript number Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Z Unit cell dimensions	ADPP4 2312913 $C_{28}H_{16}F_{6}N_{4}$ 522.45 200(2) K 0.71073 Å monoclinic P2 ₁ /c 2 a = 13.546(3) Å α =90 deg. b = 11.813(3) Å β =102.679(7) deg. c = 7.2637(17) Å α = 90 deg
Volume Density (calculated) Absorption coefficient Crystal shape Crystal size Crystal colour Theta range for data collection Index ranges Reflections collected Independent reflections Observed reflections Absorption correction Max. and min. transmission Refinement method Data/restraints/parameters Goodness-of-fit on F ² Final R indices (I>2sigma(I))	$\begin{array}{l} \text{C} = -7.2637(17) \text{ A} & \gamma = 90 \ \text{deg.} \\ 1133.9(5) \ \text{Å}^{3} \\ 1.53 \ \text{g/cm}^{3} \\ 0.13 \ \text{mm}^{-1} \\ \text{plate} \\ 0.090 \ \text{x} \ 0.038 \ \text{x} \ 0.012 \ \text{mm}^{3} \\ \text{yellow} \\ 1.5 \ \text{to} \ 27.6 \ \text{deg.} \\ -17 \leq \text{h} \leq 17, \ 0 \leq \text{k} \leq 15, \ 0 \leq \text{l} \leq 9 \\ 11733 \\ 2497 \ (\text{R(int)} = 0.1071) \\ 1364 \ (\text{l} > 2\sigma(\text{l})) \\ \text{Semi-empirical from equivalents} \\ 0.96 \ \text{and} \ 0.86 \\ \text{Full-matrix least-squares on F}^{2} \\ 2497 \ / \ 0 \ / \ 173 \\ 1.06 \\ \text{R1} = 0.072, \ \text{wR2} = 0.118 \end{array}$

TGA-& Stability Measurements

Figure 98: TGA & DSC Plot of DPP2.

Figure 99: UV-stability measurement of **DPP2.** Constant irradiation in a distance of 20 cm to the sample with 254 & 365 nm.

Figure 100: UV-stability measurement of **DPP2.** Constant irradiation in a distance of 20 cm to the sample with 254 & 365 nm (light blue), ambient measurement without irradiation (dark blue).

UV/Vis, Fluorescence Characteristics & Spectra

Table 5: Optical properties of synthesised **DPPBs**, **DPPs** & functionalised substrates. **DPPBs**, **ADPPs** and **BrDPPB** were measured in DCM. **ACDPP** & **DPPs** were measured in DMSO. $E_{g(opt)}$ derived from $\Lambda_{onset,abs}$.

Compound	$\lambda_{\text{max,abs}}\left[nm\right]$	$\lambda_{\text{max,em}}[\text{nm}]$	Stokes Shift [nm] / [cm ⁻¹]	$\Lambda_{\text{onset,abs}}[\text{nm}]$	E _{g(opt)} [eV]	QY [%]
BA1	409	454	45 /2423	452	2.74	90
BA2	395	452	57 / 3193	447	2.77	49
BA3	399	447	48 / 2691	445	2.78	88
BA4	395	447	53 / 2945	443	2.80	84
BA5	369	417	48 / 3119	419	2.96	49
BA6	410	458	48 / 2556	468	2.65	16
BA7	397	451	54 / 3015	456	2.71	65
BA8	400	451	51 / 2627	460	2.69	93
BA9	385	428	43 /2610	429	2.89	76
DPPB1	380	442	62 / 3691	432	2.87	74
DPPB2	366	423	57 / 3681	412	3.01	46
DPPB3	375	430	55 / 3410	422	2.94	71
DPPB4	370	426	56 / 3552	413	3.00	78
DPPB5	350	402	52 / 3695	387	3.20	34
DPPB7	370	424	54 / 3422	424	2.92	67
DPPB8	368	428	60 / 3809	429	2.89	74
DPPB10	415	514	99 / 4641	477	2.59	85
DPP1	416	462	46 / 2392	460	2.69	85
DPP2	417	455	38 /2002	460	2.69	67
DPP3	415	453	38 / 2021	458	2.71	81
DPP4	415	449	34 / 1825	457	2.71	74
DPP7	415	457	42 / 2214	467	2.65	69
DPP8	415	457	42 / 2214	466	2.66	50
DPP10	458	526	68 / 2822	518	2.39	7
ADPP1	365	456	91 / 5467	452	2.74	43
ADPP2	375	456	71 / 4736	444	2.79	67
ADPP3	377	448	81 / 4203	442	2.80	67
ADPP4	374	454	80 / 4711	447	2.77	63
ADPP5	381	452	71 / 4122	441	2.81	65
ADPP6	376	440	64 / 3868	436	2.84	65
ACDPP	383	450	67 / 3887	431	2.88	37
BrDPPB	368	453	85 / 5099	415	2.99	2

Figure 101: Normalised absorption (left) and normalised emission (right) of all substrates. **BAs** (blue), **DPPBs** (green), **DPPs** (yellow) & functionalised derivates (violet).

References

- 1 S. Régnier, W. S. Bechara and A. B. Charette, Synthesis of 3-Aminoimidazo1,2-apyridines from α-Aminopyridinyl Amides, *J. Org. Chem.*, 2016, **81**, 10348–10356.
- 2 R. Heckershoff, T. Schnitzer, T. Diederich, L. Eberle, P. Krämer, F. Rominger, M. Rudolph and A. S. K. Hashmi, Efficient Synthesis of Dipyrrolobenzenes and Dipyrrolopyrazines via Bidirectional Gold Catalysis: a Combined Synthetic and Photophysical Study, *J. Am. Chem. Soc.*, 2022, **144**, 8306–8316.
- 3 S. Routier, L. Saugé, N. Ayerbe, G. Coudert and Jean-Yves Mérour, A mild an selective method for *N*-Boc deprotection, *Tetrahedron Lett.*, 2002, **43**, 589-591.
- 4 N. George, S. Ofori, S. Parkin and S. G. Awuah, Mild deprotection of the N-tert-butyloxycarbonyl (N-Boc) group using oxalyl chloride, *RSC Adv.*, 2020, **10**, 24017–24026.
- 5 D. S. Coffey, M. K. N. Hawk, S. W. Pedersen, S. J. Ghera, P. G. Marler, P. N. Dodson and M. L. Lytle, Large Scale Deprotection of a tert -Butoxycarbonyl (Boc) Group Using Aqueous HCl and Acetone, *Org. Process Res. Dev.*, 2004, **8**, 945–947.
- 6 A. J. Zhang, D. H. Russel, J. Zhu and K. Burgess, A Method for Removal of *N*-BOC Protecting Groups from Substrates on TFA-sensitive Resins, *Tetrahedron Lett.*, 1998, **39**, 7439-7442.
- 7 S. E. López and J. Salazar, Trifluoroacetic acid: Uses and recent applications in organic synthesis, *J. Fluor. Chem.*, 2013, **156**, 73-100.
- C. M. Hendrich, L. M. Bongartz, M. T. Hoffmann, U. Zschieschang, J. W. Borchert, D. Sauter, P. Krämer, F. Rominger, F.
 F. Mulks, M. Rudolph, A. Dreuw, H. Klauk and A. S. K. Hashmi, Gold Catalysis Meets Materials Science A New Approach to π-Extended Indolocarbazoles, *Adv. Synth. Catal.*, 2021, **363**, 549–557.
- 9 M. Michalska, K. Grudzień, P. Małecki and K. Grela, Gold(I)-Catalyzed Formation of Naphthalene/Acenaphthene Heterocyclic Acetals, *Org. Lett.*, 2018, **20**, 954–957.
- C. Granchi, I. Caligiuri, E. Bertelli, G. Poli, F. Rizzolio, M. Macchia, A. Martinelli, F. Minutolo and T. Tuccinardi, Development of terphenyl-2-methyloxazol-5(4H)-one derivatives as selective reversible MAGL inhibitors, *J. Enzyme Inhib. Med. Chem.*, 2017, **32**, 1240–1252.
- 11 M. D. Cornelissen, S. Pilon, L. Steemers, M. J. Wanner, S. Frölke, E. Zuidinga, S. I. Jørgensen, J. I. van der Vlugt and J. H. van Maarseveen, A Covalent and Modular Synthesis of Homo- and Heteronrotaxanes, J. Org. Chem., 2020, 85, 3146–3159.
- 12 W. Chen, H.-J. Li, Q.-Y. Li and Y.-C. Wu, Direct oxidative coupling of N-acyl pyrroles with alkenes by ruthenium(ii)catalyzed regioselective C2-alkenylation, *Org. Biomol. Chem.*, 2020, **18**, 500–513.